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Abstract

Let G = (V,E) be a graph of order n. For sets S,T C V, S totally dominates
T if every vertex in T is adjacent to some vertex of S. The minimum number of
vertices needed to totally dominate V is the total domination number 7;(G). For
a partition Vi, V5 of V, we define fi(G;V1,V2) = %(G) + v(G, V1) + %(G, V) and
fi1(G) = max{f:(G;V1,V2) | V1, Vs is a partition of V'}. For a graph H, we denote by
H o P, the graph obtained from H by attaching a path of length 2 to each vertex
of H so that the resulting paths are vertex-disjoint. We show that if G is a tree of
order n > 4 and G ¢ {Ps, Ps, P7, Pio, P14}, then fi(G) < 14n/9 with equality if and
only if G € {Py, P1g} or G = (T'oPy)o P, for some tree T. If G is a graph with minimum
degree at least two, we establish that f;(G) < 3n/2 with equality if and only if G is a
cycle of order congruent to zero modulo 4.
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1 Introduction

In this paper, we continue the study of concept of partitions and domination in graphs
introduced by Hartnell and Vestergaard [4], and studied, for example, in [6, 7, 8]. Here we
study partitions and total domination in graphs.

Let G = (V, E) be a graph with vertex set V' and edge set F, and with no isolated vertex.
For sets S, T C V', S totally dominates T if every vertex in T is adjacent to some vertex of S.
If S totally dominates V', then S is called a total dominating set, denoted TDS, of G. Every
graph without isolated vertices has a TDS, since S = V is such a set. The total domination
number of G, denoted by (@), is the minimum cardinality of a TDS. For U C V, we let
7(G,U) denote the minimum cardinality of a set of vertices in G that totally dominates
U. Hence, (G, V) = y(G). It U = ), we define 14(G,U) = 0. A set of cardinality
(G, U) that totally dominates U in G we call a v(G,U)-set. If U = V, we also call a
(G, U)-set a v(G)-set. Total domination in graphs was introduced by Cockayne, Dawes,
and Hedetniemi [1] and is now well studied in graph theory. The literature on this subject
has been surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater [2, 3].

By a partition of the vertices of a graph G = (V, E), we shall mean two disjoint subsets
Vi,Vo of V with V = V3 UV, and Vi NV = 0; {V4,Va} = {0,V} is permitted. Given a
partition P = (V1,V3) of V, we define the label of a vertex v in P, denoted ¢p(v), as the
number ¢ € {1,2} such that v € V;. For a graph G, and a partition Vi, Vs of V| we define
ft(G; V1, Vo) and g(G; Vi, Va) by

fi(G5 V1, Va) 1(G) + (G, V1) + % (G, Va),
g (G;V1,Va) = (G, Vi) + (G, Va),

and fy(G) and g,(G) by

fi(G) = max{fi(G;Vi,Va) | V1,V is a partition of V'},
9t(G) max{g:(G; Vi, Va) | V1, Vo is a partition of V'}.

For notation and graph theory terminology we in general follow [2]. Specifically, let
G = (V,E) be a graph with vertex set V' and edge set E. Let v € V and let S C V. The
open neighborhood of v in G is N(v) = {u € V |uv € E}, while the open neighborhood of
S is the set N(S) = UyesN(v). Hence for a set U C V, the set S totally dominates U if
U C N(S). For a set S C V, the subgraph induced by S is denoted by G[S]. A vertex of
degree k we call a degree-k vertex. A degree-1 vertex we call a leaf (or an end-vertex), and
a vertex adjacent to a leaf we call a support vertex. The minimum (resp., maximum) degree
among the vertices of G is denoted by 0(G) (resp., A(G)). For disjoint subsets S and T of
vertices, we denote by [S, T the set of edges of G with one end in S and the other in 7.

A subset S of vertices in a graph G is an open packing if the open neighborhoods of
vertices in S are pairwise disjoint, i.e. no two vertices from S have a common neighbour,
but they may be adjacent. The open packing number p°(G) is the maximum cardinality of
an open packing in G.



A set M of edges of G is a matching if no two edges in M are incident to the same vertex.
A perfect matching in G is a matching with the property that every vertex is incident with
an edge of the matching.

A cycle on n vertices is denoted by C),, and a path on n vertices by P,. For r > 3 and
s > 1, we denote by L, ; the graph obtained by joining with an edge a vertex in C) to an
end-vertex of Ps. We call the graph L, s a key.

For a graph H, we denote by H o P the graph of order 3|V (H)| obtained from H by
attaching a path of length 2 to each vertex of H so that the resulting paths are vertex-
disjoint. The graph H o Ps is also called the 2-corona of H.

2 Main Results

We shall prove:

Theorem 1 IfT is a tree of ordern > 4 and T ¢ {Ps, Ps, Pz, P1o, P14}, then fi(T) < 14n/9
with equality if and only if T € {Py, Pig} or T = (T o Py) o Py for some tree T'.

The tree (Kj o Py) o Py, for example, is shown in Figure 1.

Figure 1: The tree (K o Py) o P;.

Theorem 2 If G is a connected graph of order n with §(G) > 2, then fi(G) < 3n/2 with
equality if and only if G = C), where n =0 (mod 4).

3 Proof of Theorem 1

3.1 Preliminary Results

The total domination number of a cycle C, or a path P, on n > 3 vertices is easy to
compute.

Lemma 1 ([5]) Forn >3, v(P,) = (Cn) = |[n/2] + [n/4] — [n/4].



Thus for G € {P,,Cp}, if n > 3 is odd, then v(G) = (n + 1)/2 and if n is congruent
to zero modulo 4, then 7,(G) = n/2. Finally if n is congruent to two modulo 4, then
1(G) = (n+2)/2.

The total domination number of a key L, s of order (and size) r+ s was determined in [5].
As a consequence of this result, we have the following upper bound on (L ).

Lemma 2 ([5]) Forr >3 and s > 1, if G is a key L, s of order n = r + s, then v(G) <
(n 4+ 2)/2 with equality if and only if r = 2 (mod 4) and s = 0 (mod 4).

The following lemmas follow immediately from the definitions of fi(G) and ¢:(G).
Lemma 3 If G’ is a spanning subgraph of a graph G with §(G') > 1, then g:(G) < g:(G').
Lemma 4 If G is a graph with no isolated vertex, then fi(G) = v(G) + g:(G).

We shall use the obvious observation that for a graph G with induced subgraphs G1, G2
having no isolated vertices and satisfying V(G) = V(G1) U V(G2), we have that

1(G) < (G1) +7(Ga),

9:(G) < g1(G1) + g1(G2),
fi(G) < fi(Gr) + fi(Ga).

The following lemma follows readily from the definition of an open packing.

Lemma 5 Let G = (V, E) be a path vy, ve,...,v, of order n, and let Vi, Va be a partition
of V.. If both Vi and Va are open packings in G, then the labels of V(P,) come in alternating
pairs but the beginning and the end may be a pair or a single label. More precisely, renaming
the sets V1 and Vs if necessary, we have

[(n—1)/4] [(n—2)/4]
Vi= U {vain} |V U {vair2} |-
i=0 i=0

[(n—1)/4] [(n—4)/4]
Vi = U Avaipr} | U U A{vagsn} |

=0 =0

with the remaining vertices in Vs.

Definition 1 For a graph G = (V, E), we define a partition Vi, Vo of V to be a good
partition if both V; and Va5 are open packings in G.



The following lemmas will prove to be useful when proving our main results.

Lemma 6 Let G = (V, E) be a graph of order n > 2,with no isolated vertez and let Vi, Vs be
a partition of V.. Then, Vi, Vs is a good partition of V if and only if v(G, V1)+v(G, Va) = n.

Proof. Suppose that Vi, V5 is a good partition of V. Then for i € {1,2}, no two vertices
from Vj can be dominated by a common vertex, and so (G, V1)+7:(G, V) = |Vi|+|Va| = n.
This establishes the necessity. To prove the sufficiency, suppose that Vi, V5 is not a good
partition of V. We may assume that V is not an open packing in G. Thus there exist two
vertices in V; that have a common neighbor, implying that (G, V1) < |V1| —1. Hence since
(G, Vo) < |Va|, we have that 1(G, V1) + (G, V2) <n—1. 0

Lemma 7 Forn > 2, g;(P,) =n and f(P,) = [3n/2| + [n/4] — |n/4].

Proof. Since every path has a good partition of its vertex set, we have by Lemma 6 that
g¢(Py,) = n. The desired result now follows from Lemmas 1 and 4. O

Thus by Lemma 7, if n > 3 is odd, then f;(P,) = (3n+1)/2; if n = 0(mod 4), then
ft(Pn) =3n/2; if n =2 (mod 4), then fi(P,) = (3n+ 2)/2.

Lemma 8 If G = (V,E) is a path of order n > 2, and V1, Va is not a good partition of V,
then fi(G; Vi, Va) < 3n/2 with strict inequality if n # 2 (mod 4).

Proof. By Lemma 6, v(G,Vi) + (G, V2) < n —1. By Lemma 1, %(G) < (n +2)/2
with strict inequality if n #Z 2 (mod 4). Hence, f;(G; Vi, V2) < 3n/2 with strict inequality if
n # 2 (mod 4). O

The following lemma is an immediate consequence of Lemma 8.

Lemma 9 If G = (V,E) is a path of order n > 2, and Vi, Va is a partition of V' for which
fi(G; V1, Vo) > 3n/2, then Vi, Va is a good partition of V.

Lemma 10 If G is a graph of order n without isolated vertices and S C V(G), then gi(G) <
n+ 2|S| — |N(9)|.

Proof. Let G = (V, E) and let Vi, V5 be a partition of V. Let i € {1,2}. For each vertex
v e V;\ N(S), we choose an adjacent vertex and call the resulting set of such vertices S/.
Then, S U S} totally dominates V; in G, and so (G, V;) < |S|+ |S}|. Thus, g,(G; V1, Va) <
25| + 51| + 155 < 2[S|+ [V \ N(S)| = n+ 2|S| — [N(S)|. Thus for every partition Vi, Vs
of V, gt(G; Vi, Vo) < n+2|S| — |N(S)|. Therefore, g,(G) < n+2|S|—|N(S)|. O

As a special case of Lemma 10, we have the following result.



Lemma 11 If G is a graph of order n with no isolated vertex and mazimum degree at
least 3, then g:(G) <n — 1.

Proof. Let v be a vertex of maximum degree at least 3 and let S = {v}. Then, |S| =1
and |N(S)| > 3, and so the desired result follows from Lemma 10. O

Lemma 12 If T is a graph of order n that can be obtained from a star on at least four
vertices by subdividing some (including the possibility of none) of the edges exactly once,
then fi(T) < 3n/2.

Proof. For integers r > k > 0 with » > 3, let ' = (V, E) be obtained from a star K,
by subdividing k& edges exactly once. If k =0, then n =7+ 1 >4 and f,(T) <5 < 3n/2.
Hence we may assume that £ > 1. Then, v(7) = k+ 1. Let Vi, V4 be a partition of V.
Then, (T, V1) + v(T, Vo) < k+ 3, and so fi(T;V1, V) < 2k + 4. Since r > k and r > 3,
we have 3n/2 =3(k+r+1)/2=3k+7r)/2+r+3/2 > 2k+9/2. Thus for every partition
Vi, Vo of V| fi(T;V1,Va) < 3n/2. Therefore, f;(T) < 3n/2. O

Next we define a special set S of small paths.
Definition 2 Let S = {Pl, PQ, P3, P5, PG, P7, Plo, P14}.
As a consequence of the remark after Lemma 7 we have the following result.

Lemma 13 If T € S has order n > 2, then fi(T) = (3n+ 1)/2 if n is odd; otherwise,
fi(T) = Bn+2)/2.

A proof of the following lemma is a simple exercise and is omitted.

Lemma 14 Let T = (V,E) be a path in S. If |V| > 2 and v € V is neither a leaf of a Ps
nor a center of a Py, then there exists a v(T')-set containing v.

Definition 3 Let 7 = {T | T = (T" o P;) o P, for some tree T'}.

3.2 Proof of Theorem 1

Recall Theorem 1.

Theorem 1 If T ¢ S is a tree of order n > 4, then f,(T) < 14n/9 with equality if and only
ZfT S {Pg, Plg} orT eT.

Proof. We proceed by induction on n. When n = 4, either T' = K3, in which case
fit(T) = 5, or T = Py, in which case f;(T) = 6. In both cases, fy(T) < 14n/9. This



establishes the base case. For the inductive hypothesis, let n > 5 and assume that for all
trees T ¢ S of order n/, where 4 < n’ < n, that f;(T") < 14n'/9 with equality if and only
if T' e {Pg,Plg} orT'eT.

Solet T'= (V, E) be a tree of order n with T' ¢ S. The following observation follows from
Lemma 1.

Observation 1 If T = P, then fi(T) < 14n/9 with equality if and only if T € { Py, P1s}.

By Observation 1, we may assume that 7T is not a path, for otherwise the desired result
follows. With this assumption, we have the following observation by Lemma 11.

Observation 2 ¢(7) <n — 1.

Observation 3 IfT contains a path on five vertices with one end a leaf in T and with each
internal vertex a degree-2 vertex in T, then fi(T) < 14n/9.

Proof. Let P:v,v1,v2,v3,v4 be a path in T" where degy(vq) = 1 and degp(v;) = 2 for
i1 =1,2,3. Let T1 and T> be the components of T" — vv; containing v and v;, respectively.
Then, T is a tree of order ny = n—4, while Ty = Py, and so g;(T2) = n2 = 4 and f;(T3) = 6.
Since T is not a path, n; > 3.

Suppose T} is a path. Then, ¢;(71) = n; and, by Lemma 1, f;(71) < (3n1 + 2)/2. Thus,
9¢(T1) + g:(T2) = n. By Observation 2, g:(T) < n — 1, and so g+(T") < g+(T1) + ¢g:(T2) — 1.
Thus, by Lemmas 3 and 4, fi(T") = %(T) + g:(T) < %(T1) + %(T2) + 9:(Th) + g:(T2) — 1 =
fi(T) + fe(T2) =1 < 3n1 +2)/2+6 — 1 = 3n/2 < 14n/9. Hence we may assume that
T is not a path. In particular, 71 ¢ S and n; > 4. Thus, by the inductive hypothesis,
FAT) < F.(T0) + fi(To) < 14n1/9 + 6 < 14n/9. O

By Observation 3, we may assume that 7' contains no path on five vertices with one end
a leaf in T" and with each internal vertex a degree-2 vertex in 7'

Let V1, V5 be a partition of V. For each edge uv € F, let T;, and T,, denote the components
of T'— uv containing u and v, respectively. If T,, € S, then we orient the edge from u to v,
while if T}, € S, then we orient the edge from v to u. (Possibly an edge may be oriented in
both directions.)

Observation 4 If an edge of T has no orientation, then fi(T) < 14n/9 with equality if
and only if T € T.

Proof. Suppose that an edge uv € E has no orientation. Applying the inductive hypothesis
to T, and T, we have that for = € {u,v}, fi(T;) < 14|V (T})|/9 with equality if and only if
Ty € {Py, Prg} or T, € T. Hence, fi(T) < fi(Tu) + fo(To) < 14[V(Tu)|/9 + 14|V (T,)|/9 =



14n/9. Thus if fi(T,) < 14|V(T,)|/9 for some z € {u,v}, then fi(T) < 14n/9. Suppose
then that for x € {u,v}, fi(Ty) = 14|V (T;)|/9, and so T, € {Py, Pig} or T,, € T.

Suppose that one of T, and T, say T,, is a path. Then, T,, € {Py, Pis} and at least one
leaf in T, is a leaf in T that is the end of a path on five vertices every internal vertex of
which has degree 2 in T', contrary to assumption.

Hence both Ty, and T;, are in the family 7. Let G = (P o P») o P». Then both T, and T,
have disjoint copies of G as a spanning subgraph. Thus, T" has as a spanning subgraph the
graph H = kG, consisting of k£ disjoint copies of G, for some integer k > 2, where u and v
belong to different copies of G in H. Hence, n = 9k. Let G,, and G, be the copies of G in
H that contain u and v, respectively. Let Ty, = Gy, U G, U {uv}.

We proceed further with two observations about the graph G. We observe first that
Y(G) = 6, while ¢:(G) = |V(G)| —1 = 8, and so f;(G) = 14 = 14|V(G)|/9. We observe
secondly that for every vertex of G there exists a v;(G)-set containing it and if w is a leaf
in G or a support vertex in G, then (G, V(G) \ {w}) = %(G) — 1.

Suppose that u is a leaf or a support vertex in G,. Then it follows from our two earlier
observations about the graph G that v¢(Tyy) < 1% (Gy) +7(Gy) — 1, implying that v(T') <
kv (G) — 1 = 6k — 1. Thus since ¢(T) < kg(G) = 8k, we have that fi(T) < 14k — 1 =
14n/9 — 1. Hence we may assume that wu is neither a leaf nor a support vertex in G,.
Similarly, v is neither a leaf nor a support vertex in G,,.

Suppose that u or v is the vertex of degree-3 in G, or GG, respectively. Then applying
Lemma 10 to the tree Ty, with S = {u,v} we have that g:(Ty) < |V(Gu)| + |[V(Gy)| +
2|S| — IN(S)| < 18 +4 —7 = 15. Thus, ¢:(T) < g:(Tww) + (k — 2)g:(G) < 8k — 1 while
(T) < kv (G) = 6k, and so fi(T) < 14k — 1 = 14n/9 — 1. Hence we may assume that
neither u nor v is the vertex of degree 3 in G, or G,, respectively.

If k =2, then T' = (T" o P») o P, where T" = P; consists of the vertices u and v, whence
T € T. Hence we may assume that k > 3.

Assume that F'U(k—3)G is a spanning subgraph of 7" where F' = Pyo P5. Let vy, vo, ..., vg
be the vertices from the path Py in F. Then applying Lemma 10 to the graph F' with S =
{va, v3,v6, v7} we obtain g, (F) < 27+8—12 = 23. Thus, ¢(T) < g:(F)+(k—3)g:(G) < 8k—1
while 14(T') < kv(G) = 6k, and so fi(T) < 14k — 1 = 14n/9 — 1. Hence we may assume
that (Py o P;) U (k — 3)G is not a spanning subgraph of 7. Tt follows that the degree of
every vertex in G, U Gy, different from u and v, is unchanged in 7. Thus for z € {u, v}, if
T, = (T, o P») o P, for some tree 1., then we have that v € V(7)) and v € V(T}). This
implies that T'= (T" o Py) o P, where T" is the tree T, UT, U {uv}. Thus, T € 7. Hence we
have established that either f;(T') < 14n/9 or fi(T) =14n/9 and T € 7. O

Observation 5 If an edge of T is oriented in both directions, then fi(T) < 14n/9 with
equality if and only if T = (P o Py) o P;.

Proof. Suppose that an edge uv € F is oriented in both directions. Hence both components
T, and T,, of T —uw are contained in S. Since both T,, and T, are paths, g:(T,)+g:(T,) = n.



By Observation 2, ¢;(T) < n — 1, and so ¢(T") < g«(Ty) + g:(Ty,) — 1.

Since T is not a path, degp(u) > 3 or degp(v) > 3. If both degp(u) > 3 and degp(v) >
3, then applying Lemma 10 to the tree T with S = {u,v}, we have ¢(T) < n —2 =
9t(Ty) + g+(T,) — 2. Thus since 1(T) < % (Ty) + v(Ty), we have by Lemma 13 that
FUT) < Fi(T) + Fi(T) =2 < BIV(T)| +2)/2 + (BIV(T)| +2)/2 — 2 = 3n/2 < 14n/9.

Hence we may assume that either degy(u) > 3 or degp(v) > 3, but not both. We may
assume that degp(u) > 3, and so degp(v) < 2. By our assumption following Observation 3,
we have that T, € {Py, P3, Ps}.

Suppose T, = Py, and so |V(T,)| = n — 1. If there is a v(7y)-set containing w, then
Y(T') < y(Tw), implying that fo(T') < 7(Tu)+g:(T) < ([V(Tu)|+2)/24+n-1= (3n—1)/2 <
14n/9. On the other hand, if there is no (T3 )-set containing u, then, by Lemma 14, T,, =
P; and wu is the central vertex of this Pr. But then n =8, %(T) =5 and ¢(T) <n—1=17,
implying that f;(T) < 12 = 3n/2 < 14n/9. Hence we may assume that T, € {P», Ps}.

As observed earlier, g:(T) < g:(Tw) + g:(Ty,) — 1. Thus, fi(T) < fu(Tu) + fe(Ty) — 1.
Hence, by Lemma 13, f;(T) < (3n+ ¢)/2 where ¢ denotes the number of even components
of T'—wv. If £ =0, then f;(T) < 3n/2 < 14n/9, as desired. Hence we may assume that
e {1,2}.

Suppose that £ =1, and so f;(T') < (3n+1)/2. If n > 9, then fi(T") < 14n/9. Hence we
may assume that n < 9. Suppose firstly that P, = P> and T}, is of odd order. If T}, # P or if
T, = P; but u is not the central vertex of P,, then there is a v4(T})-set containing u, and so
Y(T) < w(Tu)+1, implying that f¢(T) < 7(Tu) +14g:(T) < ([V(Tw)|+1)/24+14+n—-1<
3n/2 < 14n/9. Hence we may assume that T, = P; and that u is the central vertex of T,,.
But then T' = (P; o P») o P, € 7. Suppose secondly that P, = P3. Then, since n < 9,
P, = Ps. By our assumption following Observation 3, the vertex u is a not a support vertex
of P,. But then again T = (Pio Py) o P, € 7.

Suppose finally that ¢ = 2. Then, T, = P, and Ty, € {P», Ps, Pio, P14}. Since there is a
~v¢(T,)-set containing u, we have v4(T') < v(Ty) + 1, implying that fi(T) < v(T.) + 1 +
g(T) < ([V(TW)|+2)/24+14+n—1=23n/2 < 14n/9. Hence we have established that either
fi(T) < 14n/9 or fi(T) = 14n/9 and T = (P; o P,) o P».That proves Observation 5. O

By Observations 4 and 5, we may assume that every edge of T' is oriented in exactly one
direction. Since T is a tree, it follows that there exist a vertex v with out-degree zero in
this oriented tree. Thus for every edge wv in T, T, € S and T, ¢ S. If v is a leaf and
u the support vertex adjacent with v, then T,, = P, € S in T' — uv, and so v would have
out-degree one in the oriented tree, a contradiction. Hence, degy(v) > 2.

If every neighbor of v in T" has degree at most two we define I = 0; otherwise, we define
I = 1. Applying Lemma 10 to the tree 7" with S = {v}, we have g;(T") < n + 2 — degp(v).
If I =1, and u is a neighbor of v with degy(u) > 3, then applying Lemma 10 to the tree T
with S = {u,v}, we have ¢:(T) < n + 4 — degy(u) — degp(v) < n+1— degp(v). Hence we
have the following observation.



Observation 6 ¢;(7) <n+ 2 —degp(v) — 1.

If v is adjacent only to vertices that are isolated in T'— v or leaves of a P5 in T — v or
the central vertices of a P; in T — v, then we define J = 1; otherwise, we define J = 0. For
a graph G, let oc(G) denote the number of odd components of G and ec(G) the number of
even components of G, and let k2(G) denotes the number of P>-components in G. Then it
follows from Lemmas 1 and 14 that

-1 T —
@) < " et o)+ T
and if ko(T — v) > 1, then
-1 T —
(M < "= e o)+ 2T Ly — ),

2

Hence, by Observation 6 and since degy(v) = ec(T' —v)+oc(T —v), we have the following
two upper bounds on f(7T).

3n 3 oc(T—w)

Observation 7 f;(T) < o + s 5 —I+J.
3 5 T—
Observation 8 If ko(T —v) > 1, then fi(T) < En + 5 w — I —ko(T — ).

We proceed further with three observations.

Observation 9 If J =1, then fi(T) < 14n/9.

Proof. Suppose J = 1. Then oc(T — v) = degp(v) > 2. By our assumption following
Observation 3 there can be no Ps-component of T'— v. Hence, v is adjacent only to vertices
that are isolated in T — v or to the central vertices of a P; in T — v. If T is a star,
then the result follows from Lemma 12. Hence we may assume that v is adjacent to the
central vertex of a P; in T'— v. But then I = 1. Thus, by Observation 7, we have that
fit(T) < 3n/2+ (3 — degp(v))/2. If degy(v) > 3, then fi(T) < 3n/2 < 14n/9. Hence we
may assume that degy(v) = 2, and so fi(T) < (3n+ 1)/2. If one component of T'— v is P
and the other one is P; with central vertex u, we have that T,, = P, € S, contradicting the
fact that v has out-degree zero in the oriented tree. Hence both components of T' — v are
P;-components, and so n = 15, whence f;(T) < (3n+1)/2 < 14n/9. O

Observation 10 If I = J = 0, then fi(T) < 14n/9 with equality if and only if T =
(P1 [¢] PQ) o PQ,
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Proof. Suppose I = J = 0. Then every neighbor of v in 7" has degree at most two. By
our assumption following Observation 3 every component of T — v is therefore isomorphic
to Pp, P, and P3 (and so, ec(T — v) = ko(T — v)). Since T is not a path, degp(v) > 3. If
T —v has no Ps-component, then by Lemma 12, f;(T) < 14n/9. Hence we may assume that
T — v has a Ps-component. If oc(T —v) > 3, then by Observation 7, fi(T) < 3n/2 < 14n/9.
Hence we may assume that oc(T — v) < 2. If ko(T — v) > 2, then by Observation 8,
ft(T) < 3n/2 < 14n/9. Hence we may assume that ko(T —v) < 1. Thus, since degp(v) > 3,
we have that oc(T' —v) = 2 and k2(T — v) = 1. Since v has out-degree zero in the oriented
tree, there can be no Pj-component in T — v. Hence, T'— v consists of one P;-component
and two Ps-components and v is adjacent to a leaf in each of these components. Thus,
T = (P1 OPQ)OPQ. |

Observation 11 If I =1 and J =0, then f,(T) < 14n/9.

Proof. Suppose I =1 and J = 0. Then, by Observation 7, fi(T) < 3n/2+(1—oc(T—v))/2.
If oc(T — v) > 1, then fi(T) < 3n/2 < 14n/9. Hence we may assume that oc(T — v) = 0,
and so fi(T) < (3n+1)/2. If n <9, then since v by assumption is adjacent to a vertex u of
degree at least 3 in T, it follows that T'— v = P> U Ps. But then if we consider the edge uwv
we have that T,, = P3 € S, contradicting the fact that v has out-degree zero in the oriented
tree. Hence, n > 9, whence f;(T) < (3n+1)/2 < 14n/9. O The proof of Theorem 1 now

follows from Observations 9, 10 and 11. O

4 Proof of Theorem 2

4.1 Preliminary Results

Lemma 15 If T is a tree of order n that can be obtained from a path vi,...,vo511 ON
2k 4+ 1 wertices, where k > 0, by attaching paths isomorphic to Py or Py to vertices in
{v1,v3,...,v941} such that degpvair1 = 3 for each i € {0,...,k}, then fi(T) < 3n/2.

Proof. We proceed by induction on k. If kK = 0, then T is a star or a subdivided star and
the result follows from Lemma 12 and if £ = 1, then T is one of six small trees (of orders 7,
8,9,9, 10, 11) and the result is straightforward to check. This establishes the base cases.
Hence we may assume that & > 2 and that the result of the theorem is true for all trees
that can be obtained from a path on 2k’ + 1 vertices where 0 < k' < k. Let T be a tree of
order n that can be obtained from a path vy,...,v9511 on 2k + 1 vertices by the procedure
described in the statement of the lemma.

We now consider the forest FF = T — wvsvy. Let Fy and F5 be the components of F
containing vs and vy, respectively. Then, F} # (P; o Py) o P, and F) is a tree with at
least six and at most nine vertices and with three leaves, one vertex of degree 3, and
with the remaining vertices of degree 2. Thus F; ¢ S and it follows from Theorem 1
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that fi(F1) < 3|V(F1)|/2. Applying the inductive hypothesis to the tree F, we have
fi(F2) <3|V (F2)|/2. Hence, fi(T) < fi(F1) + fi(F2) < 3n/2. O

Lemma 16 Forn > 3, fi(Cy) < 3n/2 with equality if and only if n = 0 (mod 4).

Proof. Let G = Cp, and let V; and V2 be a partition of V(G) satisfying fi(G) =
ft(G; V1, Va). Suppose that both Vi and V, are open packings in G. Let i € {1,2}. Since
no two vertices of V; have a common neighbor, every vertex in G[V;] has degree one and the
set of edges [V1, V5] therefore induces a matching in G. Thus since G is 2-regular, we must
have that |V1| = |Va|, [V1, Vo] induces a perfect matching in G, and that G[V;] is K2 or the
disjoint union of copies of K. Hence, n = 0 (mod 4).

If n is odd, then at least one of the sets V1 and V5 is not an open packing in G, and so,
by Lemma 6, 1(G, V1) + (G, Va) < n — 1. By Lemma 1, v(C,,) = (n + 1)/2 for n odd.
Hence, f;(G) < (3n — 1)/2. Therefore we may assume that n is even.

Suppose n = 2 (mod 4). Then, by Lemma 1, v(Cy,) = (n +2)/2. If V; or V3 is empty,
then fi(G) < 2v(C,) =n+2 < 3n/2 since n > 6. Suppose |V1| = 1. Then, G[V2] = P,_1,
and 50 (G, V2) < #(GIVa],Va) < W(GIVa)) = (Pa_1) = n/2, implying that £,(G) =
Y(G)+ (G, V1) + % (G, V2) < (n+2)/24+1+n/2 =n+2 < 3n/2. Hence we may assume
that |V1| > 2 and |Va| > 2.

For i € {1, 2}, if there are two adjacent vertices with the same label 4, then v:(G, V3_;) <
Yt(Pn—2) = (n—2)/2. Hence if both sets V7 and V5 contain adjacent vertices, then f;(G) =
Y(G) + (G, V1) + (G, V2) < (n+2)/2+n —2 = (3n — 2)/2. Thus we may assume that
at least one of V1 and Vb, say V1, is an independent set. This implies that V5 is not an open
packing, and so (G, V2) < |Va| — 1. If V7 is not an open packing, then v.(G,V;) < |V4| —1,
implying that fi(G) < (n+ 2)/2 + |[Vi| + |Va| — 2 = (3n — 2)/2. Hence we may assume
that V; is both an independent set and an open packing. Thus since the vertices in the
set V1 have disjoint neighborhoods in G, N (V1) C V5 and |N (V)| = 2|V4|. For each vertex
v € Vo \ N(V7), we choose an adjacent vertex and call the resulting set of such vertices V5.
Then, V1 U VJ totally dominates Va, and so v(G, V2) < [Vi| + [V5] < [Vi| + [Va \ N(V1)| =
Vil + [Va| = [N(V1)[| = [Va| = [VA|. Thus since (G, V1) = [Vi| and %(G) = (n + 2)/2, we
have that fi(G) < (n+2)/2+|Va] < (n+2)/2+n—2 = (3n—2)/2. Hence if n = 2 (mod 4),
then fi(G) < (3n—2)/2 < 3n/2.

Suppose, finally, that n = 0 (mod 4). Then, by Lemma 1, 7,(C,) = n/2. Since there is a
good partition of V(@) in this case, g:(G) = n, implying that f;(G) =3n/2. O

Lemma 17 For n > 3, let G = C,, where n = 0 (mod 4), and let Vi, Vi be a partition of
V(G). Then, fi(G;V1,V2) < 3n/2 with equality if and only if V1, Va is a good partition of
V(G).

Proof. By Lemma 16, f;(G;V1,V2) < fi(G) = 3n/2. If V1, V5 is not a good partition of
V(G), then V; or V4 is not an open packing in G, and so, by Lemma 6, v¢(G, V1)+7(G, V) <
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n—1. Together with Lemma 1, v(G) = n/2, we obtain f;(G; V1, V2) < 3n/2—1. Conversely,
if V1, V4 is a good partition of V(G), then both V; and V5 are open packings in G, implying
by Lemma 6 that v(G, V1) + %(G, Va) = n, whence fi(G;Vi,V2) =3n/2. O

Lemma 18 If G is a graph of order n that can be obtained from a cycle vy, vy, ..., vap_1,v0
on 2k vertices, where k > 2, by attaching for each i € {0,1,...,k— 1} a path isomorphic to
Py or Py to vy, then fi(G) < 3n/2.

Proof. Let G = (V, E). If k = 2, then G is one of three graphs (of orders 6, 7 and 8) and the
result is straightforward to check. Hence we may assume that k > 3. Let i € {0,1,...,k—1}
and let F; and G; be the components of G — {vg;_1v2;, V2i1+2v2i+3} containing vy; and vg;_1,
respectively (where addition is taken modulo 2k). Then, F; is a path of order 5, 6 or 7,
while G; is a tree that can be obtained from a path on 2(k —3)+ 1 vertices by the procedure
described in the statement of the Lemma 15. By Lemma 15, fi(G;) < 3|V(G;)|/2.

Let V1, Va be a partition of V' such that f;(G;Vi,V2) = fi(G). For j = 1,2, let V;; =
V; NV (F;). Suppose that V1, Vi2 is not a good partition of V(F;). Then, by Lemma 9,
fe(Fi Vin, Vig) < 3|V(F)|/2. Thus, fi(G) = fi(G;V1,Va) < fi(Fi;Via, Vie) + fi(Gi) <
3|V(F;)|/2+ 3|V(G;)|/2 = 3n/2. Hence we may assume that V1, V2 is a good partition
of V(F;) for each i € {0,1,...,k — 1}, for otherwise the desired result follows.

Suppose that for some i € {0,1,...,k— 1}, the small component of G — vg; and the small
component of G — vy 19 are isomorphic (either to P; or P,). For notational convenience,
we may assume that the small component of G — vy and the small component of G — v
are isomorphic. Let T and T be the components of G — {vyvag_1,v4v5} containing vy and
vop_1, respectively. Then, T} is a tree with three leaves, with one vertex of degree 3, and
with the remaining vertices of degree 2. Since T} is one of four small trees, and since V; 1,
Vi is a good partition of V (F;) for every i € {0,1,...,k—1}, and in particular for i =0, 1,
it is straightforward to check that f;(71) < 3|V (T1)|/2. If k = 3, then V(T3) = {uvs}
and since there exists a 74(7})-set containing vy, it follows that fi(G) < fi(T1) +1 <
3(n—1)/2+1 < 3n/2. If k > 4, then by Lemma 15, fi(T2) < 3|V (12)|/2, implying that
fi(G) < fi(Ty) + fa(To) < 3|V(Th)|/2 + 3|V (T2)|/2 = 3n/2.

Hence we may assume that for every i € {0, 1,...,k—1}, the small component of G — vy;
and the small component of G — vg; 42 are not isomorphic. Thus, k£ must be even. We may
assume that for ¢ = 0(mod 4), G — v; has a component isomorphic to P, (and therefore
for i = 2 (mod 4), G — v; has a component isomorphic to P;). Let C denote the cycle in
G (of order 2k). Let H be the spanning subgraph of G obtained from G by deleting all
edges on C' incident with vertices v; where i = 0(mod 4). Then, H is isomorphic to k/2
disjoint copies of PsU K 3. Hence since fi(P3UKj3) = 10, it follows that f;(G) < fi(H) <
10|V(H)|/7=10n/7 < 3n/2. O
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4.2 Notation

Before proceeding with a proof of Theorem 2, we introduce some additional notation. By
a proper subgraph of a graph G we mean a subgraph of G different from G. We define a
vertex as small if it has degree < 2, and large if it has degree more than 2. In a graph G
let £ denote the set of all its large vertices. Suppose |£] > 1 and let C' be any component
of G — L; it is a path. If C has only one vertex and that is adjacent to two large vertices,
or if C' has at least two vertices and the two ends of C' are adjacent in G to different large
vertices, then we say that C' is a 2-path. Otherwise, when the ends of C are adjacent to
the same large vertex, we say that C is a 2-handle.

4.3 Proof of Theorem 2

Recall Theorem 2.

Theorem 2 If G is a connected graph of order n with 6(G) > 2, then fi(G) < 2n/3 with
equality if and only if G = C), where n =0 (mod 4).

Proof. We proceed by induction on £ = n 4+ m, where m denotes the size of G. Note that
n >3 and m > 3, and so £ > 6. When ¢ = 6, the graph G is a 3-cycle and f;(G) =4 < 3n/2.
This establishes the base case. For the inductive hypothesis, let £ > 7 and assume that for
all connected graphs G’ of order n’ and size m’ with n’ +m/ < ¢ and with 6(G’) > 2 that
[t(G") < 2n'/3 with equality if and only if G’ = C,y where n’ = 0 (mod 4).

So let G = (V, E) be a connected graph of order n and size m with m +n = ¢ and with
0(G) > 2. Suppose that G contains at least one large vertex. Let £ be set of all large
vertices of G.

Observation 12 If £ contains two adjacent vertices, then fi(G) < 3n/2.

Proof. Suppose that two large vertices u and v are adjacent. Let G’ = G — uv. Then, G’
is a graph of order n’ = n and size m’ = m — 1 and with §(G’) > 2. Applying the inductive
hypothesis to every component of G’, we have that f;(G') < 3n//2 = 3n/2 with equality
if and only if every component of G’ is a cycle of order congruent to zero modulo 4. By
Lemma 3, fi(G) < fi(G') < 3n/2. Thus if f;(G') < 3n/2, then f;(G) < 3n/2. If f;(G') =
3n/2, then every component of G’ is a cycle of order congruent to zero modulo 4, and so, by
Lemma 1, v(G’) = n/2, whence v:(G) < n/2. By Lemma 11, v(G, V1) + %(G,V2) <n—1
for every partition V1, Vo of V(G). Thus, fi(G) <3n/2—1. 0O

By Observation 12, we may assume that £ is an independent set (for otherwise, the
desired result follows).

Observation 13 If G contains a path on six vertices each internal vertexr of which has
degree 2 in G and whose end-vertices are not adjacent, then fi(G) < 3n/2.
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Proof. Let u and v be the two end-vertices of a path P on six vertices each internal
vertex of which has degree 2. Let G’ be the graph obtained from G by removing the four
internal vertices of this path and adding the edge wv. Then, G’ is a connected graph of
order n’ = n — 4 and size m’ = m — 4 with §(G’) > 2. Applying the inductive hypothesis
to G', we have that f;(G') < 3n’/2 = 3n/2 — 6 with equality if and only if G’ is a cycle
of order congruent to zero modulo 4. Since the degree of every large vertex of G remains
unchanged in G', A(G’) > 3, implying that f;(G') < 3n/2 — 6.

Let Vi, V5 be a partition of V, and let P be the path u,u1,us,us, us,v. Thus, G’ =
(G —{u1,u2,u3,us}) U{uv}. Let i € {1,2} and let V;/ = V(G')NV;. Let U C V(G') and let
S’” be a minimum set of vertices in G’ that totally dominates U in G’, and so |S’| = (G, U).
If {u,0} € S5 let S =5 U{up,us}. If {u,v} NS =0, let S =5 U-{ug,us}. lfues
and v ¢ S let S =5 U{us,us}. fué S andve S, let S =5 U{up,uz}. In all cases,
|S] = |S’| 4+ 2 and S totally dominates U UV (P) in G. In particular, if U = V(G’), then S’
is a y(G’)-set and S is a TDS of G, whence 1(G) < |S| = |S'|+2=3(G")+2. fU =V/,
then S totally dominates V; in G, and so (G, V;) < |S| = |S'| +2 = %(G’, V/) + 2. Hence,
[i(G; V1, Vo) < fil(G'5 V], Vy) +6 < fi(G') + 6 < 3n/2. Thus for every partition Vi, V2 of V,
fi(G; V1, Vo) < 3n/2. Therefore, f;(G) < 3n/2. 0

By Observation 13, we may assume that G contains no path on six vertices each internal
vertex of which has degree 2 in G and whose end-vertices are not adjacent. Hence since £
is an independent set, we have the observation.

Observation 14 FEwvery 2-path contains at most three vertices, while every 2-handle con-
tains at most five vertices.

Observation 15 If G contains a degree-3 vertex that is adjacent to the ends of a 2-handle,
then fi(G) < 3n/2.

Proof. Assume that there is a degree-3 vertex v that is adjacent to the ends of a 2-handle
C. By Observation 14, 2 < |C| < 5. By connectivity there exists a 2-path P with an end
adjacent to v. Let u be the other large vertex adjacent with an end of P. By Observation 14,
1 < |P| < 3. Let G’ be the spanning subgraph of graph obtained from G by removing the
edge joining v with an end of P. Let G, and G, be the components of G’ containing u and
v, respectively. Let |V(G,)| = n, and |V(G,)| = ny, and so n = ny + n,. Now, 6(G,) > 2
while Gy, is a key L, s where r = |C|+ 1 and s = |P|. Hence, 3 <r <6and 1 <s <3.
Thus, by Lemma 2, v(G,) < (ny, +1)/2. By Lemma 11, v(Gy, V1) + (G, Vo) < myy — 1
for every partition Vi, V5 of V(G,). Thus, fi(Gy) < (3n, — 1)/2. Applying the inductive
hypothesis to the graph Gy, fi(Gy) < 3n,/2. Hence, fi(G') = fi(Gy)+ ft(Gy) < (3n—1)/2.
Thus, by Lemma 3, fi(G) < fi(G') < 3n/2. 0

By Observation 15, we may assume that every large vertex that is adjacent to the ends
of a 2-handle has degree at least 4.

Observation 16 If G contains a 2-handle of order 2, 4 or 5, then fi(G) < 3n/2.
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Proof. Suppose there is a 2-handle C' where |C| = k and k € {2,4,5}. Say its ends have
common neighbor v € £. By assumption, degov > 4. Let G’ = G — V(C). Then, G’ is a
connected graph of order n’ = n — k and size m’ = m —k — 1 and with §(G’") > 2. Applying
the inductive hypothesis to G’, we have that f;(G") < 3n'/2 = 3(n — k)/2 with equality if
and only if G’ is a cycle of order congruent to zero modulo 4.

Let Vi, Vi be a partition of V and for i € {1,2}, let V/ = V(G')NV,. Let U C V'(G)
and let S’ be a minimum set of vertices in G’ that totally dominates U in G’, and so

15" = %(G", U).

Suppose k = 2. Then, S U {v} totally dominates U U V(C) in G. It follows that
(G) < (G + 1, and for i € {1,2}, (G,V;) < w(G',V/) + 1. Hence, fi(G;V1,V2) <
[(GH VL V) +3 < fil(G') +3 < 3n/2. If fi(G') < 3(n—2)/2, then fi(G;V1,Va) < 3n/2. If
ft(G") = 3(n—2)/2, then G’ is a cycle (congruent to zero modulo 4). But then we can choose
a v (G")-set to contain v, implying that 1(G) < %(G’) and fi(G; Vi, Vo) < fil(G'; V], V3) +
2 < fi(G")+2 < 3n/2 — 1. Thus for every partition Vi, V5 of V', fi(G;V1,Va) < 3n/2.
Therefore, fi(G) < 3n/2.

Suppose k = 4. Let C be the path vy, ve,vs,vs. Then, S U {vy,v3} totally dominates
UUV(C)in G. Tt follows that fi(G;Vi,Va) < fi(G; V], V5) +6 < fi(G') + 6 < 3n/2. If
ft(G') < 3(n—4)/2, then fi(G;V1,Va) < 3n/2. If fi(G') = 3(n—4)/2, then G’ is a cycle of
order congruent to zero modulo 4, and so, by Lemma 1, 14 (G’) = n//2 = (n — 4) /2, whence
Y% (G) < n/2. By Lemma 11, (G, V1) + %(G, Vo) <n—1, and so f;(G;V1,Va) <3n/2—1.
Thus for every partition Vi, V2 of V., fi(G; V1, V2) < 3n/2. Therefore, f;(G) < 3n/2.

Suppose k = 5. Let C be the path vy, ve,v3,v4,v5. Fori= 1,2, let W; =V, nV(C). If
Wi, Wa is not a good partition of V(C'), then by Lemma 8, fi(C; Wy, W) < 3(k—1)/2=T.
Thus, fi(G; Vi, V2) < fillCs Wi, Wa)+fi(G V], Vy) < T+ fi(G') < T+3(n—5)/2 = (3n—1)/2.
On the other hand, suppose that Wy, Wy is a good partition of V(C'). Thus, renaming the
sets V1 and V, if necessary, we may assume that W7 = {v1,ve,v5} (that is, the labels of
v1, V2, U3, V4, U5 are given by 1,1,2,2, 1, respectively). But then {v,v1} totally dominates
Wi in G, {vs,v4} totally dominates W5 in G, and {v,vs,v4} totally dominates V(C') in G.
Hence, f:(G;Vi,Va) < 7+ fi(G;V],V3) <7+ 3(n—5)/2 = (3n —1)/2. Thus for every
partition Vi, Va of V| fi(G; V1, Va2) < 3n/2. Therefore, fi(G) < 3n/2. O

By Observations 14 and 16, we have the observation.

Observation 17 FEwvery 2-handle contains three vertices.

We now construct a spanning subgraph H of G as follows. First from every 2-handle (of
order 3) and every 2-path that contains two or three vertices, we delete exactly one edge
(both of whose ends necessarily have degree 2). Thus in the resulting graph, there is no 2-
handle and every 2-path, if any, has order 1. We then successively delete an edge that joins
the single vertex of a 2-path with a large vertex of degree at least 4 in the graph obtained
at each stage until no such edge remains. (Thus if a large vertex in the graph constructed
at this stage is adjacent with the vertex of a 2-path, then this large vertex has degree 3.)
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Finally in the resulting graph, we successively delete two of the three edges incident with
every large vertex all of whose neighbors are vertices of 2-paths (of order 1) in the resulting
graph at each stage until no such large vertex remains. Let H denote the resulting spanning
subgraph of G.

By construction, H has no 2-handle and every 2-path in H, if any, has order 1. Further,
every large vertex of H that is adjacent to the vertex of a 2-path has degree 3 and has at
least one neighbor (of degree 1 or 2) that is not on any 2-path. (Thus no large vertex is
adjacent to the ends of more than two 2-paths.) Each leaf in H is either adjacent to a large
vertex of H or is adjacent to a degree-2 vertex that is adjacent to a large vertex of H. It
follows that every component H' of the spanning subgraph H of G is isomorphic to one of
the graphs described in Lemmas 12, 15 or 18: If H' contains only one large vertex, then
H' is one of the graphs described in Lemma 12 (stars with possible subdivisions). If the
vertices of H' that belong to 2-paths (of order 1) and their neighbors (the large vertices in
H') induce a path in H’, then H' is one of the graphs described in Lemma 15 (paths with
pendants). If the vertices of H' that belong to 2-paths and their neighbors induce a cycle
in H', then H' is one of the graphs described in Lemma 18 (cycles with pendants). Hence
by Lemma 3, and by Lemmas 12, 15 or 18, it follows that f,(G) < f,(H) < 3n/2.

Hence we have shown that if G contains at least one large vertex, then f;(G) < 3n/2. If G
contains no large vertex, then G is a cycle, and the desired result follows from Lemma 16. O
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