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DyNAMIC SYSTEMS DRIVEN BY NON-POISSONIAN IMPULSES:
MARKOV VECTOR APPROACH

Sgren R.K. Nielsen * and Radostaw Iwankiewicz **

* Dept. of Building Technology and Structural Engineering,
University of Aalborg, Denmark

** Inst. of Materials Science and Applied Mechanics,
Technical University of Wroclaw, Poland

ABSTRACT: Dynamic systems under random trains of impulses driven by renewal point processes
are studied. Then the system state variables no longer form a Markov vector as it is in the case of
Poisson impulses. A general format is given for replacing an ordinary renewal process by an equivalent
Poisson process at the expense of the introduction of auxiliary state variables. A technique is devised
for truncating the hierarchy of stochastic equations governing the auxiliary state variables. For the
generalized Erlang process, suitable for approximating a wide class of renewal processes, the technique is
developed for modelling it, via suitable choice of parameters, with the help of a Poisson driven process.
The theory is illustrated for a Duffing oscillator under the impulses driven by the generalized Erlang
process of the order k¥ = 2 approximating an original renewal process with a lognormally distributed
interarrival times. The moment equations for the augmented Poisson driven system are derived and closed
by an ordinary cumulant neglect closure at the order N = 4. The obtained moments are compared with
those obtained by Monte Carlo simulations for both the original process with lognormally distributed

interarrival times and for the approximating generalized Erlang process of the order k = 2.

Keywords: Stochastic Dynamics, Renewal Processes, Markov Vector Approach, Mo-

ment Technique.

1 INTRODUCTION

In some problems of engineering the discontinous
part of the excitation may be considered as a
train of impulses arriving at random instants of
time. The dynamic response of non-linear sys-
tems with polynomial non-linearities subjected to
a compound Poisson process have previously been
considered by the authors in combination with or-
dinary cumulant neglect closure scheme, [1], or
with a modified cumulant neglect closure scheme
taking the discrete probability into account that
no impulses have yet arrived, [2].

In ref. [3] the moment equation technique
was extended to a class of Erlang renewal pro-
cess driven systems. Then the interarrival time,
I, is Gamma distributed I ~ G(k — 1,v), where
k is an integer. The renewal driven system was
reduced to a Poisson process driven system at the
expense of the introduction of k£ — 1 auxiliary state
variables. The augmented state vector consisting
of the structural state variables and the auxiliary
state variables then form a Markov vector. In [4]

the probability density functions of the response
of such a system is obtained by path integration.

The main drawback of the method described in
[3] is that only a rather limited number of interar-
rival time distributions may be modelled, because
only two free parameters are available, of which
k moreover is integer valued. In the present pa-
per a generalization of the Erlang process is con-
sidered where the k subintervals of the interarrival
time between impulses are assumed to be exponen-
tially distributed with different parameters. Then
a much larger class of interarrival time distribu-
tions can be modelled, simply because k free pa-
rameters are available. A general format for re-
ducing a regular counting process to a compound
Poisson process is derived, and it is shown how
the generalized Erlang process fits into this for-
mat. The auxiliary state variables introduced in
the format turn out to be a linear transformation
of those applied in [3], when the indicated gener-
alized Erlang process reduces to an ordinary one.
The applicability of the described technique is il-




lustrated by an example problem, where an orig-
inal renewal process with lognormally distributed
interarrival times is modelled by a generalized Er-
lang process of the order k = 2.

2 STATEMENT OF THE PROBLEM FOR AR-
BITRARY RENEWAL DRIVEN PROCESSES

Consider a general multi-degree-of-freedom non-
linear dynamical system under a random train of
impulses driven by a renewal point process. The
structural state vector, Z(t), consisting of the gen-
eralized displacements and velocities, is governed
by the set of equations of motion

d%—zl(t) =c; (Z4(2),1)
R(t)

+d1(Z1(2),t) Y Pir6 (t — tin),
i=1

Z,(0) = z1,0,
where ¢;(Z1(t),t) is the drift vector, d; (Z:(t),t)

is an analogue of the diffusion vector in white noise
driven problems and z; o denotes the vector of ini-
tial values of the structural variables Z;(¢) at the
initial time 0.

The occurrence times t;p of Dirac delta
impulses are distributed according to an or-
dinary renewal counting process {R(t),t €
[0,00[},Pr{R(0) = 0} = 1. The mark variables
P;p are assumed to be independent, identically
distributed, random variables, independent of the
occurrence times ¢; p and having the distribution
as a random variable P. It is obvious that since
the renewal process is not a process with indepen-
dent increments, the state vector Z;(t) governed
by the equation (1) is not a Markov process.

Consider an arbitrary regular renewal counting
process R(t). Assume that its increments can be
expressed as

t>0, ()

dR(t) = p(N(t))dN(2), (2)
where N(t) is a homogeneous Poisson counting
process and p(N(t)) is a suitable zero-memory
transformation to be determined later. The nth
degree product density fn(t1,...,t.) of the point
process R(t) is defined as, [5]

tn)dty...dt,) = E[dR(t1)- - dR(t,)]
PN (tn))dN (tr)|.

fn(tl, ey
= E|p(N(t1))dN(t:) -
(3)

It may be shown that by suitable splitting of ex-
pectations the expression (3) for any renewal pro-
cess may be recast as

Fullyy a5 dtl - dt,,

B[N )] - Blo(V(tn — tus))] s -ty
(4)

Seeing that vE[p(N(t))] = ho(t), which is the or-

dinary renewal density, the known result for the

nth degree product density of the ordinary renewal

process is obtained

Jaltiyostn) = ho(t1)ho(ta — 1) -+ ho(tn — froq)

(5)
Let us introduce

Gt)=p(N@W)+5-1) , j=12...,k (6)

as new auxiliary state variables. The stochastic
differential equations governing the time evolution
of these state variables can be written as

dY;(t) = p((N(2)) +j — 1 + dN(t))
—p(N(t)+5 1)
= (((V@®) +4)) = p(N(W) +5 - 1))aN(R) =

d¥i(1) = (Ya(t) - Ya(8) AN (1)

(1) = (%s(t) - Ya(t) ) an(z) -

Yier 1) = (Ye(t) = Y- () an (t)

Validity of the statements given in the first part
of egs. (7) is proved by showing that it is valid
for either of dN(t) = 0 or dN(t) = 1. The hierar-
chy of stochastic differential equations (7) cannot
be closed unless Yi(t) can be expressed in terms
of the previous auxiliary state variables. The fol-
lowing linear dependency is adopted, which can be
shown to be valid in the case of an ordinary Erlang
process

Yi(t) = —;lz(awam(m- g Y (1)), (8)

where a; € R. Equations (7) then attain the form

d¥i(t) = (Ya(t) - Yi(t) )aN (2)
d¥a(t) = (Ya(t) - Ya(t) )dN(2)

dYi_1(t) = -—(g% + %:Yl(t) R ) “k—z AP

(1+ “{;;I)Yk_l(t)> dN(t)

(9)




Equation (8) implies that p(N(t)) must fulfill the
difference equation

k
a0+ Y ajp(N(t)+5-1)=0.  (10)

i=1

The solution of (10) is
-
p(N@) =bo+ Y b;ANO = Zb ANO ()
i=1

where A\g = 1 and

L
bo=—, aka . (12)
4B

b; € C, j =1,...,k — 1 are arbitrary constants
and A\; € C, j =1,...,k — 1 denote the solutions
of the characteristic equation

I

At BB s ) o s o (13)
af (137 A

If | A; |# 1, the corresponding term in (11) either
extincts or explodes. Hence if the point process is

assumed to be homogeneous, it is necessary that °

the eigenvalues all have the magnitude equal to 1,
so

k-1
(14)
The product density becomes, cf. (3) and (11)

k-1
=> an

fa(ty, ... to)dty -+
51=0 Jn=0

xE [Aj.j M) AN N () - dN(tn)] .

Aj=exp(i7j), 7J€R/{0}v j=1)21~")

(18)

The expectation entering (15) may be recast as

E [/\;\ll(tl)/\ﬁ(tl)+N(t1.tz) .

AR N s )N (1) - AN (t,)] =
N(t; N(t1,t
E[()‘jl’\jz U ’\in) 8 )(’\.7'2 o ’\J'n) (t22) e
% (’\jn—l /\jn)N(tn—z.fn—l))\an(t,,_.1 .tn)dN(tl) . dN(tn )]
(16)

where N(t,,t,41) = N(tr41) — N(¢.). Splitting of
the expectation, with due account of the overlap-
ping of n—1 intervals, may be performed as follows

E (Ajr+l o
E ( ,\J.r+1
=& [(’\ml sy, ) Vg (tr)]

. /\jn)N(tntr-H )dN(tr)] —
/\j,, ) N(tr.tr+dtr)+N(tr+dtr 1tr+1 )dN(t,- )}

N(tr4dtr,ty
XE[()‘jr+l g ) =
’\j,“ L. Aj,,VE[(Aj,.“ L /\jn)N(tr+dtr,tr+1)] dt,,
(17)
for r =1,...,n — 1. Consequently the expression

for the product density becomes

k k
=V"Z“'ijl"'bjn
J1=1 Jn=1
XN\ AN exp (vt — ta-1) (4, — 1)
X exp (¥(tn-1 = tn-2) Ao Njpy = 1)) -+

xexp (v(ty —t1)(Aj, -+ Ay, — 1))

Jn - 1))

falty, ..., t0)

x exp (vt1(A; A, -
(18)

3 MODELLING TECHNIQUE FOR RENEWAL
PROCESSES

Assume that the interarrival time I is formed as a
sum of k independent random variables E;, i.e.

k

1=y 5 a9)

i=1

where E; ~ E(v;) is assumed to be an exponen-
tially distributed random variable with parame-
ter v;, If K = 1, then ] ~ E(v) and a homo-
geneous Poisson counting process is obtained. If
n=v = =y =vthen I ~ Gk - 1,v)
and an Erlang renewal process is obtained. The
transformation of such a process to an equivalent
Poisson process at the expense of introduction of
extra auxiliary state variables similar to Y; have
been considered in previous papers by the authors
[3:4]. Allowing for different parameters of E; a
much larger class of interarrival time distributions
can be modelled by suitable choice of the parame-
ters v;. The Laplace transform of the p.d.f. fr(t)
of the interarrival time I is

k

Hfr@ I

=1

2
@)




The renewal density then becomes , [5]
B+ioco

L. fI(s) est dS

2m 1~ fi(s)

B—1ico

ho(t)

B+ico II v

il
a
X

(21)

where s;, j = 0,...,k — 1 are the roots of the
denominator polynomial

k k
[TG+v)-][w=0 (22)

=1 =1

and J is chosen arbitrarily, so § > Re(s;), j =
0,...,k—1. Notice that so = 0 is always a root of
(22). The last integral of (21) can be evaluated by
the method of residues. In the same way the p.d.f
of the interarrival time of impulses can be obtained
via inverse Laplace transformation of (20)

filt) = == | F—e"ds

k
z___e___ (23)

The parameters vyq,...,vx should be chosen, so
(23) fits a given target distribution, which will be
illustrated in the example problem. Next, the con-
ditions are investigated under which the present re-
newal process can be represented by a compound
Poisson driven process as specified by egs. (9).
The first step is to fit the product densities of 1st
degree following from (18)

k-1
t)=v Y beh, (24)
=0

According to (5) eqs. (21) and (24) should be
equal, which provides the following solution for b
and A\, [ =0,...,k—1

k
e

b =

':l'—-‘

1:[ st — S;)
;

N=1+4> (26)

In the last statement of (25) the followmg result
has been utilized, cf. (22)

k k

k—1 I:Il(s F Vj) - L]
H(Sl == 3]') = lim = L

o s—a1 §— 8

i L (27)

£ I vm
= lim — H(s + v;) me

5—03[ s l/'.
e 1+ V;

Setting N(0) = 0 the initial values of (9) follow
from (6), (11), (25) and (26) as

k-1 A\ =1

b)‘ll_l (1+£x'/L) ,
Z Zf L (28)

= s5+vm

With known ); the final step is to determine the
coefficients 22, 2, .., “:;’

equations (9) The latter of these fractions form
the invariants of (13), which may be obtained from

the expansion

[TO -2y =24 =k 2 (29)
ag ag

J=1

where ); are given by (26). This requires the solu-
tion of (22). However there is no need to solve (22)
for getting the coeflicients f—:-: ,j=1,...,k—1.
Actually, upon insertion of (26) in the left hand
side of (29) one has from (22)

; k-1
(-1-2) =y L (0 --)

k k
(L (0-0+s)-14)
=1 (30)

Eod

-1

=1

i=1



If the right hand side of (30) is expanded and com-
pared with the right hand side of (29), a direct 80-
lution for Si—, j=1,...,k—1is obtained. 2 can

finally be calculated from (12), (25).

The state vector augmented by the auxiliary
variables is governed by the stochastic differential
equations

dZ(t) = c(Z(t),t)dt + d(Z(t),t, P(t))dN(t) (31)

2)= 2], etz = [*409] |

d(Z(t),t, P(t)) - [ch (i:(&tz)(gl’s)}n(t)} .

(32)

Yl(t)
Zo(t) = |
2( ) Ye-2(t)
Yi-1(2)

d2 (Zg(t)) =
Y2 (1)-Y1(2)

Y1 (t)—Yi-2(?)
—(;%+;:Yl(t)+ +“k._2Yk_z(t)+(l+a—":—:-L)Yk_1(t))
(33)
P(t) assumes the values P(t;) = P; at the times
t; of the Poisson events and P; are mutually in-
dependent and identically distributed as P. The
equations for the mean values and joint centralized

moments of 2nd, 3rd and 4th order are written as,

(3]

fi(t) = E[c, (Z(t),t))] +vE [d,—(Z(t),t, P))] (34)

k(1) =
2{ B[220 (S22, ) + va3(2(),1, P)) ] }
+VE |di(Z(2), 1, P)d; (2(2), , P)|

(35)

kijk(t) =

3 B[ 20()220) (420, 0) + v (21,1, 7))}

it 3{E [Z,-o(t)dj(Z(t), t, P)di (Z(t), 1, P)] }
+vE [d,-(Z(t),t, P)d;(Z(t),t, P)di(Z(t), , p)]
(36)

kiau(t) = 4{ B[ 20(0)22(1)20) (< (2(2), &) +

vl (2(t),t,P))|} +

v 6{E [Z?(t)Zf(t)dk(Z(t), t, P)di(Z(%),t, P)] }
tv- 4{15,‘ [Zp(t)d‘(Z(t), t, P)di(Z(2), 1, P)

xdi(2(t),t, P)| } +
[ J(Z(t),t, P)d; (Z(1), t, P)di (Z(t), 1, P)
(

xd,(z ),t,P)],

(37)
where {-}, denotes the Stratonovich permutation
symbol, [6], Z?(t) = Z;(t) — pi(2), c?(Z(t),t,P) =
ci(Z(t),t, P) — E[ci(Z(t),t, P)], d2(Z(t),t, P) =
di(Z(t),t, P)—E|d;(Z(t),t, P)] are the centralized
state vector components, drift vector components
and diffusion vector components and «;,...;,(¢) de-
notes the nth order zero time-lag joint centralized
mornent.

If the drift vector ¢; (Z;(t),t) and diffusion vec-
tor di (Z:1(2), t) are polynomial nonlinear functions
of the structural state vector Z;(¢), joint central
moments of higher order than the provided mo-
ment equations (34-37) appear at the right hand
side of these equations. Then a cumulant neglect
closure at the order N = 4 will be used. In case of
dense pulse arrivals an ordinary cumulant neglect
closure scheme may be applied, whereas in case of
sparse pulse arrivals a modified scheme may im-
prove the stability and accuracy during the tran-
sient initial phase, [2].

4 EXAMPLE PROBLEM

A Duffing oscillator subjected to a compound re-
newal process is considered. Then

7,0)= | 59
X(t
ci(Za(t ))_ . [_2gw3X(t) — (X (t) +eX3(2))
dl(t) = ?] ’
: (38)

where X(t) and X (t) denote the displacement and
velocity response of the oscillator, wg and ( are the
circular eigenfrequency and damping ratio of the
corresponding linear oscillator, and ¢ is the nonlin-
earity parameter. The actual renewal process will
be replaced by a generalized Erlang process of the
order £ = 2. Then the p.d.f., mean value p; and
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variational coefficient V; of I become, cf. (23)

_ —uit -t
filt) = (e ), (39)
i+t o1 Vit i
pr=E[I]= sy V= —=——=%,
1232 Br n+ v
(40)

Assume that the actual renewal process has log-
normally distributed interarrival times, so vI ~
LN(u,0?), where p and o are non-dimensional pa-
rameters. The mean value and variational coeffi-
cient of I then become

1 1
pr = —exp (/L + 502), Vi = y/Jexp (o2) — 1.
(41)
With g; and V; of the actual distribution given, v;

and »; can be determined from (40) and (41). As-

sumeup;:%,vzz §¢I/I=O.5u,u2=l.5u
and p = In\ /22 | o0 = ,/In¥. In Fig. 1

the actual lognormal p.d.f. for I is denoted by
-.-.-.-, and the approximating generalized Erlang
p.d.f. resulting from this calibration procedure
- by —. The data used in the example are
wo=1s"1, ( =0.05, € = 0.5. The renewal den-
sity of the generalized Erlang process, with k = 2
is obtained as

ha(t) =

128 %)
v+ v

(1 —exp(—(n+ Vg)t)), (42)

hence the asymptotic mean arrival rate of impulses
is ;f-‘f?y: This quantity is chosen as 10wg, corre-
sponding to an average number 207 of impulses of
the generalized Erlang process per linear eigenpe-
riod T, which means a very dense impulse train.
The strengths of the impulses are assumed to be
Rayleigh distributed, with parameter op chosen in
such a way that the original lognormal distributed
and generalized Erlang renewal impulse processes
have both the same mean square excitation level as
the Poisson impulse process with the same mean
arrival rate. Hence it is required that the response
variance of the corresponding linear oscillator sub-
jected to a Poisson impulse process with the mean
arrival rate ;42 should have unit value, i.e. (cf.
2 2
(1,2)) am fﬁig] =gp ok =12 op=01In

the analytical technique the parameters b; and )\
of the Poisson driven process are assumed in such
a way that first degree product density fi(t) as
given by (24) equals h,(t) given by (42). This al-
lows the evaluation of the coeffficients 20 and & of

the stochastic equation for the auxiliary state vari-
able. Next the mean arrival rate v of the underly-
ing Poisson process is assumed as v = (v14+1,)/2 =
Bwo. Then it appears that the second and higher
degrees product densities as given by (18) split to
the product form (5). Hence, the Poisson driven
process becomes a renewal process with a renewal

density

138 %]

hal{t) = -——(1 - exp(——2t/t)>,

2 (43)

hence the obtained process is a kind of an Erlang
impulse process with strengths reduced by A, .
An Erlang impulse process with the same mean
square excitation level should have the impulses

2
strengths evaluated from the condition %5%% =
Wo

1= op= \/5/20. However since the strengths
of the obtained process are reduced with respect
to Erlang process, the assumed value of op must
be multiplied by o ; which yields op = /3/15 =
0.1154667.

Since here the centralized drift vector compo-
nents are cubic and the diffusion vector compo-
nents are linear forms in the state variables, 5th
and 6th order moments appear in the derived equa-
tions (34-37) for joint central moments of order up
to fourth. Because of the high mean arrival rate
v = %—Dwo of impulses, these moments have been
evaluated by means of an ordinary cumulant ne-
glect closure scheme, [1].

In order to evaluate the level of approximation
introduced both at the replacement of the actual
renewal process with a generalized Erlang process
and at the cumulant neglect closure procedure,
Monte Carlo simulations have been performed,
both for lognormally and Erlang distributed in-
terarrival times, (cf [7]). The simulated results are
obtained based on averaging over 500000 indepen-
dent response curves, each obtained by numerical
integration of the governing equations of motion
(31), (32), (33), (38).

The results for the mean value px(t) = pi(2),
the standard deviation ox (t) = 1/k11(2), the skew-

ness Sx(t) = mul) and the kurtosis kx(t) =

"'x(t)

=l _ 3 are shown in Figs. 2-5 as a function

o% (1)
ofxthe non-dimensional time 7—%-0 In the Figures
-.-.-.- and - - - - denote Monte Carlo simulation re-
sults for lognormally distributed interarrival times,
for the generalized Erlang process of order k = 2,
respectively, and — represents the analytical re-
sults for the Poisson driven process obtained for a




10

generalized Erlang process. As seen the agreement
between the Monte Carlo simulation results ob-
tained for both renewal processes is very good. Al-
though only the mean value and variance of these
distributions are alike, identical response moments
within acceptable accuracy are obtained up to and
including order 4. Obviously even better results
can be obtained if a generalized Erlang process of
higher order than k = 2 is applied and suitably
calibrated. The agreement between the analytical
and the Monte Carlo results is very good in the
case of the mean values and standard deviations,
but it is less satisfactory in the case of skewness
and kurtosis coefficients (higher order moments),
which can be attributed to the closure of the hi-
erarchy of moment equations at the order N = 4.
More accurate analytical solutions for these quan-
tities require closure at higher order.

In Fig. 6 is shown the displacement standard
deviation obtained from the Monte Carlo simu-
lation'in cases where the system is subjected to
a non-zero mean Gaussian white noise excitation

F(t) = AL E[P] + /24 E[P?)W(t) (unbroken

Vit v1+ve

line —), to a compound Poisson process with the
mean arrival rate - (- - - -) and to a renewal
process with the lognormally distributed interar-
rival times (-.-.-.-.). A zero-mean, unit intensity
Gaussian white noise process W(t), was generated
by the method of Penzien, [8]. In all cases 500000
sample curves are used. Because of the high mean
arrival rate of impulses, the non-zero mean white
noise process and the compound Poisson process
produce, as expected, almost identical results. In
contrast, the standard deviation for the renewal
process is significantly different. In combination
to the results obtained in Figs. 2-5 it is then con-
cluded that the distribution of the interarrival time
affects the response moments significantly, but pri-
marily through its mean value and the variance,
whereas higher order moments of the interarrival
time distribution seem to have less influence.

5. CONCLUDING REMARKS

The moment equation technique has been devised
for non-linear dynamic systems subjected to ran-
dom trains of impulses driven by an ordinary re-
newal point process. The idea is to replace the ac-
tual renewal process with an approximating gen-
eralized Erlang process, and to convert a system
into a Poisson driven system at the expense of in-
troduction of auxiliary state variables. Thus the

hierarchy of stochastic equations governing the in-
troduced auxiliary variables and the equations for
response moments are obtained.

As an example, a Duffing oscillator subjected
to a renewal impulse process with log-normally
distributed interarrival times is considered. The
actual renewal process has been approximated by
generalized Erlang process of order £ = 2. Com-
parison with Monte Carlo simulation results shows
that the analytical technique of equations for mo-
ments of the obtained Poisson driven system pro-
vides accurate first and second order moments.
Better results could be expected if an approxima-
tion of order k > 2 was used.
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