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Abstract 11 

Danish seining (or anchor seining) is a fishing technique that is gaining increasing attention because it is 12 

considered to be a fuel-efficient fishing method with low environmental impact. However, scientific 13 

documentation of the selectivity characteristics of Danish seines is lacking, and the gear generally is 14 

grouped with bottom trawls and Scottish seines in fisheries management legislation. In this study, we 15 

developed a codend cover to estimate the selectivity of a standard commercial Danish seine codend for 16 

four fish species. The data for the dominant species, dab (Limanda limanda) and plaice (Pleuronectes 17 

platessa), was best described by models that combine two or three logistic models, which indicated that 18 

more than one selection process was at work. Selectivity of cod (Gadus morhua) was best described by 19 

a Richard curve and selectivity of red gurnard (Chelidonichthys lucernus) by a logistic curve. The 20 

estimated selectivity curve of dab indicated, contrary to cod and plaice, low retention of individuals 21 

below MLS. Confidence limits for larger length classes of cod and red gurnard were relatively wide. For 22 

plaice, the estimated selection factor, which is the length with 50% retention divided by mesh size, was 23 

comparable to literature values from trawl studies. The average value for cod was similar for Danish and 24 

Scottish seines, but lower for trawls. The results are discussed in the context of fisheries management 25 

with focus on the landing obligation of the new Common Fisheries Policy. 26 
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1. Introduction 29 

Although a decline in the number of seiners in Denmark is evident (1990: 252; 2000: 118; 2015: 30 

32; EuroStat, 2016), Danish seining is still an important fishing technique. In recent years, interest in 31 

Danish seining has increased because it is viewed as a fuel-efficient fishing method (Thrane, 2004) and 32 

because its environmental impacts are said to be less than those of other active demersal fishing gears 33 

such as beam trawls or bottom trawls (ICES, 2006, 2010; Suuronen et al., 2012; Eigaard et al., 2015). 34 

The main target species of Danish seiners in Skagerrak and the North Sea are flatfish, primarily plaice 35 

(Pleuronectes platessa), which has been within safe biological limits for the last three years (ICES, 36 

2015). Nevertheless, there is a general lack of scientific documentation of the selectivity of Danish 37 

seines. The sparse existing data (e.g. ICES, 2010; Suuronen et al., 2012) are often based on assumptions 38 

or older studies, where other regulations existed, different gears or vessels were used or where data were 39 

not analysed following the standards described in Wileman et al. (1996).  40 

A new Common Fisheries Policy that includes a landing obligation (discard ban) system was 41 

introduced in most European Union (EU) waters, including Skagerrak and the North Sea, by 1 January 42 

2016 (EEC, 2011, 2012; Condie et al., 2014b; Condie et al., 2014a; Eliasen, 2014; Uhlmann et al., 2014; 43 

Sardà et al., 2015). The specific challenge for the industry, and the major difference from the earlier 44 

landing quota system is that the catch of all sizes of listed species is counted against the quota. A 45 

minimum conservation reference size (MCRS, generally equal to current minimum landing size, MLS) 46 

will be introduced for several commercial species and individuals below this size are prohibited from 47 

being sold for direct human consumption. Consequently, information about the selective properties of 48 

fishing gears is of great importance for the economy and fisheries management as selectivity parameters 49 

like L50 (length at which 50% of the fish are retained) and SR (selection range; L75–L25,) give an 50 

indication of which sizes of fish can be expected by the fishery. This information is important to estimate 51 



Page 3 

 

the probability that the fisheries will adhere the objectives of the landing obligation. Furthermore, if the 52 

expectations of the landing obligation are too high (e.g. due to high bycatches of fish below MCRS), the 53 

data may allow for recommendations to be made on how to adjust the fisheries to the new system. 54 

By EU law, Danish seines belong to the same legislative category of fishing gears as Scottish 55 

seines and bottom trawls. All three gears follow the same technical regulations such as mesh size and 56 

selective devices. Several older studies regarding selectivity of Scottish seines exist (Reeves et al., 1992; 57 

Isaksen and Lokkeborg, 1993) but the overall state of knowledge is low. A recent theoretical study by 58 

Herrmann et al. (2015) estimated the selectivity of Scottish seines on the basis of one of those earlier 59 

studies using suitable statistical methods. Nevertheless, they concluded that further studies have to be 60 

conducted using currently used demersal seines. The understanding of selectivity in bottom trawls is 61 

much greater as the majority of selectivity studies for gears from this legislative category focused on 62 

trawls (e.g. Reeves et al., 1992; Graham et al., 2004; Frandsen et al., 2010b; Madsen et al., 2012).  63 

Although the netting materials and codend constructions used in Danish seines, Scottish seines, 64 

and bottom trawls are similar, the gears have pronounced differences in construction and in the way they 65 

are operated. Bottom trawls use trawl doors to spread the net (von Brandt, 2005), and the towing speed 66 

is relatively constant throughout the fishing process. Seiners do not use any doors or other spreading 67 

devices, and the speed at which the net is dragged is slower than that in trawling, but it continuously 68 

increases during the fishing process. Scottish seiners move forward during the retrieval process, whereas 69 

Danish seiners do not as they are anchored (von Brandt, 2005). With such pronounced differences in 70 

towing speed and net geometry during the fishing process, it is likely that the selection processes differ 71 

among the three types of gears.  72 

Due to the lack of consistent forward motion in Danish seines, it is important to develop a cover 73 

based on the principles of the conventional codend cover (Wileman et al., 1996) to study the selectivity 74 

of this type of gear. Such a device must cope with the different stages of the fishing process and always 75 

keep the cover a sufficient distance away from the codend to avoid a potential masking effect that can 76 

occur when the cover comes in contact with the meshes of the codend (Madsen and Holst, 2002). 77 
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The main objective of this study was to estimate the selectivity parameters for species caught 78 

with Danish seines using the codend design currently used in the commercial fishery. These selectivity 79 

parameters were compared to those of bottom trawls and Scottish seines, and the results should prove 80 

useful in terms of technical regulations and management policies. The data will also be used to evaluate 81 

the gear in terms of the landing obligation and to estimate the potential consequences for the Danish 82 

seine and bottom trawl sector now, and in the future, should other species be added to the landing 83 

obligation list.  84 

2. Materials and Methods 85 

2.1. Study site and experimental setup 86 

The experiments were carried out aboard the commercial Danish seiner HG 35 Vendelbo (length 87 

overall: 15.47 m, engine power: 91 kW) off the coast of Denmark in Skagerrak (ICES area IIIa; Fig. 1) 88 

in August and September 2014. The fishing took place in sandy shallow areas close to the coast (~13 m 89 

deep, Hauls 1, 2, 3, 6, 7) that are known to be good grounds for flatfish such as plaice and in deeper 90 

grounds (~68 m deep, Hauls 4 and 5) that are known to be good for roundfish such as haddock 91 

(Melanogrammus aeglefinus). 92 

The vessel’s commercial gear was used, which was representative for the Danish seining fleet 93 

that operates in Skagerrak and the North Sea. The seine had 380 meshes (nominal mesh size: 120 mm) 94 

around the fishing circle, and it consisted of a wing section with a weighted 43.6 m long ground rope, a 95 

belly section, and an extension section. The 7 m long non-tapered codend was made of Nymflex 4 mm 96 

double twine polyethlyene (PE) netting (mesh size: 124.4 ± 3.0 mm, N = 200, measured with an OMEGA 97 

gauge (Fonteyne et al., 2007)) with 97 open meshes around the circumference. The codend was 98 

constructed with one selvedge that included three meshes, following commercial practice. Although 99 

scientific selectivity studies are normally carried out with newly produced codends without additional 100 

devices (e.g., round straps, protecting bags, or flappers) that could affect selectivity, the codend in this 101 
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study was equipped with two round straps (Fig. 2; Herrmann et al., 2006). These two round straps were 102 

1.9 m in circumference and mounted 0.5 m ahead of the codline and 2.9 m in circumference and mounted 103 

1.0 m ahead of the codline. Round straps are widely used by commercial vessels to limit a codend’s 104 

circumference just in front of the codline to facilitate fast and more controlled emptying of the codend 105 

aboard the vessel, which is thought to improve safety for fishermen handling the gear. However, small 106 

variations of the specific mounting of these round straps may occur between vessels. Legal regulations 107 

regarding round straps are stated in EU regulation 3440/84. The seine warps used in the current trials 108 

were ~2860 m long (13 coils), each with a diameter of 21 mm. 109 

The covered codend method (Wileman et al., 1996) was applied to catch individuals escaping 110 

from the codend. The actual cover was 21 m long and consisted of two main parts (part C and D, Fig. 2), 111 

but two additional pieces of netting (part A and B, Fig. 2) were necessary to attach the cover appropriately 112 

to the extension part of the seine. The 11 m long part C covered the codend and was made of 0.9 mm 113 

thin knotless Dyneema (ultra-high molecular weight PE) twine netting in square mesh orientation (mesh 114 

size: 46.2 ± 3.0 mm) to ensure good water flow through the meshes and a low visibility of the netting in 115 

order to not affect the escape behaviour of the fish. Furthermore, this configuration allowed the meshes 116 

to stay in a fixed position and thus maintain a sufficient opening and distance between codend and cover 117 

in order to minimize the risk of masking the codend (Madsen et al., 2001). This part consisted of four 118 

panels and had 620 mesh bars in circumference (155 per panel). The 10 m long aft part D was made of 119 

2 mm knotless PE netting (mesh size: 40.8 ± 0.7 mm) in diamond orientation. It consisted of two panels 120 

and the number of meshes per panel decreased from 175 in the front to 145 meshes per panel in the end. 121 

Three kites, consisting of two PVC-coated trapezoidal canvas parts (ca. 0.5 m2 per trapezoid) as 122 

described by Madsen et al. (2001) were attached to the cover to ensure that it remained open during faster 123 

hauling speeds (Figs. 2 and 3). One kite was attached to each of the starboard panel, the portside panel 124 

and the top panel (Figs. 2 and 3). Because Danish seines are dragged at a slower speed than trawls, 125 

especially in the beginning of the fishing process, several modifications were made to the cover design 126 

described in Madsen et al. (2001). These were made to ensure that the cover did not mask the codend 127 
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(Madsen and Holst, 2002) at the low dragging speed. Twenty-four egg-shaped floats (buoyancy: 0.2 kg) 128 

were attached along each upper selvedge of the front part, and lead ropes (1 kg/m) were attached to the 129 

lower panel (Figs. 2 and 3). Additionally, a 1.9 m long PE bar was fixed transversally across the upper 130 

panel at the point where the kites have been attached (Figs. 2 and 3). This ensured the cover to spread 131 

horizontally and thus allowed sufficient horizontal space between the codend and cover when the gear 132 

was not moving or was moving very slowly. This minimized the risk of masking. Finally, a ca. 10 m 133 

long zipper was inserted in the top panel of part C to allow handling the codend catch first in order to 134 

prevent escapes of fish from the codend into the cover at the surface (Fig. 2). Adjustment and inspection 135 

of the cover were conducted in a flume tank (SINTEF, Hirtshals, Denmark) prior to the experiments, 136 

with participation of scientists, fishermen, and the net maker who created the cover. Velocities from 0 to 137 

1.8 kn (0.9 m/s), equivalent to the speed of the seine when the majority of fish enter the codend 138 

(unpublished data, Thomas Noack, DTU Aqua Hirtshals, Denmark), were tested. As the length of the 139 

cover exceeded the flume tank’s dimensions, the last part of the cover was bundled for the tests. By doing 140 

so, it was still possible to judge and adjust the modifications around the codend (lead ropes, floats, kites, 141 

PE bar) in an appropriate way. 142 

2.2. Data collection and sampling strategy 143 

For each haul, fishing time, depth at the position where the net was deployed, depth at anchor 144 

and the sea state were recorded following the protocol of Wileman et al. (1996). A GPS-logger (Canmore 145 

G-PORTER GP-102+) tracked the vessel’s movement over the entire fishing process for each haul.  146 

When the catch came aboard the vessel, the codend was emptied first to avoid any fish escaping 147 

from the codend into the cover. In order to do so, the cover was tightened up to a level that allowed for 148 

a proper opening of the zipper without risking any fish to swim or fall out. As soon as this level was 149 

reached, the codend was pulled out of the cover. With the exception of the first haul in which the whole 150 

catch was sorted prior to subsampling, subsamples were taken from the non-sorted catch due to large 151 

amounts of fish (as outlined by Gerritsen and McGrath (2007)). After sorting and identifying species, 152 
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fish were measured to the nearest cm. Individual weights were estimated using length-weight 153 

relationships (Shanks, 1981; Coull et al., 1989; Marčeta, 2013).  154 

During the second haul, two underwater video cameras (GoPro, Inc. HERO 3+) were mounted 155 

between the cover and codend (pointing downstream and upstream) to document the performance of the 156 

cover and the behaviour of the fish in the gear during the fishing process. 157 

2.3. Data analysis 158 

Selectivity modelling was conducted to estimate species-specific selectivity curves and 159 

selectivity parameters (e.g., L50 and SR) using the computer software SELNET (Herrmann et al., 2012). 160 

Hauls with < 10 measured individuals were excluded from further analyses following Krag et al. (2014). 161 

The modelling approach followed the procedure described by Sistiaga et al. (2010), Eigaard et al. (2011), 162 

Herrmann et al. (2012), and Madsen et al. (2012). In addition to the logistic model (Eq. 1), six other 163 

models (Eq. 2-7), including the three other classical size selection models “probit” (Eq. 2), “Gompertz” 164 

(Eq. 3) and “Richard” (generalised logistic model with additional asymmetry parameter 1/δ, Eq. 4) were 165 

tested within this study. For detailed descriptions of those see Wileman et al. (1996). Additionally, three 166 

more complex models that combined two or three logistic models were considered as candidates. Those 167 

were the double logistic model “LogitS2” (Eq. 5; Lipovetsky, 2010), the dual selection logistic model 168 

“Dual_selection” (Eq. 6; Sistiaga et al., 2010) and the triple logistic model “LogitS3” (Eq. 7; Frandsen 169 

et al., 2010a). All models accounted for overdispersion due to haul-pooling. The retention probability r 170 

of a fish of length l can be expressed by r(l,υ) with υ describing a vector that contains parameters needed 171 

by the model. 172 

r(l,υ) =         173 

Logit (l,L50,SR)                                                                 (1) 174 

Probit (l,L50,SR)                                                                (2) 175 

Gompertz (l,L50,SR)                                                             (3) 176 

Richard (l,L50,SR, 1/δ)                                                          (4) 177 

LogitS2 = c1 x Logit (l,L501,SR1) + (1.0 – c1) x Logit (l,L502,SR2)                          (5) 178 
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Dual_selection = (1.0 – c1) x Logit (l, L502, SR2) + c1 x Logit (l, L501, SR1)) x Logit (l, L502, SR2)   (6) 179 

LogitS3 = c1 x Logit (l,L501,SR1) + c2 x Logit (l,L502,SR2) + (1.0 – c1 – c2) x Logit (l,L503,SR3)    (7) 180 

 181 

Models that combine two logistic models have been used in previous studies on trawls separating 182 

the selectivity process in a towing phase and haul-back phase (Herrmann et al., 2013a). They have also 183 

been used in studies on trawls with sorting grids (Kvamme and Isaksen, 2004; Sistiaga et al., 2010; 184 

Herrmann et al., 2013b) where the individual fish can escape either through the grid or through the 185 

codend meshes. For the double logistic model LogitS2 (Eq. 5) and dual selection model Dual_selection 186 

(Eq. 6), the selection process is assumed to consist of two processes. The double logistic model (Eq. 5) 187 

combines two logistic models, one for the first process and one for the second process. The contact ratio 188 

parameter c1 indicates hereby the probability for an individual to have its selectivity determined by the 189 

first process, i.e. the chance of each individual to get in contact with the selective area within the first 190 

process (Herrmann et al., 2013a). Consequently, the probability to have its selectivity determined by the 191 

second process is 1.0 – c1. L501 and SR1 or L502 and SR2 describe the selectivity of the according “sub-192 

process”. The dual selection model (Eq. 6) is similar to the double logistic model, but it is a sequential 193 

function. This means that the proportion of individuals that try to escape in the second process is assumed 194 

to consist of those that did not attempt to escape in the first process and additionally those that attempted 195 

to, but were retained. The triple logistic model LogitS3 (Eq. 7) follows the same principles as the 196 

LogitS2, but includes a third stage of selection, i.e. it is the sum of three logit models in which the weights 197 

of the contributions add up to 1.0 (Frandsen et al., 2010a). Additional parameters required by this model 198 

to describe selectivity are L503 and SR3 explaining the selection in the third “sub-process” and c2 199 

indicating the probability of an individual to have its selectivity determined by the second process. 200 

Consequently, the chance of an individual to have its selectivity determined by the third process is 1.0 – 201 

c1 – c2.  202 

Selecting the final model for each species followed the procedure of inspecting goodness of fit 203 

as described by Wileman et al. (1996) and by comparing individual Akaike information criterion (AIC) 204 
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values (Akaike, 1974). If the fit statistics indicated a lack of model fit, i.e. p-value close to zero, deviance 205 

>> degrees of freedom or low R2-value (ratio of variance explained by model and observed variance), 206 

residuals were inspected for any structural deviation to determine if structural problems with the model 207 

or overdispersion of the data (McCullagh and Nelder, 1989) were causing such results. Uncertainties 208 

were estimated by calculating Efron 95% confidence intervals (CIs; Efron, 1982) for the final selectivity 209 

curves and selectivity parameters.  210 

Selectivity estimates were compared to values from previous studies of Scottish seines and 211 

trawls in the Northeast Atlantic mixed fishery using the estimated selection factor (SF = L50/mesh size). 212 

All studies used codends similar to the one used in the present study (mesh orientation: diamond meshes; 213 

mesh size: 90–150 mm; twine: 4–6 mm double twine; no grids or release panels), all studies analysed 214 

data following guidelines set by Wileman et al. (1996) and all studies were published in peer-reviewed 215 

scientific journals. To account for differences in mesh size measurements due to the use of different tools 216 

(ICES gauge, EU wedge, OMEGA gauge), values were standardized to EU wedge values (wedge = 217 

0.974*OMEGA + 2.96, derived from Ferro and Xu (1996) and Frandsen et al. (2009); wedge = 1.01 218 

ICES + 2.96 (Ferro and Xu, 1996)).  219 

All analyses other than the modelling approach were performed using R Statistical Software (R 220 

Core Team., 2015). 221 

3. Results 222 

3.1. Haul and catch overview 223 

Seven valid hauls were conducted (Table 1), which took between 121 and 140 min from setting 224 

out the anchor until the gear was retrieved. Each haul covered an area between 2.58 and 3.04 km2, and 225 

depths varied between 7 and 82 m. Catches ranged from 65 to 1503 kg in the codend and from 327 to 226 

8415 kg in the cover. Thirty-one different fish species were caught in this study and the majority of the 227 
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catch was composed of dab (Limanda limanda) and plaice. Other species investigated within this study 228 

were cod (Gadus morhua) and red gurnard (Chelidonichthys lucernus). 229 

The inspection of the cover in the flume tank and the underwater recordings from haul 2 230 

indicated that the cover did not mask the codend at any speed within the tests or at any stage of the 231 

fishing process in the observed haul. Fish escaping from the codend were not observed to swim back 232 

into the codend, although they could easily do so because of the slow towing speed. The observations 233 

indicated that the majority of the catch entered the gear relatively late in the catching process. All fish 234 

seemed to be in good condition during the whole fishing process and during the handling of the catch 235 

on-board. 236 

3.2. Selectivity estimations and length distributions 237 

Selectivity curves and parameters were estimated for dab, cod, plaice and red gurnard (Table 2, 238 

Table 3). Low numbers of individuals, in combination with relatively high proportions of small fish, 239 

resulted in high levels of uncertainty in the analyses. This prohibited an appropriate estimation of 240 

selectivity parameters for the other species. A rather high proportion of small fish was also evident for 241 

all species where selectivity analyses were possible as the number of individuals in the codend 242 

represented only a small part of the total catch (Fig. 4), indicating high numbers of fish escaping into the 243 

cover.  244 

A Richard curve with relatively smooth rise (Fig. 4) described the selectivity of cod best (lowest 245 

AIC value). The model fit was acceptable (p-value = 0.81, deviance ≈ DOF (Degree of freedom), R2 = 246 

0.93; Table 3). Confidence intervals became relatively wide for a range of length classes where the 247 

number of observed individuals was low up to length classes with a retention probability of 1.0. The 248 

estimated average L50 of 41.6 cm was higher than the current MLS and had, like the estimated SR (12.6 249 

cm), relatively wide confidence limits (Table 3, Fig. 4). 250 

The selectivity of dab was best described by a triple logistic model (Fig. 4) and the model fit was 251 

good (p-value = 0.35, deviance ≈ DOF, R2 = 1.00; Table 3). Most observed individuals were found in 252 
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length classes below the selective area of the gear, but almost all of them were larger than the current 253 

MLS of 25 cm (Fig. 4). The selectivity curve itself was steep with narrow confidence limits. L50 was 254 

estimated to be larger than the current MLS of 25 cm (31.2 on average, Table 3) and SR was found to be 255 

narrow (0.8 cm, Table 3). 256 

A double logistic model best described the selectivity of plaice. Model fit parameters were good 257 

(p-value: 0.84, deviance ≈ DOF, R2 = 1.00; Table 3). Most individuals belonged to length classes of the 258 

lower range of where selectivity took place, but confidence limits of the steep curve were narrow for all 259 

length classes. The current MLS of 27 cm fell within the selective area and laid within the confidence 260 

limits for the estimated L50 (average = 29.1 cm, Table 3). SR was estimated to be 2.2 cm (Table 3). 261 

The selectivity of red gurnard as the only species without MLS (Table 2) could be best described 262 

by a logistic model. Since the low p-value (0.00) indicated a potential lack of model fit (Table 3), the 263 

residuals were investigated. As structures were not detected, it was assumed that overdispersion was at 264 

fault and the model could be applied with confidence. The curve had a smooth rise, but was – especially 265 

for length classes with retention probabilities above 0.5 – characterized by few observations and wide 266 

confidence limits. The estimated L50 and SR values were 31.0 cm and 11.5 cm, respectively (Table 3).  267 

Discussion 268 

The goal of this study was to investigate codend selectivity characteristics for several species of 269 

fish in a commercial Danish seine as it is currently used in the Danish fishery off the coast of Denmark. 270 

An important part of the experimental work was the development of a covered codend methodology that 271 

functions at varying towing speeds but particularly at low or no speed. Both flume tank observations and 272 

underwater observations indicated that the current approach of combining floats, weights, a distance bar, 273 

and kites with a cover made of four panels functioned very well. Thus, this methodology could be 274 

applicable in other, similar fisheries where towing speeds are low and variable.  275 

The commercial Danish seine used in this study usually included two rear round straps. Round 276 

straps could reduce the mesh opening in a codend and hence the size selectivity by reducing L50, as 277 
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demonstrated by Herrmann et al. (2006) in a simulation study of haddock in trawls. For flatfish, where 278 

the morphology of the fish fits a low mesh opening angle, theoretically, the reverse effect could be 279 

expected. Because of this, the comparison among trawls, Scottish seines, and Danish seines could be 280 

influenced by the round straps, as previous studies used codends without any additional devices. 281 

However, effects of other selectivity-influencing factors, such as catch rates, are considered to be 282 

stronger than the effects of round straps (Herrmann et al., 2006).  283 

It was possible to estimate selectivity curves for 4 of the 31 caught fish species. The codend 284 

mesh size was relatively large, which resulted in low retention for most species. Furthermore, catches of 285 

many non-target species were low. For red gurnard, a mismatch between the caught population structure 286 

and the selective area of the mesh size was observed, i.e. most observed fish were between 10 cm and 287 

30 cm, but our model found that full retention was not obtained below 40 cm. For cod, which can grow 288 

bigger, the catches were low, especially for larger length classes. This resulted in wide confidence limits 289 

of L50 and SR for cod as well as for red gurnard. Therefore, the SF values estimated for cod (3.4), which 290 

were on average similar to Scottish seines (3.2), but higher than for trawls (2.4; Table 4), should be used 291 

with caution. Future studies should focus on providing stronger selectivity estimates for cod and other 292 

species that can grow to sizes that are within the selective area of the gear.  293 

Plaice is the most important species in the Danish seine fishery and, as it is also the case for cod, 294 

retention probabilities of small individuals were relatively high. The selectivity curve for plaice indicated 295 

a mismatch between the curve and the current MLS, which means that some plaice below MLS were 296 

retained. The estimated SF value for Danish seines (2.3) was slightly higher than the mean value of 297 

previous trawl studies (2.2), but within their range (2.0 – 2.3; Table 4). This indicates similar amounts 298 

of fish below MLS (MCRS) being caught by both gears, which would be discarded today. Although 299 

discarded plaice may survive (van Beek et al., 1990), they will have to be brought to land within the 300 

landing obligation system and catches will be deducted from the fishermen´s quota. However, earnings 301 

of these smaller fish are likely low as it will be prohibited to sell fish below MCRS for direct human 302 

consumption. The current results would indicate potential consequences of the upcoming landing 303 
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obligation system in terms of catches of smaller plaice to be relatively similar for Danish seiners and 304 

trawlers in this area. Uhlmann et al. (2014), however, reported generally lower discard rates for Danish 305 

seiners than for trawlers in the Skagerrak/North Sea and other European waters, indicating that in general 306 

lower amounts of fish below MLS (MCRS) are caught by the Danish seine fishery. Considering the 307 

results of this more general study, the consequences of the change to the landing obligation system are 308 

likely to be more pronounced in the trawl fishery. Expectable expenditures are, for instance, the 309 

separation of the less valuable catch from the catch with fish above MRCS, the storing of the less valuable 310 

part of the catch on board (Sardà et al., 2015) and ultimately the sale of it. As retention probabilities for 311 

fish below MLS (MCRS) are similarly high, cod may also become a problematic species within the 312 

landing obligation system, but indicated by the smaller average SF value, consequences may again be 313 

more pronounced for bottom trawlers. Expenditure in terms of catches of dab and red gurnard are likely 314 

to be low as retention probabilities for dab below MLS (MCRS) are very low and red gurnard will still 315 

be permitted to be thrown back to sea as it is not part of the list of species that are prohibited to be 316 

discarded within the landing obligation.  317 

The selectivity of the two species with the strongest data, dab and plaice, was best described by 318 

models indicative of a multiple selection process. Similar models have so far been used when considering 319 

the selectivity process in trawling to consist of two or more processes, e.g. when separating the process 320 

into towing phase and haul-back phase (Herrmann et al., 2013a) or when using selective devices in 321 

addition to the codend (Kvamme and Isaksen, 2004; Sistiaga et al., 2010; Herrmann et al., 2013b). 322 

Various factors (e.g., mesh opening or tension in the codend meshes) may, however, affect selectivity 323 

characteristics during the fishing process of Danish seining in a similar way and could result in multiple 324 

selection processes. For example, increasing hauling speed over time may result in a change of the 325 

selectivity characteristics of the codend, as the increasing speed may involve more traction on the gear 326 

and on the meshes. The video recordings, however, indicated that most fish entered the seine late during 327 

the capture process, thus the number of escapees in the period of slow speeds should be low. Herrmann 328 

et al. (2015) suggested that taking the catch from a Scottish seine aboard in several batches leaves fish 329 
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in the codend and extension, where they may be subjected to tightening and relaxing meshes due to wave 330 

movement. This could cause a constant switch from stiff to slack meshes, which in turn could change 331 

selectivity characteristics at the surface and between the underwater and surface parts of the fishing 332 

process. However, catches in the current study were small enough to lift on board at once in most cases. 333 

Slack meshes may also occur when the seine ropes are retrieved and the seine needs to be stopped in 334 

order to be detached from the ropes and attached to the net drum for final retrieval. In contrast to a 335 

trawler, a Danish seiner is anchored at this time, and this stop leads to a complete standstill of the gear. 336 

Slack meshes in combination with lively fish that are in the seine for only a short period compared to 337 

fish in a trawl may explain the observed multiple selection in the Danish seine fishery. Therefore, more 338 

complex models that include dual or multiple models should be considered when describing selectivity 339 

of a Danish seine. Such approaches may result in different selectivity curves or different selectivity 340 

parameter estimates compared to those generated by the more traditional logistic models (Herrmann et 341 

al., 2016). 342 

The selectivity estimates generated in this study provide some initial information about several 343 

fish species for which selectivity data have not been collected previously for Danish seines (all species) 344 

or any other fishing gears (dab, red gurnard). This information is important for assessing the ecosystem 345 

effects of fishing gears, for reference when issuing certificates for sustainable fisheries, and for 346 

evaluating the EU landing obligation system which requires the entire catch of listed species to be 347 

counted against a quota. To gain more knowledge about species that were observed in too few amounts 348 

within this study, more experiments need to be conducted, whereby it may be necessary to use non-349 

commercial codends with smaller mesh sizes to retain more individuals in the codend. 350 
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Figure captions 493 

Figure 1. Area and vessel tracks for the seven hauls conducted for the codend selectivity trials aboard 494 

the HG 35 Vendelbo in 2014. 495 

Figure 2. Schematic drawing of the codend cover and its attachment to the seine including information 496 

about modifications to account for different stages of the fishing process (kites, floats, lead ropes, PE 497 

bar). Information about netting and number of panels/selvedges in the specific parts is also included 498 

(cross sections in top of drawing). A and B are necessary parts to attach the cover to the seine net. C 499 

represents part of the cover around the area of the codend where the main selection is expected to take 500 

place and D serves for storing the fish in the cover. 1: Kites. 2: 1.9 m PE bar (transversal). 3: Floats. 4: 501 

Zipper. 5: 3 m long lead rope. 6: 1.7 m long lead rope (transversal). 7: 2.1 m long lead rope. 502 

Figure 3. Preliminary assessment of the cover with wrapped rear part in flume tank. For clarification of 503 

parts of cover and items attached to it see Fig. 2 and section 2.1. 504 

Figure 4. Selectivity curves for fish including 95% confidence intervals (grey shaded areas), length-505 

specific retention rates (white diamonds), current species-specific MLS if available (vertical stippled 506 

line), and length distributions (stippled line: total; solid line: codend). Numbers in parentheses indicate 507 

number of hauls used for analysis (i.e. those that had > 10 measured individuals).  508 

 509 

510 
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Table 1. Overview of hauls conducted for the codend selectivity trials aboard the HG 35 Vendelbo in 1 

2014, including information about time, haul conditions, and total catches. Duration describes time from 2 

setting anchor until gear was retrieved aboard the vessel. Depth is for the position where the anchor was 3 

set and where the seine was deployed. Sea states as described by Wileman et al. (1996). 4 

Haul Date 
Duration 

(min) 

Covered area 

(km²) 

Depth (m) 
Sea state 

Total Catch (kg) 

Anchor Seine Codend Cover 

1 29.08.2014 136 2.69 25.6 18.3 1 1503 8415 

2 01.09.2014 136 2.85 12.8 9.1 2 198 1328 

3 01.09.2014 137 3.04 12.8 12.8 2 207 1275 

4 02.09.2014 122 2.83 65.8 82.3 2 512 1174 

5 02.09.2014 121 2.58 65.8 56.7 2 470 1068 

6 03.09.2014 140 2.93 7.3 11.0 2 65 327 

7 03.09.2014 135 2.82 7.3 12.8 1 69 1023 

 5 

Table 2. Analysed catch data including information about length range, number of measured 6 

individuals, and sampling ratio. Current MLS (minimum landing size; if available) is given in 7 

parentheses. * indicates species that will have a minimum reference conservation size in the future. NA 8 

indicates that there is no MLS present for this species. 9 

Species Length range 

(cm) 

Codend 
 

Cover 

No. measured Sampling ratio No. measured Sampling ratio 

Cod (30 cm)* 10 - 78 620 1  1070 0.272 

Dab (25 cm) 9 - 36 1053 1  4903 0.063 

Plaice (27 cm)* 9 - 51 2937 0.353  3404 0.109 

Red gurnard (NA) 9 - 41 427 1  458 0.287 

 10 

Table 3. Summary of model parameters selectivity parameters (L50 as length with 50% retention, SR as 11 

selection range) with 95% confidence limits, name of model used, and values describing goodness of fit 12 

(DOF = degree of freedom). See sections 2.3 and 3.2 for explanations of selectivity parameters and model 13 

fit values.  14 

Parameters Cod Dab Plaice Red gurnard 

L50 41.6 (27.2 - 46.4) 31.2 (29.6 - 31.6) 29.1 (28.7 - 30.1) 31.0 (28.6 - 38.7) 

SR 12.6 (4.8 - 16.0) 0.8 (0.1 - 2.7) 2.2 (1.7 - 3.6) 11.5 (7.9 - 26.6) 

1/δ 0.5 (0.1 - 1.3) - - - 

L501 - 31.3 (30.4 - 148.6) 29.4 (29.1 - 30.5) - 

SR1 - 0.5 (0.1 - 59.5) 1.4 (1.0 - 10.4) - 

L502 - 29.8 (16.1 - 31.3) 25.5 (20.0 - 29.7) - 

SR2 - 2.2 (0.1 - 20.3) 6.5 (1.6 - 11.0) - 

L503 - 28.0 (0.1 - 30.0) - - 

SR3 - 15.1 (0.1 - 100.0) - - 

Contact ratio 1 - 0.7 (0 - 1.0) 0.7 (0.1 - 0.9) - 
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Contact ratio 2 - 0.2 (0 - 1.0) - - 

Model Richard LogitS3 LogitS2 Logit 

P-value 0.8101 0.3499 0.8423 0.0000 

Deviance 45.70 21.92 26.69 71.67 

DOF 55 20 35 24 

R2-value 0.93 1.00 1.00 0.33 

 15 

Table 4. Comparison of estimated selection factors (SFs) between this study and previous selectivity 16 

studies of Scottish seines and trawls. Data values are mean and range. 17 

Species 
SF - present study 

Danish seine 

 SF - former studies 

 Scottish seine Trawl 

Cod 3.4  3.2 (2.0 – 3.8) 2.4 (1.6 - 3.4) 
  

 
1,2 1,3,4,5,6,7,8 

Plaice 2.3  - 2.2 (2.0 - 2.3) 

    
5,6,7,8 

1Reeves et al., 1992; 2Isaksen and Løkkeborg, 1993; 3Graham et al., 2004; 4Madsen and Stæhr, 2005; 5Frandsen et al., 2009; 18 

6Frandsen et al., 2010; 7Frandsen et al., 2011; 8Madsen et al., 2012 19 


