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Abstract

The purpose of this paper is to obtain a stochastic model for the parameters in
a constitutive model for concrete based on associated plasticity theory and with
emphasis placed on the pre-failure range. The constitutive model is based on
a Drucker Prager yield surface augmented by a Rankine cut-off criterion. The
statistics of the material parameters are obtained by applying biaxial test results
for plane concrete slabs to the constitutive model using the maximum likelihood
method. Response surfaces are used to obtain the statistics for a parameter de-
pending on other previously obtained parameters. Finally an illustrative example
of a reliability analysis of a plane concrete panel is given.

1 Introduction

Over the last decade probabilistic numerical tools such as the Stochastic Finite Ele-
ment Method have been made accessible, making the reliability of structural systems
predictable. Among the early contributions mention can be made of (Kiureghian and
Ke 1988; Deodatis 1991) all considering linear elastic problems. Material non-linearities
have only in the last few years been considered extensively by the research community,
e.g. by (Frangopol et al. 1996). Almost no effort has been put into actually obtaining
the statistics of the material parameters.

It is the scope of this paper to obtain the stochastic model for the parameters in a
relatively simple constitutive model for concrete based on associated plasticity theory.
The parameter estimation procedure is based on the maximum likelihood method (Bard
1974), and response surface techniques (Myers 1971) are adopted to estimate the stat-
istics of the material parameters, especially those which depend on other parameters.

2 Concrete constitutive model

In this paper an associated Drucker Prager yield function f augmented by a Rankine
tension cut-off criterion

a{l—#ﬂ@——l for o1 <~%f.
f= (1)

% — 7y else




where 7 is an isotropic hardening parameter, o; is the first principal stress, , 8 and v
are material parameters, I; is the first stress invariant and J, is the second deviatoric
stress invariant. The yield function is also used as a plastic potential function.

The hardening parameter 7 is given by an isotropic strain hardening rule as proposed
by (Labbane et al. 1993)

7 = f¢[1.0 — 0.75 exp(—Beg,)] (2)
where f. is the uniaxial compressive strength of the concrete material, B is a material

parameter and ¢, is the effective plastic strain, which can be obtained from the incre-
mental plastic strain, def; by

dey = \/del;del; (3)

3 Parameter estimation procedure

The constitutive model is fitted to the biaxial test results from (Kupfer and Hilsdorf
1969). They loaded a number of quadratic plane concrete specimens using proportional
loading control and monitored the stress-strain relations for a concrete material with
a mean value of the uniaxial compressive strength, f. = 32.06 MPa. The test results
also consist of a number of recorded biaxial failure stress conditions with the uniaxial
‘compressive strength varying from 18.6 MPa to 57.6 MPa.

The statistics of the material parameters, mean values and covariance functions, are ob-
tained using the maximum likelihood method (Bard 1974). With @ = [6; ... 6;]7 defined
as a vector of k material parameters to be estimated, the residual vector
eu(0)=[e,,1(0) ...e,m(0)]7, is introduced as the difference between a measured response
and the response obtained by a constitutive model, consisting of m equations, for a the
set of test data no. u. Assuming a Gaussian distribution and a general, unknown cov-
ariance of e, (@), the maximum likelihood estimate 6* of the parameters @ is found by
minimizing

3(6) = glog[det M(6)] (4)

where n is the number of available sets of test data and M(@) is the moment matrix of
the residuals given as

M(6) = i}euw)eﬂe) (5)

The model uncertainty expressed as the covariance of the parameters is then obtained
by the inverse of the Hessian matrix of (4),

V(@) = H™! (6)
with the elements given as Hij:82®(9)/60i89j|9*.
When several stress-strain relations are considered, each will be considered as one realiz-
ation in the fitting procedure to avoid the statistics being too dependent on the number

of digitized data. Based on the results from all stress-strain relations estimates of the
mean values, 8* and covariances, V{8) of the parameters @ are then obtained.
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4 Linear elastic parameters

The linear elastic parameters F and v are obtained for a pure linear elastic behaviour
corresponding to f < 0. The error residual eff(E, v), for the set of test data no. p, can
then be obtained using

e (E,v) = 0iju — Diju(E, v)ex,, (7)

A stress cut-off level S is introduced below which the linear elastic parameters are fitted
to the stress-strain relations. The cut-off level is illustrated for a set of test results where
011/022= —1/ — 0.52 in figure 1.

1.50 . . .
33 22 11
w© 1.00
‘,3: 0.50 5 o,y o, =-1/-0.52
f ¢ = 32.06 MPa
0.00 N\ . . |
-4 2 0 P 4

compressive strain [mm/m]

Figure 1: Stress-strain relation from Kupfer tests, shown together with the threshold level

S,

In ﬁguré 2 og=4/VE,r and 0,,—-\/177,, are shown as functions of the cut-off level S, for
the test results shown in figure 1. For a low value of S, the number of digitized data
points is insufficient to obtain an estimate of the statistics, and for a comparatively
high value of S, the non-linear part of the stress-strain relation is falsely included in the
fitting procedure. However, for a value of S of about 0.5 MPa the value of the model
uncertainty calculated by (6) seems reasonably constant and corresponding to this, an
estimate of the parameters is obtained. A similar trend exists for the remaining 8 stress-
strain relation where the same procedure is carried out to obtain E} and v} for each test.
When obtaining the statistics among these results one obtains [E*, v*]7=[30.6-10°,0.17]7,
[og,0,]T=[1.98 - 10°,0.0044]" and pg, = 0.16.

800 0.0075
S 600
= >
= 6 0.0050
o /
o]
200 : . . 0.0025 - . ] -
000 025 050 075 000 025 050 075
S/f, "SIf,

Figure 2: Statistics og and g, plotted against cut-off level S.

5 Estimation of the yield surface

The test data describing the stress state at failure are used to fit the yield surface
parameters o, § and v. By plotting the normalized stresses 099/ f. against 011/ fc, it can
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be seen from figure 3 that the parameters of the failure surface are almost independent
of f.. It is then reasonable to treat the uncertainty when fitting the failure surface as
model uncertainty and to use (6) directly to estimate V{a, 3,7). f. is considered to be
deterministic when using these test results.

f . IMPa)

fitted
18.6
30.7
57.6

-1.5 -1.0 -0.5 0.0

o, /f.

Figure 3: Normalized failure data, Kupfer data and fitted results.

The compressive part of the yield surface with parameters o and f is estimated, using
the Drucker-Prager yield surface. In the tensile part v is estimated using the Rankine
criterion. The two parts are therefore assumed to be independent of each other, i.e.
Pay = Ppy = 0 and the following error residuals are used

1

viooo_ Iy J2,
€pe — 1-— Oéf—zj“; - ’Blch,L# for O < 0 (8)
ey = T- %Li for o01,>0 (9)

Carrying out the analysis, the following results are obtained [o*,(*,v*]T=
[0.123,1.902,0.077]7, [04, 04, 04]"=[0.017, 0.046, 0.0044]” and p,, 5=0.97. The failure sur-
face corresponding to the mean values of the fitted parameters is shown as a solid line

in figure 3.

6 Hardening parameter

The remaining parameter B in (2) can be obtained by formulating the following error
residual

er’(B) =7, — fou[1.0 — 0.75 exp(—Be, )] (10)

€p is obtained from (3) and the available test data using the plastic strain increment
de?; = deij~Di;,lcldaij. By doing this the variables £ and v, which are uncertain, have
to be known. 7 can be obtained by demanding that all data points in the elasto-plastic
range, 7 > 0.25 - f, are on the yield function, i.e. f = 0 using (1). This requires that «
and f are known. In figure 4 7 is plotted as a function of €,. All curves are obtained using
the mean values of F, v, a and . The dashed curves present the hardening behaviour
for each of the stress-strain relations considered, whereas the solid curve represents the

result of the fitting procedure using the mean value of the hardening parameter B.

4



0'11 /622
1.00 . — fitted
--&- 1/-052
0.75
--A- 171
Q
= G0 -&r- -1i0
0.25 -—- -1/0.052
-4{=}- -1/0.103
0.00 # )
--V-- -1/0.204
0.0000 0.0020 0.0040
g, [mm/mm]

Figure 4: Hardening behaviour, fitted and eztracted from Kupfer tests.

As the statistics of B are found conditional on the other parameters, the correlations
PE,B» Pv,By Pa,B and ppg p are indirectly included, as B* and o are calculated as functions

of E, v, o and 5.

The statistics of B are determined by response surfaces as functions of E, v, a and
using 2. order polynomial approximations. The design points are chosen according to a
CCD design space, a first order factorial design augmented by additional points to allow
estimation of the coefficients of a second order surface (Myers 1971). An illustration of
the results of this analysis is shown in figure 5, where B* is plotted as a function of each
of the four parameters with the remaining parameters kept at their mean values.

2000 1975
® 1750 1950
1500 ; — 1925 1 : ;
2.5E+10 3.0E+10 3.5E+10 016 017  0.18
2400 - E [MPa] 2500 - ¥
m 2000 -+ 2000 -+
1600 | I i i 1500 | | |
0.08 0.10 0.13 0.15 0.18 1.80 1.90 2.00
o B
Figure 5: CCD app. and calculated values of B*. o:calculated; — : CCD with corner 1o
from mean; - - : CCD with corner 20 from mean.

It is observed from the figure that a good fit between the CCD approximation of B*
and the directly calculated value is observed in the intervals considered in the figure. A
similar result is obtained, when a response surface approximation for o is determined.
B is the parameter in the constitutive model with the comparatively largest uncertainty,
namely with a coefficient of variation of approximately 0.3. This can be attributed to
the fact that the assumptions concerning associated flow, isotropic hardening and choice
of hardening function 7 are included in this parameter.




7 Stress-strain relations

To give an idea of the fit of the constitutive model when predicting stress-strain behaviour
2 different proportional loading conditions are simulated corresponding to the test results,
o11/022=—1/ — 0.52, compressive-compressive, 011/022=—1/0.052, compressive-tensile,
shown in the following figures, with mean values of all material parameters and f. = 32.06
MPa.

—5— e et

1.25 - <>- - €4, pred.
o 1.00 —@— E,, test
~ 075 -
b: - @- T €9, pred.
? 0.50 -
—A— e, test
0.25 c, lo,=-1/-052_ A_ - &4, pred.
0.00 ;

T T T
—%— €, , test

3 -2 A1 0 1 2 3
compressive strain [mm/m] = ><- - &, pred.

Figure 6: Comparison of Kupfer test result with predicted stress-strain behaviour.
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= 050 - €3 - ey prea
0.25 B 3 7%— €3, test
0.00 ] (o 8 {022 =,-1 /0.0?2 - A% - ey pred
-2 =1 0 1 2 3 j}ﬁ"‘ €, , test
compressive strain [mm/m] - ><_ - &, pred.

Figure 7: Comparison of Kupfer test result with predicted stress-strain behaviour.

A comparatively good prediction of the stress-strain relations is obtained, when the 3
strains, €17, €92 and €33 are considered. However, when the volumetric strain, ¢, =
€11 + €99 + £33 is calculated from both the tests and the predictions, a more crucial
deviation exists. This can be contributed to the fact that an associated flow rule has
been adapted, not accounting for volumetric dilatation.

8 Reliability analysis of concrete

In this section an example of a reliability analysis of a concrete structure is presented.
The FORM reliability index [ is obtained iteratively on the basis of a limit state function,
which can be written g(z)=0, where @ = (z;,...,z,) are realizations of stochastic
variables X = (Xi,...,X,) (Madsen et al. 1986). A 0.1 m thick quadratic concrete
panel with side length 1.0 m is investigated, see figure 8. In this study, the limit state
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function is chosen as g = 2 - 10% — |Uys| where Uss is the vertical displacement at node

25. " p=2.e5 N/m
RSC_LL.LLLJJ‘J 25
4 | B 112]16 |
e —|
3 7 11115 |k
£ 0 1 p
” 21611014 |
g K—
1S9 13|,
™ 1© iy © R Ry O 1 X
N 1 m "

Figure 8: Concrete Panel, deterministic and stochastic finite element mesh.

The finite element mesh consists of 16 deterministic and 4 stochastic elements. The sto-
chastic fields are modelled as Gaussian. It is assumed that the coefficient of variation of
fe is 0.1 with pjy, = 32.06 MPa. All correlation coeflicients which have not previously
been mentioned are assumed to be 0. The model consists of 7 stochastic variables per
element, F,v,a,0,7,B and f. with a total of 28 stochastic variables.

The following cross correlation function is used (Frangopol et al. 1996)

Pryuye = exp[—(Az/a)” — (Ay/a)’] (11)

where z;, is the variable ¢ in element b, Az and Ay are the horizontal and vertical
distance between elements b and ¢, and a is a correlation length parameter, which is
assumed equal for all stochastic fields considered. The result of a reliability analysis
performed with a varying value of a is shown on figure 9. As expected, it is seen, that
the reliability index decreases with increasing values of a.

240

@ 2.00

1.60 1 i T T T T T T T T 1

00 05 1.0 15 20 25 3.0 35 40 45 50
a

Figure 9: Result of reliability analysis for concrete panel with varying correlation length
parameter a.

9 Conclusion

The statistics of the material parameters in a nonlinear plasticity based constitutive
model for concrete have been obtained using the maximum likelihood method. The
constitutive equations are fitted to available test data. First the statistics involving
the linear elastic and the failure part of the constitutive relation have been obtained.
The hardening behaviour has then been determined by response surface approximations.
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Finally, an example of a reliability analysis of a concrete structure is given. Future
developments could be to implement a fracture based softening model to cope with
post peak behaviour. Further, Bayesian statistics can be used in order to include prior
knowledge on the material parameters.
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