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Instantaneous Fundamental Frequency Estimation
with Optimal Segmentation for Non-Stationary

Voiced Speech
Sidsel Marie Nørholm, Jesper Rindom Jensen, Member, IEEE,

and Mads Græsbøll Christensen, Senior Member, IEEE

Abstract—In speech processing, the speech is often considered
stationary within segments of 20–30 ms even though it is well
known not to be true. In this paper, we take the non-stationarity
of voiced speech into account by using a linear chirp model to
describe the speech signal. We propose a maximum likelihood
estimator of the fundamental frequency and chirp rate of this
model, and show that it reaches the Cramer-Rao lower bound.
Since the speech varies over time, a fixed segment length is not
optimal, and we propose making a segmentation of the signal
based on the maximum a posteriori (MAP) criterion. Using this
segmentation method, the segments are on average longer for the
chirp model compared to the traditional harmonic model. For
the signal under test, the average segment length is 24.4 ms and
17.1 ms for the chirp model and traditional harmonic model,
respectively. This suggests a better fit of the chirp model than
the harmonic model to the speech signal. The methods are based
on an assumption of white Gaussian noise, and, therefore, two
prewhitening filters are also proposed.

Index Terms—Harmonic chirp model, parameter estimation,
segmentation, prewhitening.

I. INTRODUCTION

PARAMETER estimation of harmonic signals is relevant
to the fields of speech processing and communication. In

speech models, the speech signal is often split into a voiced
part and an unvoiced part. The voiced part of the speech signal
is produced by the vibration of the vocal cords, and, therefore,
has a structure with a fundamental frequency and a set of
overtones given by integer multiples of the fundamental. Over
the years, several fundamental frequency estimators have been
proposed based on different methods, such as autocorrelation
[2], statistical [3]–[5], optimal filtering [6], or eigenvalue
decomposition [7], [8]. Some methods work directly in the
time domain [8], [9] whereas others use the spectrum or
cepstrum [10], [11]. Comparisons of various fundamental
frequency estimators have shown that different domains offer
different advantages in e.g., the two genders [12]. Most of
these fundamental frequency estimators split the signal into
segments of 20–30 ms [13], make a voiced/unvoiced deci-
sion [14], [15], and estimate the parameters of each voiced
segment separately. In most models, the signal is assumed
stationary within each segment, even though it is well known
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that this assumption of stationarity does not hold [13], [16].
Some estimators overcome this problem of non-stationarity
by looking at shorter segments, as, e.g., in [17], [18] where
the fundamental frequency is estimated based on a single
period of voiced speech. This overcomes the problem of non-
stationarity, however, the lack of data points, that each estimate
is based on, gives a greater uncertainty of the estimates. This
is also seen in [18] where the method has a poor performance
with respect to fine pitch error (FPE). Another approach,
giving higher estimation accuracy, is to model the change in
fundamental frequency within each segment. This can be done
by extending the harmonic model [19]–[22] to a harmonic
chirp model, which has also been suggested in [24], [25],
[37]. Here, the harmonic structure remains the foundation
of the model, but the fundamental frequency is allowed to
change linearly within each segment. This introduces an extra
parameter to estimate, but with the benefit that the model
fits the speech signal better. Using the harmonic chirp model
instead of the traditional harmonic model can, therefore, lead
to better speech enhancement [26], but with a better fit of
the model it is also possible to work with longer segments.
In general, longer segments lead to better performance of the
estimators, and so a smaller error on the estimated parameters
can be obtained. However, the optimal segment length depends
on the features of the signal, which are varying over time
in the case of speech signals. At some time instances, the
parameters are almost constant, and, in such periods, long
segments can be used whereas at other points in time, the
parameters will change fast and shorter segments should be
used. Instead of using a fixed segment length, it is, therefore,
better to have a varying segment length that depends on the
signal characteristics at the given point in time. In [27], [28],
the signal is modelled based on linear prediction (LP), and
the segment length is chosen according to a trade-off between
bit rate and distortion. The principle can, however, be used
with other criteria for choosing the segment length, depending
on what is most relevant in the given situation. The noise
characteristics also have an impact on the performance of
parameter estimators and optimal segmentation. Most methods
make an assumption of white Gaussian noise, which is rarely
experienced in real life scenarios. One way to address this
problem is to preprocess the signal in a way that makes the
noise resemble white Gaussian noise, as is, e.g., done through
Cholesky factorisation [29].

The contribution in this paper is three-fold. First, we pro-
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pose estimating the fundamental frequency and fundamental
chirp rate by maximising the likelihood. Since maximising
with respect to two parameters leads to a search in a two-
dimensional space, we suggest an iterative procedure where
first a one dimensional optimisation of the chirp parameter is
performed followed by a one dimensional optimisation of the
fundamental frequency based on the newly found estimate of
the chirp rate. The estimation process is ended by convergence
of the two-dimensional cost function. The proposed parameter
estimator is a continuation of [1]. Our iterative procedure
offers some benefits over the method suggested in [25], where
an approximate cost function is introduced in order to decrease
the computational load. The approximate cost function in
[25] is evaluated over a two-dimensional grid, which means
that fundamental frequency and chirp rate have to be found
for each point in the grid before the optimum is found. In
this paper, the original cost function is evaluated iteratively,
giving fewer points for evaluation thus making the procedure
suggested in this paper faster. Second, we suggest a maximum
a posteriori (MAP) criterion to either make model selection
between the traditional harmonic model and the harmonic
chirp model, or make optimal segmentation of the signal
based on one of the models. The optimal segmentation is
based on the principle suggested in [27], [28]. The principle is
adapted to the harmonic chirp model by using the maximum
a posteriori (MAP) criterion for choosing the segment length.
The model selection and optimal segmentation are introduced
to give better representations of the signal. With the model
selection, the more complex harmonic chirp model is favoured
over the traditional harmonic model whenever it is beneficial
according to the MAP principle. This reduces the error in, e.g.,
reconstruction or filtering [26] of the signal while keeping
complexity low by choosing the traditional harmonic model
whenever this is sufficient. With optimal segmentation, the
segment length differs over time, optimising the fit of the
model to the signal in each segment. This results in parameters
that better describe the signal in the segment, and so also
a lower error on, e.g., reconstruction or filtering. Third, we
suggest two different methods to prewhiten the noise. Both the
maximum likelihood estimator of the fundamental frequency
and chirp rate and the MAP criterion are based on an assump-
tion of white Gaussian noise, and, therefore, a prewhitening
step is necessary if the noise is not white Gaussian. Both
methods are based on noise power spectral density (PSD)
estimation [30]–[33] and generate a filter to counteract the
spectral shape of the noise. The filter is either based directly
on the estimated spectrum of the noise or linear prediction of
the noise.

The paper is organised as follows. In Section II, the har-
monic chirp model is introduced. In Section III, the maxi-
mum likelihood estimator of the fundamental frequency and
fundamental chirp rate is derived. In Section IV, the general
MAP criterion is introduced for the harmonic chirp model
along with the MAP model selection criterion between the
traditional harmonic model, the harmonic chirp model and
the noise only model. This is followed by the segmentation
principle based on the MAP criterion in Section V. In Section
VI, the two prewhitening methods are described. In Section
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Fig. 1: Sketch of the difference between the harmonic model
(HM) and the harmonic chirp model (HCM). The top plot
shows a fundamental frequency track (f̂0) of a speech signal.
The bottom plot is an enlargement of the small black square
in the top plot.

VII, the proposed methods are tested through simulations on
synthetic chirp signals and speech, and the paper is concluded
in Section VIII.

II. HARMONIC CHIRP MODEL

In order to illustrate the difference between the harmonic
model and the harmonic chirp model, a fundamental frequency
track of a speech signal is plotted in the top of Fig. 1.
The figure shows that the fundamental frequency changes
continuously over time. This is also illustrated in the bottom
figure with an enlargement of the 30 ms segment marked by
the black square in the top figure. In this 30 ms segment,
the fundamental frequency changes by approximately 8 Hz,
whereas the harmonic model (HM), and most other funda-
mental frequency estimators, would assume the instantaneous
fundamental frequency to be stationary within the segment.
The harmonic chirp model (HCM) does not assume stationar-
ity, but assumes a linear change of the fundamental frequency
within a segment. As shown in the bottom figure, this model
better describes the instantaneous fundamental frequency in
the segment. With a better model, it is possible to work
with longer segments, which will give higher accuracy on the
estimated parameters. Further, it can lead to more efficient
coding and signal reconstruction.

The harmonic chirp model is an extension of the traditional
harmonic model. Therefore, the frequencies of the harmonics
are still given by integer multiples of a fundamental frequency.
However, in the chirp model, the instantaneous frequency of
the l’th harmonic, ωl(n), varies with the time index n =
n0, ..., n0 +N − 1 in a linear way:

ωl(n) = l(ω0 + kn), (1)

where ω0 = 2πf0/fs, with fs the sampling frequency, is the
normalised fundamental frequency, and k is the normalised
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fundamental chirp rate. This means that in order to obtain the
instantaneous frequency, both the fundamental frequency and
the chirp rate are needed. The instantaneous phase, ϕl(n), of
the sinusoids are given by the integral of the instantaneous
frequency as

ϕl(n) = l

(
ω0n+

1

2
kn2

)
+ φl, (2)

where φl ∈ [0, 2π] is the initial phase of the l’th harmonic.
This leads to the complex harmonic chirp model for a voiced
speech signal, s(n):

s(n) =

L∑
l=1

Ale
jϕl(n) (3)

=

L∑
l=1

αle
jl(ω0n+k/2n2), (4)

where L is the number of harmonics and αl = Ale
jφl , Al > 0

is the complex amplitude of the l’th harmonic. For speech
signals the model order has to be estimated, which can be
done, e.g., by use of the MAP criterion introduced in Section
IV (see also [8]). The complex signal model is used instead of
the real because it can ease both notation and computation. A
real signal can be easily converted to a complex signal by use
of the Hilbert transform [34] and without loss of information,
downsampled by a factor of two.

A special case of the harmonic chirp model for k = 0 is
the traditional harmonic model:

s(n) =

L∑
l=1

αle
jlω0n. (5)

Defining a vector of samples

s = [s(n0) s(n0 + 1) . . . s(n0 +N − 1)]T , (6)

where (·)T denotes the transpose. Note that the dependency
on the index n0 is left out for ease of notation. The signal
model is then written as

s = Za, (7)

where Z is a matrix constructed from a set of L modified
Fourier vectors matching the harmonics of the signal,

Z = [z(ω0, k) z(2ω0, 2k) . . . z(Lω0, Lk)], (8)

with

z(lω0, lk) =


ejl(ω0n0+k/2n2

0)

ejl(ω0(n0+1)+k/2(n0+1)2)

...
ejl(ω0(n0+N−1)+k/2(n0+N−1)2)

 . (9)

The vector a contains the complex amplitudes of the harmon-
ics, a = [α1 α2 . . . αL]T .

The signal we want to make parameter estimation on, is
often buried in noise, v(n), to give the observed signal, x(n),

x(n) = s(n) + v(n), (10)

which can also be put into a vector of observed samples

x = s + v, (11)

where x and v are defined similarly to s in (6). For real signals
as speech, the signal model will not fit the desired signal
perfectly, and so v will also cover the part of the speech signal
that does not align with the given model as, e.g., unvoiced
speech during mixed excitations.

III. ESTIMATION OF FREQUENCY AND CHIRP RATE

The fundamental frequency and chirp rate are estimated by
maximising the likelihood. The maximum likelihood estimates
are the parameters of the model that describe the observed sig-
nal the best, i.e., the parameters that maximise the probability
of the observed data, x, given the parameters:

θ̂ = arg max
θ
L(θ|x) = arg max

θ
p(x|θ), (12)

where θ is a vector containing the parameters of the model.
Under the assumption of circularly symmetric Gaussian noise,
the likelihood function can be written as [8]:

p(x|θ) =
1

πN det(Rv)
e−(x−s)HR−1

v (x−s) (13)

=
1

πN det(Rv)
e−vHR−1

v v, (14)

where det(·) denotes the determinant of the argument, (·)H the
Hermitian transpose and Rv = E[vvH ] the noise covariance
matrix, with E(·) the mathematical expectation. Often the log
likelihood is maximised instead of the likelihood

lnL(θ|x) = −N lnπ − ln det(Rv)− vHR−1
v v. (15)

In the case of white noise, the noise covariance matrix reduces
to a diagonal matrix, Rv = σ2

vIN , where σ2
v is the variance

of the noise signal and IN is an N ×N identity matrix. The
log likelihood can, therefore, be reduced to

lnL(θ|x) = −N lnπ −N lnσ2
v −

1

σ2
v

||v||22. (16)

The noise and its variance can be found using the signal model
in (7)

v = x− s = x− Za⇒ (17)

||v||22 = ||x− Za||22, (18)

σ2
v =

1

N
||x− Za||22, (19)

which turns the log likelihood into

lnL(θ|x) = −N lnπ −N ln
1

N
||x− Za||22 −N. (20)

In the estimation of the fundamental frequency and chirp rate,
it is only necessary to consider terms dependent on these two
parameters, and the log likelihood function can be reduced to
the nonlinear least squares (NLS) estimator that minimises the
error between the observed signal and the signal model:

{â, ω̂0, k̂} = arg min
a,ω0,k

||x− s||22 (21)

= arg min
a,ω0,k

||x− Za||22. (22)



4

Here, we are interested in the joint estimation of the funda-
mental frequency and chirp rate, and, therefore, the amplitudes
are substituted with their least squares estimate [9],

â = (ZHZ)−1ZHx, (23)

to give the estimator:

{ω̂0, k̂} = arg min
ω0,k
||x− Z(ZHZ)−1ZHx||22 (24)

= arg min
ω0,k

(
xH(IN − Z(ZHZ)−1ZH)x

)
(25)

= arg min
ω0,k

(
xHΠ⊥ (ω0, k)x

)
, (26)

where Π is an orthogonal projection matrix

Π (ω0, k) = Z(ZHZ)−1ZH (27)

and Π⊥ its orthogonal complement

Π⊥ (ω0, k) = IN −Π (ω0, k) . (28)

This process includes a two-dimensional optimisation over ω0

and k. To solve the problem in a computationally efficient
manner, we propose iterating between two one-dimensional
searches [1]. First, the chirp rate in step i, ki, is estimated
using the fundamental frequency estimate from the previous
iteration, ω(i−1)

0 , i = 1, 2, ...

k(i) = arg min
k

(
xHΠ⊥(ω

(i−1)
0 , k)x

)
. (29)

This estimate of the chirp rate is used to find a new estimate
of the fundamental frequency

ω
(i)
0 = arg min

ω0

(
xHΠ⊥(ω0, k

(i))x
)
. (30)

The estimates of ω0 and k are found by iterating between
(29) and (30) until convergence of the cost function in
(26), but could alternatively be ended by the convergence
of the estimated parameters. The fundamental frequency and
chirp rate minimising the cost function in (26) are found by
searching among candidates in a grid centred at the value
of the parameter from the previous iteration, i − 1. The
grid search is followed by a Dichotomous search [35] to get
a refined estimate of the minimum. It is expected that the
fundamental frequency estimate is close to the estimate found
under the assumption of stationarity within the analysis frame.
Therefore, a fundamental frequency estimate found under the
traditional harmonic assumption, e.g., by using one of the
methods in [8], will be a good choice as an initialisation of
the iterations, i.e., ω(0)

0 = ω0,h. The chirp rate is expected to
be small and the first grid search is, therefore, centred around
zero, i.e., k(0) = 0. The estimation process is summarised in
Table I.

The best obtainable performance of an unbiased estimator
is given by the Cramer-Rao lower bound (CRLB). The CRLB
sets a lower limit to the variance of the parameter estimate

var(θ̂g) ≥ [I(θ)
−1

]gg, (31)

where θg is the g’th parameter of the parameter vector θ of
length G, [·]gg denotes the matrix element of row g and column

TABLE I: Estimation of fundamental frequency and chirp rate.

for each sample

initialisation
ω

(0)
0 = ω0,h

k(0) = 0
∆k = 2αk/(K − 1)
∆ω = 2αω/(K − 1)
repeat
K = {k(i−1) − αk,∆k, ...., k

i−1 + αk}
Ω = {ω(i−1)

0 − αω ,∆ω, ...., ω
i−1
0 + αω}

k(i) = arg mink∈K

(
xHΠ⊥(ω

(i−1)
0 , k)x

)
ω

(i)
0 = arg minω0∈Ω

(
xHΠ⊥(ω0, k(i))x

)
until (convergence)

g, and I(θ) is the Fisher information matrix (FIM) [36] of size
G×G:

[I(θ)]gh = −E
{
∂2 ln(p(x|θ))

∂θg∂θh

}
. (32)

Under the assumptions of white Gaussian noise and a noise
covariance matrix independent of the parameters, the FIM
reduces to:

I(θ) =
2

σ2
v

Re
{
∂sH

∂θ

∂s

∂θT

}
(33)

=
2

σ2
v

Re
{
DH(θ)D(θ)

}
(34)

with

D(θ) = [d(ω0)d(k)d(A1)d(φ1) . . . d(AL)d(φL)], (35)

d(y) =
∂s

∂y
. (36)

For the signal model at hand, the elements of the d vectors
are:

[d(ω0)]n =

L∑
l=1

jlnAle
jl(ω0n+k/2n2)+jφl , (37)

[d(k)]n =

L∑
l=1

1

2
jln2Ale

jl(ω0n+k/2n2)+jφl , (38)

[d(Al)]n = ejl(ω0n+k/2n2)+jφl , (39)

[d(φl)]n = jAle
jl(ω0n+k/2n2)+jφl . (40)

The CRLB depends on the choice of n0. The best estimates
are obtained if the segment is centred around n = 0 [37], and,
therefore, n0 should be chosen as n0 = −(N − 1)/2 for N
odd and n0 = −N/2 for N even. The CRLB also depends
on the number of harmonics and the amplitude of the l’th
harmonic Al. The CRLB for a harmonic signal [8] decreases
with A2

l l
2, which means that the more harmonics included

in the estimate of fundamental frequency and chirp rate, the
better the estimate.

IV. MAP CRITERION AND MODEL SELECTION

Model selection and segmentation can be done with a
maximum a posteriori (MAP) model selection criterion. The
principle behind the MAP criterion is to choose the model,M,
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that maximises the posterior probability given the observed
data, x:

M̂ = arg max
M

p(M|x). (41)

Using Bayes’ theorem [38] this can be rewritten as:

M̂ = arg max
M

p(x|M)p(M)

p(x)
. (42)

Choosing the same prior probability, p(M), for every model
to avoid favouring any model beforehand, and noting that the
probability of a given data vector, p(x), is constant once it has
been observed, the MAP estimate can be reduced to:

M̂ = arg max
M

p(x|M), (43)

which is the likelihood of the observed data given the model.
The likelihood is also dependent on other parameters like the
fundamental frequency and the model order. As opposed to
the maximum likelihood approach, these have to be integrated
out in the Bayesian framework to give the marginal density of
the data given the model [8]:

p(x|M) =

∫
Θ

p(x|θ,M)p(θ|M)dθ. (44)

An approximation to this integral can be found assuming high
amounts of data and a likelihood that is highly peaked around
the maximum likelihood estimates of θ [8], [23], [39]

p(x|M) = πG/2 det(Ĥ)−1/2p(x|θ̂,M)p(θ̂|M), (45)

where Ĥ is the Hessian of the log-likelihood function evalu-
ated at θ̂:

Ĥ = −∂
2 ln p(x|θ,M)

∂θ∂θT

∣∣∣∣
θ=θ̂

. (46)

Now an expression for the MAP estimator can be found by
taking the negative logarithm of (45). The term πG/2 can be
assumed constant for large N and is, therefore, neglected,
while a weak prior on p(θ|M) has been used [23] to obtain
the expression [8]:

M̂ = arg min
M
− lnL(θ̂|x) +

1

2
ln det(Ĥ). (47)

This corresponds to minimising a cost function, where the
first part is the likelihood from (16), and the second part is a
model-dependent penalty term.

The penalty term is found by noting that the Hessian is
related to the Fisher information matrix in (32). Evaluating the
Fisher information matrix at θ = θ̂ gives the expected value of
the Hessian, and, therefore, the elements in the Hessian can be
found by using (35)-(40). To ease complexity, an asymptotic
expression for the Hessian can be found by looking at the
elements of the matrix. The diagonal elements of the Hessian

for the harmonic chirp model are given by:

Ĥω0ω0
=

L∑
l=1

1

12
(N3 −N)l2Â2

l , (48)

Ĥkk =

L∑
l=1

1

960
(3N5 − 10N3 + 7N)l2Â2

l , (49)

ĤAlAl
= N, (50)

Ĥφlφl
= NÂ2

l , (51)

for N odd and n0 = −(N − 1)/2. From this, when the
Hessian is evaluated at θ = θ̂, the model order and amplitudes
can be considered constant, and the Hessian is then only
dependent on N . To make this dependency negligible, a
diagonal normalisation matrix, K, is introduced [8], [40]

K =

N−3/2 0
N−5/2

0 N−1/2 I2L

 , (52)

resulting in

Ĥ = K−1KĤKK−1. (53)

The definition of the elements in K as N−x/2 instead of N−x,
where x = 1, 3, 5, and multiplication with K from both sides
is done to ensure that also the off-diagonal elements of Ĥ
are compensated for in the right way. The determinant of the
Hessian is then given by:

det(Ĥ) = det(K−2) det(KĤK), (54)

where the main dependency on N is now moved to the term
K−2 whereas KĤK is assumed small and constant for large
N . Taking the natural logarithm of the determinant gives:

ln det(Ĥ) = ln det(K−2) + ln det(KĤK) (55)
= 3 lnN + 5 lnN + 2L lnN +O(1). (56)

An expression for the cost associated with the harmonic
chirp model can now be found by combining the log likelihood
for the harmonic chirp model in (20) with the penalty term in
(56) where the term O(1) is ignored:

Jc = N lnπ +N ln
1

N
||x− Za||22 +N

+
3

2
lnN +

5

2
lnN + L lnN. (57)

For the traditional harmonic model, the Hessian will not
contain a term related to the chirp rate, k, and the penalty
for the MAP estimator will, therefore, also be short of this
term:

Jh = N lnπ +N ln
1

N
||x− Z0a||22 +N

+
3

2
lnN + L lnN, (58)

where Z0 equals Z for k = 0. The MAP expressions for the
harmonic chirp model and the traditional harmonic model can
be used to choose between them by choosing the one with the
smallest cost. Due to Occam’s razor [41], the simplest model is
always preferred if the models describe the signal equally well.
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J11J1 =

m = 1

J12J1 =

J11 J22J2 = +

m = 2

J13J1 =

J11 J23J2 = +

J12 J33J3 = +

J11 J22 J33J4 = + +

m = 3

Fig. 2: Principle of segmentation. M = 3. Modified from [27].

This is assured by the extra penalty that naturally appears in
the MAP expression for the chirp model. The error between the
chirp model and the observed signal has to decrease enough
relative to the traditional harmonic model to outweigh this
penalty term before the chirp model is favoured over the
traditional harmonic model. Aside from choosing between the
two different harmonic models, the MAP estimator can also be
used for voiced/unvoiced detection by determining whether a
harmonic signal is present or not by comparing the two models
with a zero order model,

J0 = N lnπ +N lnσ2
x +N, (59)

where σ2
x is the variance of the observed signal. The

voiced/unvoiced detection can also be done by using the
generalised likelihood ratio test (GLRT) [42], [43]. In this
method, the ratio of the likelihood of the presence of voiced
speech found based on the harmonic model to the likelihood of
a noise-only signal is calculated and compared to a threshold.
The method has a constant false alarm ratio (CFAR) and so
the threshold is set to ensure a given CFAR that is independent
of the signal-to-noise ratio (SNR). Other methods as, e.g,
described in [14], [15] can also be used.

V. SEGMENTATION

The characteristics of the observed signal are varying over
time and sometimes faster than others, meaning that a fixed
segment length is not optimal. Using the MAP criterion, the
cost associated with different segment lengths can be com-
pared and the optimal chosen being the one minimising (57).
The segmentation assures that the optimal trade-off between
segment length and fit of the model is found, and so the seg-
ment length is chosen as long as possible without introducing
too large modelling errors. It follows from the CRLB that long
segments are desired and gives higher estimation accuracy. The
segmentation is based on the principle in [27], [28] which is
sketched in Fig. 2. In the figure, Jxy is the cost of a segment
starting at block x and ending at block y, with both block x
and y included in the segment.

A minimal segment length, Nmin, is chosen, generating a
block of Nmin samples and dividing the signal into M blocks.
Since this will give 2M−1 ways of segmenting the signal, a
maximum number of blocks in one segment, Kmax, is also
set since very long segments are highly unlikely, and setting
a maximum will bound the computational complexity. The
maximum number of samples in one segment is, therefore,

TABLE II: Segmentation.

while m × Nmin ≤ length(signal)
K = min([m,Kmax])
for k = 1 : K

blocks of signal to use is m− k + 1, ....,m
find analytic signal and downsample
estimate ω0 and k using Table I
estimate a and Z from (23), (8) and (9)
calculate J(m−k+1)m from (57)

J(k) =

{
J(m−k+1)m + J1(m−k) if m− k > 0,

J(m−k+1)m otherwise.
end for
kopt(m) = arg min J(k)
m = m+ 1

end while

backtrack
m = M
while m > 0

number of blocks in segment is kopt(m)
m = m− kopt(m)

end while

Nmax = KmaxNmin. Using a dynamic programming algorithm,
the optimal number of blocks in a segment, kopt, is found
for all blocks, m = 1, ...,M , starting at m = 1 moving
continuously to m = M . For each block, the cost of all
new block combinations is calculated while old combinations
are reused from earlier blocks. Relating to Fig. 2, the red
segments are calculated whereas the blue segments are reused
from earlier. To decrease the number of calculations further,
only a block combination minimising the cost is used in a
later step, which in Fig. 2 means that only one of J3 and
J4 is considered for m = 3, corresponding to the block
combination that minimised the cost at m = 2. When the
end of the signal is reached, backtracking is used to find the
optimal segmentation of the signal, starting at the last block,
and jumping through the signal to the beginning. This is done
by starting at m = M and setting the number of blocks in
the last segment of the signal to kopt(M). In this way, the
next segment ends at block m = M − kopt(M) and includes
kopt(M−kopt(M)) blocks. This is continued until m = 0. The
segmentation is summarised in Table II.

VI. PREWHITENING

The maximum likelihood estimates of the fundamental
frequency and chirp rate and the MAP model selection and
segmentation criterion were found under the assumption of
white Gaussian noise. However, in real life scenarios the noise
is not always white. A prewhitening step is therefore required.
The observed signal can be prewhitened by passing it through
a filter that changes the noise from coloured to white. This
is illustrated in Fig. 3. In the figure, H(z) is a filter with a
frequency response similar to the spectrum of the noise. The
coloured noise can be seen as white noise filtered using a
filter with coefficients given by H(z). Therefore, to obtain a
flat frequency spectrum of the noise, the action is reversed by
dividing by H(z), here denoted by A(z). Naturally, the desired
signal will also be altered by the passage through the filter.
This may have an influence on the results depending on how
much the signal is changed, and what the prewhitened signal
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noise, v(n)
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A(z) =
1

H(z)

Fig. 3: Prewhitening of noise by passing it through the filter
A(z).

is used for. At the very best, the linear transformation of the
signal will not affect the CRLB of the parameter estimation.

To obtain H(z), information about the noise spectrum is
needed. Different methods exist to estimate the power spectral
density (PSD) of the noise given a mixture of desired signal
and noise [30]–[33]. The PSD can be used directly to generate
a simple finite impulse response (FIR) filter based on the
frequency coefficients of the PSD. Alternatively, also based
on the PSD, linear prediction (LP) can be used to find
the characteristic parts of the noise spectrum and filter the
observed signal based on this. In linear prediction, the present
sample is estimated based on P prior samples:

v̂(n) = −
P∑
p=1

apv(n− p), (60)

leading to a filter of the form:

A(z) = 1 +

P∑
p=1

apz
−p. (61)

After filtering, the signal is normalised to have the same
standard deviation before and after the filtering. To ensure
that the desired signal has a smooth evolution over time after
filtering, i.e., no drastic changes in amplitude or phase, it is
important that the PSD is smooth. This is ensured by most
recent PSD methods where the value in one time frame is
a weighted combination of the preceding time frame and an
estimate from the current time frame.

VII. SIMULATIONS

In the following, the different proposed methods are tested
through simulations on synthetic signals and speech. The
synthetic signals are made according to (7). Unless otherwise
stated in the specific subsections, the signals were generated
with L = 10, Al = 1 ∀ l, random phase, fundamental
frequency, and fundamental chirp rate, in the intervals φl ∈
[0, 2π], f0 ∈ [100, 300] Hz, k ∈ [−500, 500] Hz/s and the
sampling frequency, fs, was set to 8000 Hz.

The speech signal, “Why were you away a year, Roy?”,
was used in some simulations and to illustrate the function of
some methods. The sentence is uttered by a female speaker
and sampled at 8000 Hz. Additionally, the five male and
five female speech signals from the Keele database [44] are
used. The signals have a duration of approximately 30 seconds
each. The signals are downsampled to 8000 Hz. With these
signals, follow the corresponding laryngograph signals and
an annotated fundamental frequency that can be used for
evaluation of the proposed method. However, it should be

noted that the annotated fundamental frequency is also only
an estimate and not the ground truth.

In most experiments, it is desirable to evaluate the methods
at different SNRs, e.g., in an interval from -10 to 10 dB to
simulate situations with different levels of background noise.
Therefore, noise was added to the signals with a variance
calculated to fit the desired input SNR defined as

iSNR =
σ2
s

σ2
v

, (62)

where σ2
s is the variance of the desired signal. The noise

signals used are white Gaussian noise, as well as different
types of noise from the AURORA database [45].

For each segment of noisy speech, the discrete-time ana-
lytic signal [34] is computed, and the parameter estimation
is performed on this complex, downsampled version of the
signal.

A. Prewhitening

The prewhitening using the FIR filter and LP is tested
on “Why were you away a year, Roy?” and compared to
prewhitening using Cholesky factorisation [46]. The signal
is added noise at input SNRs of 0 and 10 dB, and the
prewhitening filters are generated based on the noisy signal.
The PSD is found using an implementation of [31] given in
[30]. The PSD is obtained using 256 frequency points which
equal the number of coefficients in the FIR filter, whereas the
LP filter is made with five coefficients. The spectrum of babble
noise at an input SNR of 10 dB before and after prewhitening
is shown in Fig. 4. Here, it seems that the whitest noise signal
is obtained using the Cholesky factorisation, followed by LP,
while the FIR filter seems to make a minor change to the
original noise.

The prewhitening methods are compared by means of the
spectral flatness, F , which is the ratio of the geometric mean
to the arithmetic mean of the power spectrum, S(k), [47]:

F =

(∏K−1
k=0 S(k)

)1/K

1
K

∑K−1
k=0 S(k)

. (63)

The spectral flatness gives a number between zero and one,
where perfect white noise has a value of one. The spectral
flatness for four different noise types at 0 and 10 dB is shown
in Fig. 5, where the spectral flatness of the original noise and a
white noise signal generated with MATLAB’s randn are also
shown for comparison. The spectral flatness is very similar at
0 and 10 dB for all noise types using a given prewhitening
method. The results confirm the tendencies observed in Fig.
4. The Cholesky factorisation leads to the highest spectral
flatness for all noise types, followed by linear prediction in
the case of babble, car and street noise, while the FIR filter
is better than linear prediction for exhibition noise. There is,
however, large differences between the different noise types
in how significant the advantage is of using one prewhitening
method over another. The Cholesky factorisation is clearly
best in terms of whitening the noise, but as is shown in Fig.
6, it is also the method that has the largest influence on the
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Fig. 4: Spectrograms of babble noise before (a) and after
prewhitening with (b) LP filter, (c) FIR filter and (d) Cholesky
factorisation. The four spectrograms are plotted with the same
limits in dB.
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Fig. 5: Spectral flatness, F , at 0 and 10 dB input SNR for
original noise, prewhitened noise using FIR, LP and Cholesky
factorisation. The spectral flatness for white noise is added for
comparison.

desired signal. Here, it appears the LP filtering best preserves
the desired signal with the FIR filter nearly as good, whereas
the Cholesky factorisation clearly changes the appearance
of the desired signal. Using the Cholesky factorisation for
prewhitening, the signal model must be redefined to include
the Cholesky matrix, as was done in [5]. Thus, it cannot
be applied directly with the proposed model, and has been
excluded from the following simulations. The FIR and LP
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Fig. 6: Spectrograms of speech signal before (a) and after
prewhitening with (b) LP filter, (c) FIR filter and (d) Cholesky
factorisation. The four spectrograms are plotted with the same
limits in dB.

filters only change the amplitude and phase, and, therefore,
they only change the complex amplitude vector a.

B. Fundamental frequency and chirp rate

The proposed estimator of fundamental frequency and chirp
rate is first evaluated on synthetic chirp signals. Two exper-
iments were made. In the first, the segment length, N , was
varied from 49 to 199 samples with a fixed input SNR of
10 dB. In the second, the input SNR was varied from -10 to
10 dB with a fixed segment length of 199 samples. For each
generated signal, noise was added, and an initial fundamental
frequency estimate was found using a harmonic NLS estimator
[8] with lower and upper limits of the search interval of 80
and 320 Hz. The model order is assumed known, i.e., L = 10.
From here, the fundamental frequency and chirp rate were
estimated, and the squared error was found. This was repeated
2000 times and the mean was taken to give the mean squared
error (MSE). In Figs. 7 and 8, the MSE as a function of N
and the input SNR is shown and compared to the CRLB and
estimates obtained using a harmonic NLS estimator [8]. The
chirp estimates reach the CRLB around a segment length of
110 and at an input SNR of around -5 dB under the given
settings. The harmonic estimates are close to reaching the
bound as well, but as the CRLB decreases for higher segment
lengths and input SNRs, the error on the harmonic estimates
do not decrease with the same rate resulting in a gap between
the CRLB and the estimates.

The estimator was used to estimate the fundamental fre-
quency and chirp rate of “Why were you away a year, Roy?”
with the spectrum shown in Fig. 6a. Here, the parameters
are estimated directly from the clean signal in segments with
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Fig. 7: Mean squared error (MSE) of the fundamental fre-
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Fig. 8: Mean squared error for the fundamental frequency and
chirp rate as a function of the input SNR.

a length of 198 samples (24.8 ms). The initial fundamental
frequency estimate and model order were found jointly by
using a harmonic NLS estimator and a MAP estimator [8], re-
spectively. The limits on the harmonic fundamental frequency
are set to 80 and 300 Hz. To confirm that the combination
of the harmonic fundamental frequency and a chirp rate of
zero is a good initialisation, an example of a two-dimensional
cost function for a segment of a speech signal is shown in
Fig. 9. The initialisation is marked by a yellow cross while
the final estimate of fundamental frequency and chirp rate is
marked by a red cross. As seen, the function is locally convex
around the initial and true fundamental frequency and chirp
rate. The figure also shows that the change in fundamental
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Fig. 9: Example of a cost function for a speech signal as a
function of fundamental frequency and chirp rate.

frequency is rather small so if the fundamental frequency for
some reason changes a lot, ω0 < 0.6ω0,HM or ω0 > 1.5ω0,HM,
the fundamental frequency is set to the harmonic estimate and
the chirp rate is set to zero. However, it is important to note
that the instantaneous fundamental frequency is not the same
as the one found by the harmonic model. Now, the parameters
are estimated in steps of 5 samples. The resulting estimates
are shown in Fig. 10. The chirp rate can be interpreted as
the tangent to the fundamental frequency curve at a given
point. This means that the chirp rate should be negative when
the fundamental frequency is decreasing, positive when it is
increasing, and zero at a local maximum or minimum. To
illustrate this, some maxima and minima of the fundamental
frequency are marked by red stars in the upper plot and the
chirp rates at the same points in time are marked in the bottom
plot.

The estimation is repeated after the addition of noise to give
an input SNR of 0 and 10 dB, but this time the parameters
are only estimated once per segment of 198 samples. The
estimation is done both for white Gaussian noise and babble
noise as well as after prewhitening of the signal with babble
noise using the FIR and LP filter. The sum of the absolute
error between noisy and clean estimates is given in Table III
at 0 and 10 dB. Here, only the time interval shown in Fig. 10
is considered since the beginning and end of the signal contain
no speech. The white noise gives the best estimate at both 0
and 10 dB. At 0 dB, the LP prewhitened signal gives a lower
error than the FIR filtered and clean babble noise whereas at
10 dB, the babble noise gives the lowest error followed by the
FIR and LP filtered noise. This suggests that for the proposed
ML estimator, the dominance of the desired signal at 10 dB
decreases the importance of the noise shape relative to the
effects of prewhitening on the signal. However, at 0 dB the
noise is more dominant, and so the importance of prewhitening
increases.

The fundamental frequency and chirp rate are also estimated
from the signals in the Keele database. The fundamental
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Fig. 10: Fundamental frequency and chirp rate estimation.

TABLE III: Sum of absolute error between noisy estimate and
clean estimate of fundamental frequency in Hz at input SNRs
of 0 and 10 dB.

white noise babble FIR LP
0 dB 585 2653 2483 1201
10 dB 167 408 714 787

frequency estimates are compared to YIN [2] and SWIPE
[48] by means of the gross pitch error (GPE), the fine pitch
error (FPE) and the reconstruction SNR. The GPE is defined
as an estimate that deviates from the annotated fundamental
frequency by more than 20 % [18]. The GPEs are not
considered in the calculation of the FPE. The FPE is divided
into two parts, the mean, µ, and the standard deviation, σ, of
the errors on the estimates [12], [18]. Both are calculated from
the difference between the estimated fundamental frequency
and the annotated fundamental frequency. The annotated fun-
damental frequency is estimated in steps of 10 ms based on
segments of 26.5 ms of data. This is also done for HM,
HCM and YIN, however, it is not possible to choose the
segment length in SWIPE. The lower and upper limit on the
estimate are set to 50 and 300 Hz. The reconstruction SNR
is calculated from the reconstructed signal based on (7). For
YIN, SWIPE and the traditional harmonic model, the chirp
rate is approximated by ∆f = (f0(n + 1) − f0(n))/∆t
where ∆t is the time between two consecutive estimates of
the fundamental frequency. Note that this will cause a delay
in real-time applications. However, using past samples does
not result in ∆f for the correct segment and will degrade the
reconstruction compared to only using the harmonic model.
The estimated fundamental frequencies, chirp rates and ∆f ’s
are used in Z in (8). Since we are here considering non-
stationary signals it makes a difference from where in the

signal the reference point is set. From experiments on synthetic
chirp signals it was found that YIN and SWIPE have the
reference point towards the beginning of the signal whereas
HM has its reference point around the middle. Therefore,
we set n0 = 0 for YIN and SWIPE and n0 = −N/2 for
HM. The mid-segment reference point for HM means that
∆f is estimated incorrectly. The proper estimate would be
∆f = (f0(n+ 1/2)− f0(n− 1/2))/∆t, but this information
is not available. The wrong estimate of ∆f leads to a worse
performance compared to using the harmonic model on its
own. The result for HM without ∆f is therefore also included
in the comparison. The fundamental frequency, chirp rate and
∆f are estimated for each 25 ms based on 25 ms of data,
and the entire block of samples is reconstructed based on this
estimate. The model order is estimated using a MAP estimator
[8]. The amplitude vector, a, is estimated using (23). The
reconstruction SNR (rSNR) is then given by:

rSNR =
σ2
s

σ2
(s−ŝ)

, (64)

where ŝ is the reconstructed signal, and σ2
(s−ŝ) is the variance

of the error signal between the original speech signal and the
reconstructed signal.

The results are shown in Fig. 11. In terms of GPE, the
proposed method performs better than YIN and SWIPE at
low input SNRs, while SWIPE is better at high input SNRs.
The harmonic models perform equally. The bias, seen as the
mean, µ, is small for all methods. It is approximately 1 Hz for
YIN and within ± 0.5 Hz for the other methods. The proposed
method does not perform as well as the traditional harmonic
model in terms of standard deviation, σ. As mentioned ear-
lier, the annotated fundamental frequency is not the ground
truth, but a fundamental frequency estimate found from the
laryngograph signal using an autocorrelation method which is
also based on the harmonic assumption. In Fig. 9 it was seen
that the instantaneous fundamental frequency found by the
proposed method is not the same as the harmonic frequency.
Therefore, it is not surprising that the method does not per-
form well when it is compared to the fundamental frequency
estimated based on the harmonic assumption. Looking at the
reconstruction SNR, the chirp model outperforms all other
methods. The reconstruction SNR is the only of the four error
measures that takes both fundamental frequency and chirp rate
into account. Further, the reconstruction SNR does not depend
on another estimate of the fundamental frequency as do the
FPE and GPE, it compares to the original speech signal.

C. Model selection

The model selection was first tested on synthetic signals
degraded with white Gaussian noise to give an input SNR of
10 dB. In this part, the possible models included in the test
are the traditional harmonic model and the harmonic chirp
model. The model selection was tested for different chirp rates
and different segment lengths. For each combination of chirp
rate and segment length, 2000 signals were generated and
the selected model was noted for each signal. The percent
of the chirp model chosen is shown in Fig. 12. Even though



11

−10 −5 0 5 10
0

20

40

G
PE

[%
]

YIN SWIPE
HM HCM

(a) Gross pitch error (GPE)

−10 −5 0 5 10

−0.5

0

0.5

1

FP
E

-
µ

[H
z]

YIN SWIPE
HM HCM

(b) Fine pitch error (FPE) - mean, µ

−10 −5 0 5 10

4

6

8

FP
E

-
σ

[H
z]

YIN SWIPE
HM HCM

(c) Fine pitch error (FPE) - standard deviation, σ

−10 −5 0 5 10

2

4

6

8

iSNR [dB]

rS
N

R
[d

B
]

YIN∆f SWIPE∆f

HM∆f HCM
HM

(d) Reconstruction SNR
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Fig. 12: Model selection for synthetic signals as a function of
the chirp rate for different segment lengths from 49 to 199.

all generated signals, except for the ones with a chirp rate of
zero, are chirp signals, the chirp model is not chosen in all
cases. As mentioned in Section IV, this is due to the extra
penalty term introduced to the chirp model and not to the
harmonic model. The longer the signal is, the more prone it is
to be denoted as a chirp signal since the error term ||x−Za||22
will increase with signal length when the model does not fit,
making the cost of the harmonic model greater than that of
the chirp model, despite the extra penalty to the chirp model.

Model selection was also performed on the speech signals
from the Keele database in white Gaussian noise at different
segment lengths. Here, the noise model is also included. The
percentage of each chosen model is found by taking the
number of segments labelled according to a given model out
of the total number of segments in the signal. The result
is shown in Fig. 13. The percentage of the chosen noise
model is fairly independent of the segment length since the
amount of unvoiced speech is independent of the segment
length. For short segment lengths, the harmonic model is
chosen approximately 55% of the time and the chirp model is
never chosen, but as the segment length is increased, the two
models are almost equally preferred. It should again be kept
in mind that the chirp model has an extra penalty for being a
more complex model so even though the error on the signal,
||x−Za||22, is smaller for the chirp model, it has to overcome
the penalty as well before it is selected.

D. Segmentation

The segmentation is tested on the signal “Why were you
away a year, Roy?”. White Gaussian noise is added to the
signal to give an input SNR of 10 dB. The signal is segmented
according to the harmonic chirp model and the traditional
harmonic model where, in both cases, the minimum segment
length Nmin = 40 and the maximum number of blocks
Kmax = 10, meaning that the minimum length of a segment
is 40 samples (5 ms) and the maximum length of a segment,
Nmax, is 400 samples (50 ms). A representative example of
the chosen segment length as a function of time is shown in
Fig. 14. For comparison, the fundamental frequency estimate
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is plotted as well. In general, the chirp model gives rise to
longer segment lengths than the traditional harmonic model.
For this example, the average segment length is 195 samples
(24.4 ms) using the chirp model and 137 samples (17.1 ms)
using the traditional harmonic model. A typical choice of fixed
segment length is 20–30 ms [13]. On average, this is a good
choice when using the harmonic chirp model, however, shorter
segments are better if the traditional harmonic model is used.
The longer segments of the chirp model, of course, mean that
the total number of segments is lower than for the harmonic
model. The chirp model divides the signal into 105 segments
and with the harmonic model, the number of segments is 150.
Three areas in Fig. 14 are marked with circles as examples of
the longer segments obtained with the chirp model. In the light
blue circle, the fundamental frequency is decreasing quite fast,
but the change is constant over time. Thus a long segment is
obtained using the chirp model while shorter segments are
obtained when the harmonic model is used. In the purple
circle, the piece of speech is divided into four segments with
the chirp model: two segments of maximum length, where the
fundamental frequency is almost constant, and two shorter but
still fairly long segments, where the fundamental frequency
is increasing and decreasing, respectively. For the harmonic
model, there are two long segments where the fundamental
frequency is close to constant, but the rest of the piece is
divided into shorter segments. In the brown circle, the piece
is divided into two segments using the chirp model: one piece
where the fundamental frequency is decreasing and one where
it is increasing. The harmonic model covers the area in the
middle, where the fundamental frequency is fairly constant,
with two somewhat long segments, but in order to cover the
whole area, shorter segments are added on both sides of the
segments in the middle. The longer segments chosen for the
chirp model suggests that the chirp model describes the signal
in a better way than the traditional harmonic model since it
to some extent takes the non-stationarity of the speech into
account.

The signal is reconstructed using (7), as was done in the
evaluation of the fundamental frequency estimate. The signal
is reconstructed from the estimates in the optimal segments,

TABLE IV: Reconstruction SNR for chirp and harmonic signal
using either optimal segmentation or a fixed segment length
matching the mean segment length of the optimal segmenta-
tion, in this case N̄HM = 140 (17.5 ms) and N̄HCM = 188
(23.5 ms). The input SNR is 10 dB.

chirp harmonic
opt. segm. 12.49 12.38
fixed 10.88 11.29

TABLE V: Average segment length, N̄ , for chirp and harmonic
signal for different noise types at 10 dB.

chirp harmonic
babble 69 (8.6 ms) 62 (7.7 ms)
FIR 73 (9.1 ms) 65 (8.1 ms)
LP 119 (14.9 ms) 91 (11.4 ms)

meaning that in some cases 40 samples (5 ms) are recon-
structed based on one estimate of fundamental frequency and
chirp rate, whereas in other cases, 400 samples (50 ms) are
estimated based on one estimate. This is compared to estimates
from segments with a fixed length where the length of the
segments is set to the mean length of the segments from the
optimal segmentation. In this case, N̄HM = 140 (17.5 ms) and
N̄HCM = 188 (23.5 ms). This means that the reconstructions
based on optimal segmentation and fixed segment length use
the same number of segments to represent the signal. The
reconstruction SNR is shown in Table IV. The table shows that
with the same number of segments used for the reconstruction,
a better reconstruction SNR can be obtained when optimal
segmentation is used instead of using a fixed segment length.
The reconstruction SNR is more than 1.5 dB better for the
chirp model and more than 1 dB better for the traditional
harmonic model when comparing optimal segmentation to a
fixed segment length. By comparing the harmonic chirp model
to the traditional harmonic model, a better reconstruction SNR
is obtained with the harmonic chirp model when optimal
segmentation is used, even though the chirp model uses only
109 segments and the traditional harmonic model uses 147
segments to represent the entire signal.

The segmentation is also tested for the signal in babble noise
and prewhitened babble noise at an input SNR of 10 dB. The
average segment lengths in the different cases are shown for
the two models in Table V. In all cases, the signal is divided
into longest segments when the chirp model is used. With
respect to the different noise scenarios, the tendency is the
same for the two models. The segments are shortest when the
signal in babble noise is considered, followed closely by the
prewhitened signal using FIR filtering. The longest segments
are obtained with the LP filtered signal.

VIII. CONCLUSION

Traditionally, non-stationarity, fixed segment lengths and
noise assumptions have limited the performance of fundamen-
tal frequency estimators. In this paper, we take these factors
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Fig. 14: Segment length as a function of time for (a) the harmonic chirp model and (b) the traditional harmonic model. The
average segment length, N̄ , is marked by the red line. The average segment length is 195 samples (24.4 ms) for the harmonic
chirp model and 137 samples (17.1 ms) for the traditional harmonic model. The total number of segments is 105 for the chirp
model and 150 for the harmonic model.

into account. We described the voiced part of a speech signal
using a harmonic chirp model that allows the fundamental
frequency to vary linearly within each segment. We proposed
an iterative maximum likelihood estimator of the fundamental
frequency and chirp rate based on this model. The estimator
reaches the Cramer-Rao lower bound and shows expected
correspondence between the estimate of the fundamental fre-
quency and fundamental chirp rate of speech. Based on the
maximum a posteriori (MAP) model selection criterion, the
chirp model was shown to be preferred over the traditional
harmonic model for long segments, suggesting that the chirp
model is better at describing the non-stationary behaviour
of voiced speech. Since the extent of the non-stationarity
of speech changes over time, a fixed segment length is not
optimal. Therefore, we also proposed varying the segment
length based on the MAP criterion. Longer segments were
obtained when the chirp model was used compared to the
traditional harmonic model, again suggesting a better fit of
the model to the speech. The maximum likelihood and MAP
estimators are based on an assumption of white Gaussian
noise. However, in real life the noise is rarely white. Therefore,
we also suggested using two filters to prewhiten the noise, a
simple FIR filter and one based on linear prediction (LP). They
both have a minor influence on the speech signal, but the LP

filter gives less error on the fundamental frequency estimate
when the noise level is high. Further, the LP filter gives longer
segment lengths in the optimal segmentation.
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