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3D Visual Data Mining—Goals and Experiences

Michael Bohlen* Linas Bukauskas Poul Svante Eriksen
Steffen Lilholt Lauritzen Artlras MaZeika Peter Musaeus Peer Mylov

Aalborg University, Aalborg, Denmark

Abstract

The visual exploration of large databases raises a number of unresolved inference prob-
lems and calls for new interaction patterns between multiple disciplines—both at the con-
ceptual and technical level. We present an approach that is based on the interaction of four
disciplines: database systems, statistical analyses, perceptual and cognitive psychology, and
scientific visualization. At the conceptual level we offer perceptual and cognitive insights to
guide the information visualization process. We then choose cluster surfaces to exemplify the
data mining process, to discuss the tasks involved, and to work out the interaction patterns.

Key words: visual data mining, immersive data exploration, observer relative data extraction,
perception of space and objects, nested density surfaces

1 Introduction

The last years witnessed a continued growth of the amount of data being stored by companies
in the hope of gaining competitive advantages. The advances in data gathering have created an
increasing need for computational and graphical techniques to aid in data analysis. Data mining
builds on theories and techniques from many fields, including pattern recognition, high perfor-
mance computing, data visualization, and online analytical processing. This paper describes an
interdisciplinary approach to data mining by combining expertise in statistics, database systems,
visualization, and cognitive psychology with facilities for advanced 3D visualization. We investi-
gate an immersive 3D approach that is faithful to our perception of the real world and is a good
match for the interpretative power of our visual system. We extend current visualization and
database system technologies to create the basis for a strong coupling between data and vision.
For example, to use the full range of a 6-sided Cave, data must be provided 50 times per second.
This calls for new interaction patterns and access structures to produce the data with the required
frequency.

Data mining aims to discover something new from the facts recorded in a database. From
a statistical point of view, databases are usually uncontrolled convenience samples; hence data
mining poses a collection of challenging inference problems, raising many issues, some well stud-
ied and others unexplored or unsettled [9]. Graphical illustrations of the data, plots and graphs,
which generally are convenient aids for statisticians then come to play an essential role as a tool
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for analysis and exploration of inherent structure in data. This enables visual cognition to play a
major part. Statistics traditionally employs 2D techniques, including geometric, icon-based, pixel-
oriented, hierarchical, and graph-based methods. It exploits the possibility to “look at data” on a
computer screen with several graphical windows, access to a statistical toolbox, a keyboard and a
mouse [15].

The cooperation of the four key components of an advanced data mining system is illustrated
in Figure 1. Database technology selects and provides the desired data (sub)sets from the large
database to be subjected to appropriate statistical processing. Using expertise from perceptual
and cognitive psychology, structures amenable to visual perception are created. The observer has
various interface controls, which allow feedback to the system for controlling the current data se-
lection, the statistical and visual processing, and his own position and orientation relative to the
data visualized. The lines at the bottom illustrate the feedback the data analyst may trigger. De-
pending on the request different processes will be activated. The line at the top illustrates that the
disciplines are tightly intertwined. For example, to extract a minimal subset of the data, knowledge
about statistical and visual processing as well as perceptual psychology is required. In this paper
we focus on observer relative data extraction, the estimation of 3D probability density functions,
and the potential of nested surfaces to detect more and less pronounced structures in the data. The
scientific visualization part, including the rendering, and aspects of high-dimensional data visual-
ization are discussed elsewhere [20]. Throughout, we provide detailed algorithms and empirical
evaluations that relate the different components and contribute to a comprehensive understanding
of a visual data mining system.

- extraction of transformation to
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Figure 1. Data Flow and Interactions

To allow for a fine-grained interaction between the disciplines we develop database access
structures that support the extraction of data that the observer can possibly see. The direct visual-
ization of the data is not particularly attractive because the scatterplot, which is probably the most
effective method for finding patterns in 2D data, is less intriguing in 3D. One of the main prob-
lems of 3D scatterplots is that the shape of point clouds cannot easily be seen even when stereo
and motion cues are used [32, p. 304]. We add shape information by estimating the density of the
data, and adding objects that form 2D surfaces in a 3D space and emphasize density levels. Nested
surfaces are fairly robust with respect to the number of observations and they support the detection
of multiple structures because they equalize the more and less pronounced structures in the data.

The paper proceeds as follows. Section 2 discusses the interaction with the database. Section 3
gives algorithms for estimating 3D probability density functions. Section 4 reflects about space
and objects from a perceptual and cognitive perspective. The computation of nested surfaces is
discussed in Section 5. Section 6 gives experimental results. Finally, related work is discussed in
Section 7, and Section 8 summarizes the paper and points to future work.



2 Interacting with the Database

It is frequently argued that the increased amount of information being gathered and the advances
in hard- and software makes it attractive, if not necessary, to use advanced visualization systems
to analyze data. Nevertheless, two main components of such a system, a database sub-system
to manage the data and a visualization sub-system to render the data, are often loosely coupled.
Typically, the visualization component extracts all or much of the data from the database (or a file)
and organizes it in a scene tree, which is then used to visualize the data.

This section proposes extensions to the database system part that permit a more tightly coupled
architecture. We investigate observer relative data extraction (ORDE), which makes it possible
to retrieve a controlled super- or subset of the data that the observer can see. Whether or not the
observer can see an object depends on the visibility factor of the object. The visibility factor, in
turn, depends on the properties of the object and the distance between the observer and the object.
Thus, whether an object is visible not only depends on its distance from the observer, but also on
its size, brightness, etc. Thus, a distance based organization of the objects would not be useful as
it cannot be used to prune the search space.

Figure 2(a) shows a small window of an unbounded 2D universe. The dots represent objects
and the line shows the path of the observer. Figure 2(b) shows all objects visible from position 1.
Figure 2(c) shows all objects that are visible from some position on the path.

(a) All Data Points (b) Data Visible at Position 1 (c) Data Visible Along Path

Figure2: All Data Points, Data Visible from Position 1, and Data Visible from Somewhere on the Path

During an immersive data exploration the observer will not see all points at once. With an
unbounded universe it is even likely that the observer might not see most of the points, because
a typical exploration will have to focus on some areas of interest while other areas remain unex-
plored.

2.1 Requirement Analysis

A navigating observer in an unbounded world imposes a number of requirements on the data to be
extracted. We shape a set of requirements to the database system by analyzing different types of
queries that the database system should support.

(Q1) objects that are visible Given an observer position the basic query is to extract all visible
objects. With stringent real time requirements this type of query is not usually used during
interactive data explorations. The query is a useful reference point, though. Among others
it defines the objects that have to be retrieved.



Figure 2 illustrates the visible objects for a specific position (Figure 2(b)) and for all posi-
tions on a path (Figure 2(c)). Note that the observer is able to see distant objects, for example
because they are large or bright. This does not encourage a distance-based organization of
the access structure.

(Q2) objects of a specific visibility level Displaying all visible objects can quickly clutter the
space and make it hard to analyze the data. For data explorations it can make sense to
not show all visible objects or pursue a hierarchical approach where first only very visible
objects are shown.

When mining data it could be relevant to not only extract objects with a visibility above
a specific threshold but also objects with a visibility in a specific range to avoid visual
domination of the most obvious relations.

Requirements Q1 and Q2 assume a single (static) observer position. They require an access
structure that organizes objects according to their visibility. At the same time the access structure
should be independent of the position of the observer to make it independent of the movement of
the observer.

The next level are requirements imposed by a moving observer.

(Q3) objects that will become (in)visible When the observer moves the set of visible objects
changes incrementally. Rather than recomputing the visible objects the database should of-
fer a method to compute objects that become visible objects, AT, and objects that become
invisible, A—.
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(a) Position 1 (b) Position 2 (c) Position 1 vs Position 2

Figure 3: The Observer Moves from Position 1 to Position 2

Figures 3(a) and 3(b) show the visible objects for two observer positions. Figure 3(c) shows
the difference between the two positions. Clearly, the information exchange is with advan-
tage restricted to objects that become visible (+) and objects that become invisible (-). Note
the asymmetry between the two. While objects that become visible have to be passed on to
have them visualized it is not mandatory to identify and communicate objects that become
invisible.

(Q4) objects that are visible now or soon might be With an observer that moves continuously
it makes sense to anticipate the movement and return visible objects as well as objects that
soon might become visible when the observer moves. It is possible to distinguish a scenario
with no information about the direction of the next move (cf. Figure 4(a)) and a scenario
where we know the direction of the next move (cf. Figure 4(b)). If we do not know the
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direction of the movement it is possible to return a superset of the actually visible objects.
When the database system knows the direction of the movement it is possible to determine
objects that will become visible and invisible, respectively.

. R L Lt e e, g4t
iy + o+ - - B

(a) Unknown Movement (b) Known Movement

Figure 4. Anticipating The Movement of the Observer

This type of query is a generalization of query Q1. It fits a classical filter and refinement
approach. The database system acts as a filter that returns a superset of the visible objects
that is sufficiently accurate (and thus small) for the visualization system to work with.

(Q5) objects that at some point during the data exploration will be visible An important part
of immersive data explorations are automatic fly-through scenarios where the system pre-
computes a navigation path. Given such a path the database system can extract objects that
at some point during the fly-through will become visible (cf. Figure 2(c)).

This list gives an impression of the types of observer relative queries that a database system
should support to allow a tight coupling with a visualization system. The exact types of services
that will be used will vary with the type of visualization. However, it is obvious that the extremes,
passing on all the data and passing on the currently visible data, are not appropriate in the general
case.

2.2 The Visibility Range

In order to retrieve visible objects it appears natural to associate each object with a visibility factor.
The visibility factor is a metric for how well the observer can perceive an object. It depends on
the properties of the object (size, position, color hue and brightness, etc) and the distance between
object and observer. Let us assume that, given an object, O;, and an observer, Obs, the visibility
factor is proportional to the object size, O;.s, and inversely proportional to the Euclidean distance,
|O;.Pos — Obs.Pos|, between object and observer:*

0;.s

VE(0:,085) = 15 os— Obs Pos| ¢

The set of visible objects is the set of objects with a visibility factor above a certain threshold p:
visibleObjects(DB, Obs, p) = {o| 0 € DB AV F(0,0bs) > p}

Whenever the observer moves the visibility factor of all objects changes. Thus, the entire
database or visibility-factor organized access structure has to be updated. We therefore associate

1The formula can be extended to incorporate additional object properties.



visibility ranges with each object. Visibility ranges are observer independent. This provides the
basis for a static access structure (and allows for multiple observers).

Definition 2.1 (Msihility Range (VR)) Let O; be an object. The visibility range associated with
the object, VR;(0;), is:

VR;(0;) = VF(0;,0bs) - |0;.Pos — Obs.Pos| = O;.s - ¢ 1)

Thus, the visibility range is proportional to the object size (and possibly other object properties
such as color hue and brightness) and independent of the observer position.

Figure 5 illustrates six objects with their associated visibility ranges. The objects are repre-
sented as black points. The dashed circles around the objects are visibility ranges. The observer
position is marked with a cross.

X X
(a) One Visible Object (b) Three Visible Objects

Figure5: One Observer and Six Objects with Visibility Ranges

In Figure 5(a) the observer is within the visibility range of one object. Thus, only one object
is visible. In Figure 5(b) the observer has moved to an area where the visibility ranges of several
objects overlap. In this particular case three objects are visible.

2.3 R-and VR-trees

To index spatial data the R-tree is used [10]. The R-tree indexes points, rectangles, lines and
polygons by enclosing objects with Minimum Bounding Rectangles (MBRS).

Definition 2.2 (MBR) Let S be a set of rectangles. A rectangle r isa minimum bounding rectangle
for S if all rectangles of S are inside » and no rectangle ' that is contained in r contains all
rectangles of S.

The R-tree is a hierarchy of minimum bounding rectangles. The largest MBR, which contains
all other MBRs, is placed at the root. Figure 6(a) shows a hierarchy of MBRs that binds 8 data
points. The tree representation is shown in Figure 6(b). Each node consists of a set of MBRs and
pointers to the MBRs at the lower level. The parent MBR contains all child MBRs. The leaf level
consist of MBRs that enclose lines, points etc. and has pointers to the disk pages where the objects
are located.

The VR-tree is an extended R-tree that indexes visibility ranges to support observer relative
data extraction. To manage visibility ranges efficiently we add a node entry that uses squares to
model position and visibility range of an object. The VR-tree creates a hierarchy of minimum
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(a) MBRs (b) R-tree (c) MBRs + MBSs (d) VR-tree

Figure6: Illustration of R- and VR-Tree

bounding rectangles (MBRs) like an R-tree. At the leafs minimum bounding squares (MBSSs)
are used instead of minimum bounding rectangles. Leaf nodes use MBSs to capture the spatial
position and visibility range of objects. Internal nodes use MBRs to group several spatial objects
as usual. Having two types of nodes increases the fanout. A leaf node can accommodate up to
[ﬁ} entries. Here, b is the size of a disk page, d - p is the size of d-dimensional point, and s

is a size of a minimum bounding square. An internal node can hold up to [ﬁ}. For example,
in the 2D (3D) case and with a page size of 8KB a leaf node may hold 341 (256) entries and
an internal node 256 (170) entries. We assume 4 bytes for a value and a pointer. Figure 6(c)
illustrates the visibility ranges graphically. At the leaf nodes each visibility range area is bounded
by a minimal bounding square (MBS, dashed line). The edge of the square is equal to the visibility
range diameter 2 - VR.

2.4 Algorithms

Visibility ranges decide whether an object is visible or not. We now show how visibility ranges
can be scaled and queried to support different types of queries as discussed in Section 2.1. Figure 7
illustrates perfect, conservative, and optimistic visibility ranges. Perfect visibility ranges precisely
delimit the area from where an object can be seen. Conservative visibility ranges overestimate the
actual visibility area. As a result a query will typically also return objects that can not really be
seen. Optimistic visibility ranges underestimate the actual visibility area. Thus, a query will not
return all visible objects.

'
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Figure7: (a) Perfect, (b) Conservative, and (c) Optimistic Visibility Ranges



A perfect visibility range does not scale the visibility range in Equation (1) (r = 1):
VRP(O;) =0O;.8-¢c-r, r=1

With perfect visibility ranges point queries that retrieve objects with MBSs that contain the query
point return all visible objects. The following algorithm retrieves objects that are visible from point
P. The function mbs(c, s) returns a square with center point ¢ and side length s, and mbr(a, b)
returns a rectangle defined by the points a and b.

Al gorithm VRtree-PointLookup

I nput :
Root of VR-Tree: N
Observer position: Obs

Qut put :
vi si bl e obj ects: wvobj

FUNCTI ON P-1| ookup( N, P)
FOR each entry e € N DO
I F isLeaf (N) AND (P € mbs(e.C,e.s)) THEN wobj = wvobj U e
I F —isLeaf (N) AND (P € mbr(e.A,e.B)) THEN wobj = wobj U P-1ookup(child(e), P)
END FUNCTI ON

Body:
vobj = {
P-1 ookup( N, Obs)

A window query can be used if we want to retrieve objects that soon might be visible. This
yields a buffer with respect to movement of the observer. Note though that the buffer is not precise
as the direction of the navigation is not considered. Therefore, a window query returns objects
that are almost visible. This will also include objects that actually become more invisible when
the observer moves. Retrieving a subset of the visible objects is not directly possible with perfect
visibility ranges.

Figure 7(b) shows conservative visibility ranges, which are defined as follows:

VRY(0;) =0s.8s-¢c-r, T>1

With conservative visibility ranges a point query retrieves too many objects. Window queries can
be used to further increase the number of retrieved objects. This method is attractive if we want
a robust filter in the sense that the set of visible objects shall remain valid if the observes moves
within reasonable bounds. Conservative visibility ranges do not directly support the extraction
of exactly the visible objects or the extraction of very visible objects. The algorithm for data
extraction remains the same but more data is returned.

Figure 7 shows optimistic visibility ranges, i.e., underestimated visibility ranges:

VR’(0;) =0;.s-¢c-r, 0<r<l1

With optimistic visibility ranges a point query returns only some of the visible objects—the very
visible ones. Window queries can be used to increase the number of retrieved objects. With an
appropriate query window size we are guaranteed to get all visible objects but invisible objects
might also be included. Increasing the query window further will give a set of objects that remains
valid if the observer moves within certain bounds.



Al gorithm VRtree- W ndowLookup

I nput :
root of VR-tree: N
observer position: Obs
visibility range scale factor: r

Qut put :
vi si bl e obj ects: wvobj

FUNCTI ON W1 ookup( N, W)
FOR each entry ee N DO
I F isLeaf (N) AND (W nmbs(e.C,e.S)) THEN wobj = wobj U e
I F —isLeaf (N) AND (W Nnmbr(e.A,e.B)) THEN wobj = wobj U W1 ookup(child(e), W)
END FUNCTI ON

Body:
vobj =
ObsArea = mbs(Obs, mazocpr(0.8)/T)

W ookup( N, ObsArea)

3 3D Probability Density Function Estimation

The probability density function (PDF) of a distribution in space is fundamental as a representation
of this distribution. One of the most well-known and popular techniques for estimating such a PDF
is the kernel density estimate. The kernel estimate [7] for a a set of observations, (X;,Y;, Z;),i =

1,...,n, atthe point x = (z,y, z) is defined as follows:
A 1 & zr—X; y-Y z2—2;

where K is a kernel function. Traditionally it is assumed that [ K =1, and K (x) = K(—x).

Various kernels K have been proposed in the statistical literature. Examples include square
wave or Gaussian functions. It has been shown [31] that the accuracy of the estimation depends
mostly on the smoothing parameter A and less on the choice of the kernel K. One can, for example,
choose the value of A by minimizing the mean-square error:

MSE(fu() = (a0 - £0)

where the expectation is taken with respect to the PDF f. Since the MSE is a function of x the
optimal smoothing parameter is also a function of x.

In order to minimize the MSE the best compromise between variance and bias has to be se-
lected:

MSE(fh(x) - f(x)) — Bias2fj, (x) + Varf(x).

The multidimensional form of the Taylor theorem yields the approximations:

Biasfh(x) ~ 1/2h2V2f(x) / t K (t) dt
Var f, (x) = 1/nh~3 f(x) / K(t) dt.
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Hence, for a symmetric kernel K the optimal smoothing parameter is (cf. [28])

o o[ 3760 JK2(t) dt
hopt( ) \/VQf(X)(fhK(t) dt)2' (3)

The optimal smoothing parameter as defined in Equation (3) clearly depends on the unknown
PDF f. A number of heuristic approaches can be used to find the smoothing parameter. For
instance, the optimal value for h can be computed for the normal distribution, and can then be
used for the estimation of £, (z) [28]. Other methods are a k-th nearest neighbor estimate [28], an
adaptive varying window size [22, 14], and a bootstrap choice of the smoothing parameter [29].

3.1 The Kernel Computation Algorithm

We use a constant smoothing parameter, which minimizes the integrated mean-square error:

~ ~ 2
MISE(fx)) = B [ (a0~ 1) " dx. @
In this case the optimal smoothing parameter is

) — 7 3 [ f(x) dx [ K2%(t) dt
hopt( ) \/f VQf(x) dx(fth(t) dt)2‘ (5)

The unknown underlying PDF in Equation (5) is approximated with a multivariate normal distri-
bution. Since the accuracy of the estimation depends mostly on the smoothing parameter A and
less on the choice of the kernel K, we are interested in a continuous kernel, which is inexpensive
to compute. We use the Epanechnikov kernel (cf. Equation (6)) since it requires a small number of
arithmetic operations in comparison to, e.g., the Gaussian function, which requires an exponential
function approximation.

— 2 2 2 H 2 2 2 <
K(ty, 1, t5) :{ (1)5/(87r)(1 (1 +15 +13)) Ieflsté +B+ <1 ©

To calculate the PDF values on the grid points we have to scan the database or an appropriate
sample twice. The first scan is used to calculate the estimation parameters (variances and A op;).
For this step it makes sense to exploit existing database functionality. For example with Oracle the
SQL query

sel ect variance(x), variance(y), variance(z), count(*)
fromr sanple block (5)

computes the variances and n for a sample that includes 5% of the database blocks. With a well
designed and maintained database this is considerably faster than a full database scan. The second
scan is used to compute the actual PDF estimation. Since the kernel function in Equation (6) is
equal to 0 in the area ¢? + 2 + ¢3 > 1 only observations that fall into the area {(t1,%2,3) :
(t1 — z)% + (t2 — y)? + (t3 — 2)? < h%} influence the estimated PDF value at point (z, y, z).

The PDF is implemented as a three dimensional data cube with dimensions z, y, and z. The
cardinality of each dimension is g. The individual steps of the kernel computation are given in the
following algorithm.

10



Al gorithm PDF_Estimation

I nput :
Dat abase with n observations: (X[, Y[, Z[{]), i=1,...,n
Number of grid points in each dinmension: g
CQut put :
Data cube with PDF val ues on grid points: PDF[i,j,k]
Body:

Initialize PDF

Cal cul ate hqpt according to Equation (5)

FORi=1 TO n DO
Ay = set of PDF points that are influenced by data point (X[, YT[é, Z[:])
FOR EACH (k,l,m) € A, DO

PDF[k,l,m] = PDFlk I m] + K(22X, 5% moZi)

The cost of the algorithm is 7 * ko * g> x n where n denotes the number of observations
(database size), g denotes the number of grid lines along each dimension, and 7 derives from
the number arithmetic operations in Equation (6) (three multiplications, three additions, and one
subtraction). The size of the PDF data cube is 4 x g3 (size of PDF value, three dimensions).

3.2 Evaluation of the PDF Estimation

Since it is not possible to plot a four dimensional PDF we use a two-dimensional dataset to illus-
trate the PDF estimations for different numbers of grid lines (cf. Figures 8). As g increases we
get a more precise PDF estimation. The figures show that a number of grid lines around 30 is
reasonable.

(a) Dataset (b)g=10 (c)g=30 (d) g =50

Figure 8: 2D PDF for different g

Figures 9 shows the impact of data set size n to PDF estimation. As n decreases the impact of
any point in data set to PDF increases. This yields flatter picture for small ». The figures shows,
that n between 5’000 and 107000 is reasonable.

In order to evaluate the estimated PDF numerically one can use the MISE error metric (cf.
Equation (4)), or the estimated MISE when the underlying probability density function is un-
known. The (E)MISE is a common error metric, because it is easy to investigate mathematically
(e.g., for solving minimization problems). Its disadvantage is the interpretation of the numeric
results. We define an alternative error metric, which is based on the average error at any grid

11



(a) n = 1000 (b) n = 2'000 (©) n = 5000 (d) n = 10000

Figure 9: 2D PDF for Different Sample Sizes n

point;
1 i
Z |fh,g(i7jak) _f(zajak)| (7)

9> maxgy,. fng(z,y,2) i,5,k=1

AEppr =

We approximate the unknown density function f with its estimation f,.,.s and a high value of
g. Table 1 shows the empirical results for AEppg. For the computation we assumed h = hqp,
n = 10000, and g = 100.

Estimation | g =50 [ g=30 ] g =20
AEppy | 0.01001 | 0.0176 | 0.0301

Table 1: Numeric Evaluation of AEppr Error Metric

Note that even for a small number of grid lines the error is low. For example, for g = 30, the
error is below 1%.

4 Space and Objects—Perceptual and Cognitive Considerations

With respect to the visualization of information one of our main aims is to create a visual space and
partly fill in with an array of special objects created for the purpose. These objects have features,
which denote values of selected parameters in the database under scrutiny. From a perceptual point
of view we have to deal with the space and its objects as separate entities in their own right and as
referred to in language. In the following we present a short overview of this structure.

Whether in real reality or in virtual reality with its objects two basic questions immediately
arise: “Where” do we see something of interest and “what” is it? Neuropsychological imaging,
the study of brain cells, and the study of patients with special brain damages have shown that
the where-stream and the what-stream are separate processes. Besides, it is an old philosophical
tenet that space (and time) are given a priori or concurrent in order for a living being to be able to
process what are given to the senses.

4.1 Axes and Frames of Reference

In our project it is possible to use different visualization devices. In the “cave” which is a cube
with stereoscopic projections on all six sides one of the persons can be tracked as to the position
of the head (only few persons can be accommodated and they should preferably follow the tracked
person). This immersive virtual reality is complemented by a 3D panorama theater (curved screen)

12



and a 3D “power wall” (flat screen). But work done via the ordinary computer screen have also
been very useful. It allows a quasi-3D interactive presentation with a moving space.

As a common feature for the visualization devices the space can be set into motion. By zoom-
ing in or out the observer sometimes gets the impression of being the active part traveling into or
in the virtual space (although hard to achieve before the computer screen). Being immersed in
a more or less continually moving world it is difficult and soon impossible to keep track of the
positions visited and the route followed. This raises the question of axes or frames of reference
and their accessibility.

Jackendoff [12] proposed to distinguish between two sorts of frames: intrinsic and environ-
mental. Intrinsic frames belong to the objects in the space while environmental frames belong to
the space itself or the observer. Objects have certain geometric properties, such as axes or parts,
which might help in recognition and establishing their orientation. Other axes may be imposed by
well-known objects, for instance by houses or cars that exhibit a “canonical” orientation and parts
with special significance (among other things doors and windows as canonical encounters). But
information visualization usually operates with simple geometric forms with no obvious canonical
properties. They are easily recognized and assuming that they are stationary they might show if
the space is moving (rotating, zooming) by means of their axes and relative sizes. Apart from this
they contribute little or nothing to the impression of up and down in their environment. Another
intrinsic frame is the movement of the object that establishes some relation to other objects in the
given space. If this kind of movement is to be used it should be specific for local groups of objects
to show some underlying property (we return to this).

Environmental frames interact with the frames established by the objects. Gravitation and the
canonical orientation of a house are normally in line. An observer standing at the house imposes
still a new frame as a point of view for a description of the scene; there is a front and a relative
estimation of size. As is the case for gravitation the geographical frame of reference grows out
of physical considerations. In the scene just mentioned there is normally a fixed and regular
relationship among the frames. Sitting in an airplane circling around this is not always the case.
Gravity may pull the passenger in a direction not in conformity with the geographical frame (the
horizon) below the airplane. Well-known objects (houses etc.) with their canonical orientation
follow the horizon in accordance with the contextual frame of reference. The passenger follows
another context, i.e. canonical relationships and gravity inside the airplane. This separation of sets
of frames does not create problems; it seems to be an interesting feature at least for many people.

In the virtual space constructed by data miners the situation is more difficult. Placed for
instance in the panorama with the artificial objects all around in the visible field the observer
clearly senses the gravitational frame and generate (maybe implicit) the geographical frame. This
is a purely local occurrence with no clues in the virtual space as to possible frames of reference.
When the space is brought into motion it is not like flying in an ordered world. Objects with their
geometrical frames whirl around and seem to follow a contextual frame (unless they are moved
independently). If their axial orientation is fixed and a sufficient number still in sight some sense of
the imposed up and down is preserved. Even if some kind of a coordinate system may be (partly)
visible as an envelope for the space an important next step is the creation of visible and stable
indications of frames of reference belonging to the space itself. As the space has no time of its
own it is difficult to judge the relative distances of objects when the space moves. An (arbitrary)
indication of the fixed speed and a time connected with the space should make it easier to travel
around and estimate distances between objects or the clusters around (virtual stopwatches might
be useful).
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4.2 Objects and their Properties

According to the well-established Gestalt laws objects are readily grouped on account of the their
appearance and the relations holding between them. This series of dots is an example: ... ... ... ...
It is nearly impossible not to experience them as grouped into clusters of three dots. Similarity is
like the proximity a strong organizing factor. “Common fate” is the kind of similarity induced by
movement. If a selection of objects in the visible field follow parallel trajectories they are prone
to be perceived as belonging to the same surface or be parts of a common object; in this case we
also see another Gestalt law in action: the whole is more than its parts (even fish in a shoal may
be perceived as forming an object with new, i.e., emergent properties).

If all of the objects in the virtual data mining space (panorama or cave) is set into uniform
motion they might form a shoal but the emergent properties belong to the full extension of the
assembly and we only learn something about the space. It is typically experienced only as long
as it is filled with objects (with an intuitive sense of a void beyond). This is by and large only
informative if we want to visit different locations or by the movement is given some kind of axes
in this space, as mentioned above. But selected objects could be made to form a shoal and thereby
exhibiting some parameter range hidden in the database. Position in time and space are essential
features as stated by Scholl [25, p. 24]: “As a whole, the evidence relating objects and features
suggests that object-based processing may often trump feature-based processing, but that not all
features are created equal: in some circumstances, spatiotemporal features may be more tightly
coupled with object representations than are surface-based features such as color and shape.”

He is referring to multiple objects moving around and sometimes getting out of sight. When
the attentional load is high other features are largely sorted out. In textbooks on information visu-
alization it is common to meet recommendations regarding a multitude of possible object features
such as color, luminance, shape and orientation. In addition a warning is regularly sounded: they
should be deployed with great caution. Conjunctions of many features make it difficult to group
the objects and search time augments in a steep curve. A moderate number of surface features are
to be recommended after deciding on the layout of spatiotemporal relations. Assigning only two
values to shape, size, color, texture, and orientation amounts to thirty-two kinds of objects to be
distinguished and possibly grouped in the stationary or moving space.

Therefore, we operate with a much smaller number, as for instance a tetrahedron in two sizes
and two colors distributed along the three spatial coordinates. It should be noted that size and
luminance are features to be perceived as constant in a 3D space, which means that the computation
behind the visualization includes the distance and angle from the observer. Similar dependencies
apply in an important way to texture as an important feature in the formation of objects (edges,
curvature) and their distance and orientation. In theories of perception one of the main currents
is based on what is called “direct perception” of the information in the optic array and its change
when the observer moves along. This is experienced with the collection of the objects in their
wholeness as an optic flow with its emergent axes connected with the movement. This brings a
new frame of reference into play like the one behind the experiences in the airplane as passenger,
mentioned above. In order to accomplish this and get the corresponding overview some sort of
horizon should be established.

Surfaces are important in the formation of objects and they presumably belong to early stages
in the visual processing. Grouping operates in the way described by the Gestalt laws and the theory
of direct perception toward the creation of putative objects in the field. As part of the process a
ground is established, at times resulting in a curious ambiguous figure-ground segregation (a well-
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known example is the vase/face figure shifting between two opposing faces and a vase). Below
the level of conscious percepts grouping seemingly also operates on objects. Scholl [25, p. 19]
relates complex objects and multi-object units in this way: “Visual surfaces constitute another
level of representation which can encompass both of these categories: complex objects can consist
of multiple surfaces, while multiple objects can be arrayed along a single surface.” Several visual
phenomena are based on “the perceived interpretation of the visual field in terms of surfaces.” (p.
19). We use this tendency to form surfaces out of collections of objects and operate along them
by creating semi-transparent envelopes around regions above some level of density (as described
in Section 5 and [19]). Up till now it has been very successful on the computer screen but it might
as well help in grouping objects in the immersive virtual reality space.

4.3 Where and What?

When observing the tetrahedrons distributed in the space around us in the panorama a coworker
observed something like a spiral. This is what visual data mining is all about: detection of un-
suspected patterns and their description. But the language has its limits. “Don’t you see it over
there to the right?” Well, maybe we can establish a common frame of reference (axes) and still
the spiral may elude our perceptual capabilities. Then we set the space into motion and travel
toward the phenomenon but this zooming in is also a loss of perspective. “It is on the cluster be-
low!” Prepositions such as “on” or “in” (locatives) are rather undetermined in a purely linguistic
context. Nonetheless, they might lead the way if supplemented by a visual input. “On” denotes a
geometric relationship but often functional properties have to be taken into consideration. Being
on something means being to a certain extent controlled by this thing (e.g., the picture is on the
wall). One way to decide if the spiral were on something else would be to mark the elements
of this something (as can be done on a computer screen), combine them to an object, and make
the computer program move such an object. The spiral could by a pointing device be marked in
another way and should follow the “something” if it is controlled and thereby correlated with it.

Even if many interesting structures has been discovered in the databases at our disposal there
are a lot of opportunities for developing the search capabilities further. Important areas are on the
one hand orientation when navigating in the space and on the other delimiting objects (clusters)
and describing their relationships.

5 Nested Surfaces

Employing scatter plots to view data is intuitive as each observation is faithfully displayed. How-
ever, scatter plots hit limitations if the dataset is big, noisy, or if it contains multiple structures
(cf. Figure 10). With lots of data the amount of displayed objects makes it difficult to detect any
structure at all. Noise easily blurs the picture and can make it impossible to detect interesting
relationships. With multiple structures it often happens that one structure is more pronounced
than another. In this situation the less pronounced structures easily gets lost. For the purpose of
data mining this is particularly bad as it is usually the less obvious relationships that are the most
interesting ones.

As an example consider the Spiral-Line data set presented in Figure 10. The data set consist
of a vertical line in the middle (40% of all observations), a spiral curve around the line (40% of all
observations) and uniformly distributed noise (20% of all observations). The data points around
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the spiral curve form the most dense and notable region. Since the data points around the vertical
line have a higher spreadness it is easy to treat it is a noise and not pay attention to it.

(@) n = 1000 (b) n = 10000 (¢) n = 100"000

Figure 10: Spiral-Line Data Set for Different Databse Sizes

The direct display of 3D data points does not support the detection of these structures. To
enhance the scatterplot visualization we replace (or complement) the data points with points that
form density level surfaces. Figures 11(a) to 11(c) present the surfaces for different density levels
a. Figure 10). Figure 11(a) shows the surface for the lowest density level. This Figure can be
used for the detection of outliers. Figures 11(b) and 11(c) show surfaces for higher density levels.
Together with Figure 11(a) they emphasize the structure of the data set. The surface in Figure 11(b)
clearly identifies the vertical line and the spiral (the quality is much better on the monitor).

(@ a=1/10m (b) a =5/10m () a=9/10m

Figure 11: Spiral-Line Data Set and Associated Surfaces. m is the Maximum Density in the Data Set

5.1 Definitions

We use a topological approach to define a surface. A surface is a set of points if and only if the
neighbourhood of any point is similar to a two—dimensional open disk. More formally, we define:

Definition 5.1 (Elementary surface) Let f be a function that maps an open disc D2 to a set of
points C. C'is an elementary surface if and only if f is homeomorphic.

Definition 5.2 (Surface) A surface is a connected set of points if and only if the neighbourhood
of any point of the surface is an elementary surface.

A border is a set of points: 9C = [C]\C° where [C] contains the limit points of C and C°
contains the inner points of C'. To show that @C' is a surface one needs to find a parametrisation
function that maps an open disk D? into OC. The existence of a parametrisation function in our
case follows from the implicit function theorem if V f(z,y, z) # 0 for all (z,y, z) € 9C.
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5.2 Algorithms

This section gives two algorithms to compute nested surfaces: Surface_Gri dPoi nts and
Surface_Gi dLi nes. The Surface_G i dPoi nt s algorithm calculates the border B =
M{(z,y,2) : f(z,y,2z) > a}. The basic idea of the algorithm is to scan the PDF and compare
each value against its neighbors: if the value is greater than o and there exists a point in the
neighborhood that is less than « then the value is added to B.

Al gorithm Surface_GidPoints

I nput :
Nunmber of grid lines per dinension: g
Data cube with PDF grid point values: PDF
Density level: «a

Qut put :
Surface grid: B

FUNCTI ON | sBor der Poi nt ( PDF,i,]j, k)
RETURN ( PDFTi,j,k] > @) AND (PDF[i’,j’,k’] < a)
for some (i’,jl,k’) € (1 + h1,j + ho,k + hz) where hi,ha,hs =—1,0,1, |h1| + |h2| + |h3| =1
END FUNCTI ON

Body:
B=0
FOR 4,j,k=1 TO g DO
| F | sBorder Poi nt (PDF,i,j,k) THEN B = BU PDFTi,j,k|

The Sur f ace_Gri dLi nes algorithm extends the Sur f ace _G i dPoi nt s algorithm. The
main idea of the algorithm is to draw contour curves on the surface. These curves, in turn, are
calculated by intersecting a surface with cutting planes parallel to the XY, ZY, and ZX planes.
The idea of the plane curve calculation is presented in Figure 12. We scan the PDF values with a
condition ¢ = ig for ZY planes, j = jo for Z X planes, and k = kg for XY planes.

(a) Surface (b) Intersecting Planes (c) Vertical Grid-Line

Figure 12: Grid-Line Surface

The details of the computation of an individual grid line are illustrated in Figure 13. Fig-
ure 13(a) shows a cutting plane. Border points are shown as filled circles, inner cluster points as
plus signs, and outer cluster points are not shown. The algorithm connects the border points to
form a polygon curve. For each PDF border point we are looking for PDF border points in the
directions presented in Figure 13(b). Note, that we scan PDF from left to right and from bottom to
top. Therefore, there is no need to draw lines to the bottom and to the left. We draw vertical and
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horizontal connections between border points. For diagonals we make additional checks. We do
not draw a diagonal line if there are two lines in its neighborhood (cf. Figure 13(c)). With this we
avoid squares with crossing diagonals.

(a) Connecting Border Points (b) Valid Directions (c) Final Grid Line

Figure 13: Grid-Line Computation in an Intersecting Plane

The individual steps of the ZY plain curve calculation are presented in the ZY Pl ane Cur ve
algorithm.

Al gorithm ZY_Pl ane_Curve

I nput :
ZY pl ane nunber: ip
Data cube with PDF grid point values: PDF

Qut put :

pol ygonal contour line on ZY plane at |evel ip: C:Cf)y
Body:

C=40, i=io

FOR j,k=1 TO g DO
| F | sBorder Point (PDF,i,j,k) THEN

| F I sBorder Point (PDF,i,j+1,k) THEN C=CUline(ij,k, %,j+1,k)

| F I sBorder Poi nt (PDF,i,j,k+1) THEN C=CUIline(ij,k, %,j,k+1)

I F I sBorder Point (PDF,i,j-1, k+1) AND -l sBorderPoint (PDF,i,j-1,k) AND
-I sBor der Poi nt (PDF,i,j,k+1) THEN C=CUline(ij,k, 4,5 —1,k+1)

I F | sBorder Poi nt (PDF,i,j+1, k+1) AND -l sBor der Poi nt (PDF,i,j+1, k) AND
-1 sBor der Poi nt (PDF, i,j,k+1) THEN C=CUline(ijk, i,j—1,k+1)

Al gorithm Surface_GidLines

I nput :
Data cube with PDF grid point values: PDF

Qut put :
Contour lines on the surface: C

Body:
c=0
FOR i=1 TO g DO C =CUZY_Pl aneCurve(PDF,i)
FOR j=1 TO g DO C = CUZX Pl aneCurve(PDF,j)
FOR k=1 TO g DO C = CUXY_Pl aneCurve(PDF k)

We use the Sur f ace_G'i dPoi nt s method to illustrate surfaces on 2D devices while we
use the Sur f ace_Gri dLi nes method for surfaces in immersive 3D environments.
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5.3 Evaluation

We use the three-dimensional scatter plot in Figure 10 and a single level surface for different
number of grid lines (Figures 14(a) to 14(d)) to evaluate surfaces. In order to get a fair visual
comparison of the influence of g on the quality of the surface the size of tetrahedra depends on g. It
is chosen so that the tetrahedras are always near each other visually. It is easy to see (Figures 14(a)
and 14(b)) that g = 10 and g = 20 are not enough for a nice surface—there are two few tetrahedras
at the ends of spiral curve. As g reaches 30 the picture becomes detailed enough.

e 220 4
-V vyl

Figure 14: Cluster Surface for & = 1/10m for Varying Values of g

Figure 15 presents the impact of the size of the data set on the surface quality. The figures show
that n» = 10’000 is sufficient for a nice surface. Figure 15(b) is drawn from a different perspective
that shows the unevenness of the vertical line for n = 5000. Note, that in contrast to the scatterplot
nested surfaces are not overloaded as n increases (compare Figure 10(c) with Figure 15(d)). The
quality improves monotonically as the number of observations increases.

(@) n = 1’000 (b) n = 5'000 (c) n = 10000 (d) » = 100’000

Figure 15: Cluster Surface for & = 1/10m and Varying Values of n

We use an approach similar to Section 3.2 to evaluate nested surfaces numerically. Equa-
tion (8) defines the quality measure of the surfaces. It shows the average error we make at any
point (4, 7). s is the parameterization function that maps the open unit disk D? to C,. Since s is
usually unknown we approximate it with 55 with large value of g.

g
L S [89(0r) — s(0,9), ®)

AEg = 5
g" MaXg y » fg(x,y,z) ij=1
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Table 2 presents the numbers for AEg with g = 100. The AEg error shows that the error is
below 1% if the number of grid lines is above 30.

1/10m | 0.0289 | 0.0083 | 0.0045
5/10m | 0.0249 | 0.0071 | 0.0038
9/10m | 0.0069 | 0.0011 | 0.0005

Table2: The AEs Error for Different Number of Grid Lines

6 Empirical Evaluation

Table 3 shows the numerical break down of the 3DVDM system in Figure 1. Our main interest is
the relative comparison of the different parts. The absolute values are less relevant and vary with
the chosen architecture. The experiments were calculated on the Pentium 111 1GHz PC computer
with 512MB of main memory.

number of | time (sec) | number of | time (sec) | size (KB) of | time for | size (KB) of
objects in | to extract | visible ob- | for PDF es- | estimated 4 nested | 4 nested den-
the data- | visible jects timation PDF density | sity surfaces
base objects g=30(20,50) | g=30(20,50) | surfaces | g=30(20,50)
250.000 1 1.000 2(<1,10) 108(32,500) | <1 73 (30, 219)
500.000 2 2.000 3(<1,14) 108(32,500) | <1 73 (30, 219)
1.000.000 | 4 3.000 4 (<1,18) 108 (32,500) | <1 73 (30, 219)
1.000.000 | 5 5.000 6 (2, 25) 108 (32,500) | <1 73 (30, 219)
1.000.000 | 11 10.000 9(3,38) 108 (32,500) | <1 73 (30, 219)
1.000.000 | 25 100.000 40 (15, 149) | 108(32,500) | <1 73 (30, 219)

Table 3: Numerical Evaluation of the 3DVDM System

The evaluation shows that the database part is robust with respect to the size of the data set.
Thus, the indexing of visibility ranges with the VR-tree is effective. The cost of the database
part mostly depends on the number of objects that have to be extracted. The PDF estimation is
expensive, and it is important to reduce the size of the data early. Whenever feasible the PDF
estimation should be computed for a small sample or the visible objects only. The time of the PDF
estimation also depends on the variance of the data set. With a large variance the displayed times
increase up to a factor 4. It is also important to keep the number of grid lines low. The number
of grid lines affects the computation time and the size of the PDF estimation. In contrast, the size
of the PDF estimate is independent of the size of the database. Because the size of the density
estimate is quite small when compared to the size of the database it is not usually a problem to
store precomputed PDF estimates in the database to speed up data explorations. The computation
of density surfaces from density estimates is very fast, and as it is not significantly cheaper to store
surface information instead of density estimates, the surfaces should be computed on the fly.

The second part of this section visually illustrates nested surfaces for a real and an artificial
data set. For each data set we show nested surface grids and offer an interpretation. Note that the
visual information in the printed images is limited as three dimensions have to be projected into
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two. Also nested surfaces have to be shown in figures side-by-side. The reader may download and
install the 3ADVDM system to experiment with the surfaces.

The heart dataset is used to investigate the mortality of humans. The dataset consists of 1755
observations. For each person the age, the ejection fraction, and a biomarker are recorded. The
ejection fraction of the heart is commonly used to predict the mortality. Measuring the ejection
fraction is expensive, though. The biomarker is extracted from a comparably cheap blood sample.
The question then is whether and how ejection fraction and biomarker relate.

Figure 16(a) shows a 3D scatterplot of the heart dataset. It is difficult to extract any information
from this plot. The situation improves if we rotate the plot. However the spreadness of the data
still makes it quite difficult to interpret the data.

(a) Data b)a=1/10m (©)a=5/10m d)a=9/10m

Figure 16: The Heart Dataset

Figure 16(b) shows the surface for « = 1/10 of the maximal PDF value. The surface encloses
all data points except outliers. Since there are only a few data points near the border one can
easily see the non-evenness of the surface. While the printed version of the surface is still difficult
to interpret an animated or immersive visualization shows that the surface resembles a spiral in
the three-dimensional space. Many people are not able to see the spiral when looking at the raw
data—even when told that the data is scattered along a spiral. When looking at the surface the
spiral is much easier to detect. Figures 16(c) and 16(d) shows surfaces that enclose more dense
regions of the heart dataset. Note that on the screen these surfaces are plotted inside each other.
The nested plotting emphasizes the structure of the dataset. For higher densities the data should
be approximated by three dimensional line segments rather than a spiral.

Summarizing, it is likely that there is a relation between age, ejection fraction and biomarker.
The surfaces suggest a combination of a linear model (for « > 5/10m) and a spiral (for a <
5/10m).

The artificial data set contains three structures: 1) points, which are spread around a randomly
generated polygonal line, 2) a 3D structure defined in terms of a simulated random variable: (uni-
form(0,1), uniform(0,1)), and 3) uniform noise.

Obviously, it is quite difficult to understand the structure from the scatter plot in Figure 17(a).
The nested surfaces in Figures 17(b) to 17(d) emphasize and clarify the structure.
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(a) Dataset () a=1/10m () a=3/10m d)a=5/10m

Figure 17: Artificial Dataset

7 Related Work

Although data mining is inherently interdisciplinary most data mining systems employ coarse in-
teraction patterns [4, 16, 5, 24]. The main reason is that the systems often evolve from specialized
systems targeted at one area only. We pursue an approach that tightly integrates mature compo-
nents from different areas and aims at a fine-grained interaction.

Database index structures are based on the R-tree [10]. The X-tree is an extension of the
R-tree to index high dimensional data [2]. Other R-tree variants include the SS-tree, which is
used for similarity searches in multidimensional data [34], or the SR-Tree, which supports nearest
neighbor searches [13]. Another family of access structures partitions the space. The kdB-tree is
the classical representative and is an access structure for high dimensional data [21]. The LSD”-
tree uses a two level directory structure for similarity search in feature vectors [11]. Common to
all these approaches is a spatial grouping of objects. In contrast the visible objects considered in
this paper are not usually co-located in space.

Little work has been done on dynamic access structures. Saltenis at al. [23] introduced the
TPR-tree to index the position of continuously moving objects. All objects move independently
and have an associated speed and direction vector. We assume in some sense the opposite: a static
world with a moving observer and rigid real time requirements.

Probability density functions and kernel estimation have been used for several years in math-
ematical statistics [26, 28, 31, 8, 6, 29, 22, 14]. Despite the solid mathematical underpinning of
the kernel estimation method it is rarely used in database contexts (a notable exception is [3]).
Database systems typically use histograms [1, 17] to, e.g., estimate the selectivity of queries. The
kernel method generalizes histograms methods and guarantees a probability density function with
a continuous derivative. This is necessary for the definition and computation of surfaces. We
focus on a numerical and visual evaluation of the kernel method that provides guidelines for the
selection of an appropriate database sample size and number of grid lines. The results are worked
out for 3D data and the optimal smoothing parameter.

Surfaces have received some attention in the visualization community [27, 35, 18] where the
main focus are methods and data structures that support the effective and efficient visualization,
e.g., fast rendering, transparency, and lightening. In [33] various aspects of density surfaces have
been studied, including lightening, transparency stereoscopy, dynamic rotation, and dynamic vi-
sualization techniques. We are interested in the defining properties of surfaces that are easy to
perceive. The human perceptual system is apt at processing large quantities of surface informa-
tion [30] but tends to have difficulties recognizing sets of individual data points that define these
surfaces. Thus, surfaces are a natural part of 3D environments, whether immersive (real or virtual)
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or animated on the screen, as they are picked up well by the human perceptual system.

8 Summary and Future Work

This paper discusses an interdisciplinary approach to build a data mining system, with fine-grained
interaction patterns between different disciplines. First, the paper surveys the visibility range of
objects that is used to improve existing database access structures. We then use insights from
cognitive psychology and kernel estimation to enhance scatterplots with objects that emphasize the
structures in the data. Nested surfaces can be used to detect more and less pronounced structures
within a single data cluster. Throughout, we provide detailed algorithms and empirical evaluations
of our methods, both visually and numerically.

The initial results of our approach are very promising. In the future we have planned to consol-
idate the observer relative data extraction, design density-based fly-through scenarios, and further
exploit the advantages of (animated) VR. At the technical level we want to improve the interaction
between the different parts of the system to support real time immersive data explorations for large
databases. To achieve this we want to minimize the amount of information that has to be com-
municated and progress the individual parts of the system. For example, we want to implement
an adaptive kernel estimation that minimizes the number of grid lines. At the conceptual level we
want to progress the understanding of space and objects. Our ultimate goal is to detect hidden
structures during immersive data explorations. Further case studies are needed to get a robust un-
derstanding of how scale, orientation in space, and object properties influence the recognition of
structures. We also want to develop algorithmic solutions for visually successful data analyses. An
example is an algorithmic solution that separates the more and less pronounced structures within
a single data cluster.
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