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Abstract—Analysis of the mechanical properties of engineering mate-
rials with microstructure generally requires modification of the concept
of a simple material. One approach is the theory of micropolar materi-
als which introduces an independent rotation of a material element and
the resulting stress and strain tensors are generally non-symmetric. In
two-dimensional material models these microstructures are often rep-
1“esented by geometries which exhibit three-fold symmetry in the plane.
In this work we investigate the form of the constitutive relations which
this three-fold symmetry imposes. We show that three-fold symmetry
requires both the stress and couple stress tensors to be isotropic in the
plane. We obtain the constitutive relations for an equilateral triangle
structure and for the hexagonal or honeycomb structure, both of which
exhibit three-fold symmetry in the plane. These results are compared
with the results of previous investigations of these two-dimensional
material models.

1 Introduction

Many engineering materials display a pronounced microstructure which often
must be taken into account in the analysis of their mechanical properties. These
materials include low density cellular foams, wood, fiber reinforced polymers,
granular media including cementitious materials, and numerous biological ma-
terials. A number of sophisticated averaging techniques have been developed
to model these materials with microstructure as simple materials within the
framework of classical continuum mechanics (Nemat-Nasser & Hori 1993). This
continuum model of a simple material in which the stress at a material point
depends only on the strain at that point, often referred to as “local” materi-
als, has proven to be quite effective in representing the mechanical response
of solid materials under most conditions. However, the nature of a discrete
microstructure in some materials presents a significant problem in modeling
these materials as continua in certain situations. This limitation of the classi-
cal theories has been pointed out by Koiter (1964) among others. Of particular
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concern are those situations in which severe deformation occurs within highly
localized regions of the material where the size scale of the deformation region
is of the same order as that of the microstructure.

An alternative to the simple continuum model is the micropolar material
model developed by Eringen & Suhubi (1964). In this model, a material point
within the body undergoes the usual displacement from its original position,
and in addition, the material point is assumed to undergo a rotation which
is independent of the displacement. This model obviously encounters severe
philosophical difficulties if considered as representative of a continuum. It does,
however, reflect the mechanics of a discrete structure where, for example, the
forces and moments in a beam connecting two masses require information about
the relative rotations as well as the displacements of the two masses. Several re-
searchers have modeled structural frameworks as micropolar continuum (Askar
& Cakmak 1968, Sun & Yang 1973, Bazant 1971). The development of so-
phisticated micromechanical material models has also stimulated an increased
interest in the mechanical properties of random structures. One approach to
this problem utilizes the theory of micropolar elasticity (Eringen 1966) within
the framework of latice percolation theory (Feng 1985, Limat 1988a). Within
th(? framework of this theory a characteristic length is associated with the
material, and the stress and strain tensors are generally non-symmetric. In
two-dimensional material models these microstructures are often represented
by hexagonal and equilateral triangle geometries which exhibit three-fold Sym-
metry in the plane. It is well known that for simple materials this three-fold
symmetry insures mechanical isotropy in the plane (Christensen 1987).

In this work we investigate the form of the two-dimensional linear constitu-
tive relations which this symmetry condition imposes on micropolar materials.
Following a summary of the two-dimensional field equations for micropolar ma-
terials, we consider the effects of rotations of the reference configuration in the
plane on the general form of these linear constitutive relations. We show that
the three-fold symmetry condition requires that the stresses be isotropic in the
plane. These non-symmetric isotropic stresses are defined by 6 elastic constants
relating the components of strain to stress, and no strain gradient effects are
possible. If the material is assumed hyperelastic, these 6 constants are reduced
to 4. For non-micropolar materials, the stress and strain tensors are symmetric
and the number of constants reduces to 2 which is characteristic of the well
known linear elastic isotropic material. The two-dimensional couple stresses
are also isotropic in the plane and are related to the strain and rotation gra-
dients by 8 independent constants. These couple stresses depend only on the
strain and rotation gradients and are independent of the strain components.

After establishing the form of the constitutive relations for two-dimensional
micropolar materials which exhibit three-fold symmetry, we obtain specific con-
stitutive relations for an equilateral triangle structure and for a hexagonal or
honeycomb structure. These results are compared with the results of previous
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investigations of these two-dimensional material models.

2 General Two-Dimensional Theory

Within the kinematically linear theory of micropolar media (Eringen 1966),
(Christoffersen 1996), the strain-displacement relations with respect to a two-
dimensional Cartesian reference frame (z,y) are given by

ou Ov Ou Ov
Ezm—'a—a":: Emy'—_a_m'"""pa Eya:'—bz_*"'ubv E'yy—a—y (1)
_oy _ %

K =G M gy

where u,v are the displacements in the z- and y-directions, respectively, ¥ is
the rotation about the normal to the z-y-plane, eqg , (@,8) = (z,y) denotes
the direct strain tensor, and k,g is the curvature strain tensor. Compatibility
is satisfied if

Oeys  Otga Ocyy  Otgy
= e T Rp = Wy - - z = 2
6z Oy o oy v )
0Ky, B O0Kkzz 0
Oz oy
Equilibrium requires
0o 0oy 0o Oo
T z . = 0 , Ty yy =0
oz oy ¥ oz | oy | )
Bﬂ'mz BFL z
Bm +_—a—§_+azy—0-ym+qz =0

where o, denotes the direct stress tensor, flag the couple stress, po the body
force, and g, the body couple. In general, oap and png are not symmetric.

3 Three-Fold Symmetry Condition

We consider here the form of the linear micropolar constitutive relations which
the three-fold symmetry condition imposes. With respect to a Cartesian refer-
ence frame (x,y) in the plane, the components of the micropolar strain tensor
are given by (1). To simplify the strain transformations, we introduce the strain
combinations

Ly = €gz +Eyy » Ly =€ge — Eyy (4)

Ls; = Exy + Eyz » Ly = Ezy — Eyz
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Fig. 1. Change of two-dimensional reference frame from
(z,y) to (z',y’) through a counterclockwise rotation 6.

and consider a rotation of the reference frame from (z,y) to (z',y") counter-
clockwise through the angle 8 as shown in Fig. 1. The strain combinations of
(4) transform as

Ly =1Ly, Lz = cos(20)L}, — sin(20) L} , (5)
L3 = S]H(20)LIZ -+ COS(20)L:’3 y L4 = L;

and the stresses o, Ozy, Oyz,0yy transform as

Og'gr + Oyly! = Ogg + Oyy » Ogly! — Oy'g! = Ogy — Oyg , (6)
Oy'y' = Oatar = (Oyy — 02z) €08(20) — (04y — 0yz) sin(20) ,

Oary + Oyrer = (Ooy + 0yz) €08(26) + (0yy — 04z sin(26)

We assume a general linear stress-strain relation in the (z,y) frame to be
of the form

UQ,B = aaﬂmLm + ,BaﬁfymLm,’)’ + 70£ﬂ’)”lr/)7')’ (7)

where Greek indices a, 3,7 = 1,2 and the Latin index m — 1,... ;4. Three-
fold symmetry requires that the form of this constitutive relation be the same
for rotations of # = +£60° and # = 180°. The reflective condition at 8 = 180°
requires all Bogym = 0 and 45, = 0, while the three-fold symmetry condition
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demands
a1 = Q221 = 1 (8)
Q112 = —Qg22 = Q123 = @213 = @2
Q113 = —Qg23 = —Q22 = —Q212 = a3
Q114 = Q224 = Q4
Q121 = —OQ221 = G
Q124 = —CQ214 = Q¢

The stresses are given by

02z = a1l1 +agly +asls +asly (9)
0zy = asli —azla +a2l3 +aely
Oyz = —asly —asly + asLs —agly
Oyy = a1L1 —agLle — asL3 + agly

where the a; are the 6 independent material constants. The stresses of (9)
are isotropic in the plane. If the material is assumed to be hyperelastic, ag =
0,as = a4, and the number of elastic constants reduces to 4. We note that if
the stress and strain tensors are symmetric, representing a simple linear elastic
material, (9) has the usual 2 independent constants.

For a rotation of the reference frame counnterclockwise through the angle
6 as shown in Fig. 1, the couple stresses iz, and py., transform as

Parz = foz COSO + fly, SINO ,  pyrs = — oz SING + iy cos 0 (10)

We assume a general linear couple-stress relation in the (z,y) frame to be
of the form

Ha3 = Aaﬂw,ﬁ + BaﬁmLm,ﬁ +TamLm (11)

with greek indices taking the values (1,2) and the Latin index m the values
1,...,4, as before. Three-fold symmetry again requires that the form of this
constitutive relation be the same for rotations of § = +60° and 6 = 180°.
The reflective condition at # = 180° requires all T'y,, = 0, and the three-fold
symmetry condition demands

Ap =Ap=b, Arg = —A21 = by (12)
Bii1 = Bag = b3, Bi21 = —Ba211 = by
Biig = Biass = —Bags = Boiz =bs

Bigy = —Bi13 = Ba2ia = B223 = bg
Biig = Baas = b7, Bi2s = —Bo1a = bg
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The couple stresses are given by

Pz = + 010 +b2th,y + 3L,z + balyy + bs(Las + L3y) (13)
+be(La,y — L3,z) +brLay + bgLa,

Pyz = —bath o + 019y — byl o +b3Lyy — bs(Lay — L3 )
+be(Laz + Lay) —bgLay + brLa,

where the 8 b; are material constants. The couple stresses of (13) are isotropic in
the plane. We note here that previous investigations of the micropolar behavior
of honeycombs have generally retained only the b; term, see e.g. (Chen, Huang
& Ortiz 1998) and (Wang & Stronge 1999). Our results for specific structures
indicate that this is a realistic assumption. _

We now develop the specific micropolar continuum field equations repre-
sentative of the mechanical response of two separate discrete two-dimensional
lattice geometries, both of which exhibit three-fold symmetry in the plane.
These structures are assumed spatially periodic and connected, and force and
moment equilibrium are explicitly enforced at each joint. Since we are in-
terested only in deformations occurring under static loading conditions, the
actual mass distribution within the structure is unimportant and will be as-
sumed uniformly distributed and concentrated at each joint. These mass points
(joints) are connected by thin beams which deform by stretching and bend-
ing. Thus we are starting with a structure in which each discrete material
point is defined within the structure by both its position and its orientation,
the position and orientation being independent of each other. For example,
in our two-dimensional structure defined in the Cartesian coordinate system
(z,y), deformation of the mass point m; is defined by the independent triad
(ui,vi,1;), where u; is the displacement in the z-direction, v; the displacement
in the y-direction, and ; is the rotation in the out-of plane direction. Our
goal is to represent the mechanical behavior of this discrete structure in terms
of a continuum, and this transition from discrete to continuous depends on a
characteristic length, here taken as the length a of the beam connecting the
mass point. As this length parameter approaches zero, microstructural effects
are expected to vanish and the material is characterized as a simple material
in which the orientation of a material point is not independent of the defor-
mation of its neighbors. In the absence of microstructure, each material point
in the continuum is defined by u,v, and the rotation 1 is equal to the local
infinitesimal rigid body rotation w = % (v,; — u,). For the two lattice geome-
tries investigated here, we show that as @ — 0, this condition on the rotation
is satisfied. We also assume that if ¢ is a length scale associated with the de-
formation pattern of the structure under investigation, the following condition
is valid (a/c) < 1.

To effect this transition from discrete structure to continuum we utilize
the procedure developed by Mindlin (1968) and make use of Taylor series ex-
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pansions of the displacements and rotations about a material point within the -
structure. This presumes that the functional representation of these terms is
differentiable with respect to the space variables as often as necessary. We
show that it is necessary to retain second order terms in the series expansions
in order to induce micropolar effects in the two lattice geometries investigated
here. Suppressing second order terms in the displacement expansions is equiv-
alent to assuming homogeneous displacements and a uniform strain field, and
micropolar material effects do not appear to be possible in a uniform strain
field.

4 Equilateral Triangle Structure
4.1 Description of the Equilateral Triangle Structure

y

A

Fig. 2. Geometry of the spatially periodic equilateral trian-
gle lattice with the representative volume element as shown.

We consider the spatially periodic structure made up of equilateral trian-
gles as shown in Fig. 2. A representative volume element of this structure is
also shown, and we take the fundamental element of this structure to be the
equilateral triangle element shown in Fig. 3. Deformations of this structure
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0

Fig. 3. Fundamental structural element.

are defined by the relative motion of points 1 and 2 with respect to the point
0 through the position vectors b; and b,. We restrict our investigation to
small deformations from the initial shape. The motion of points 0, 1, 2 are
represented by a displacement u in the z direction, a displacement v in the y
direction, and a rotation % in the z direction. Thus the motion of point 0 is
defined by the triad (uo,vo,%0), the motion of point 1 by (uy,v;,%:), and the
motion of point 2 by (uz,vs,%3). A representative beam, the beam connecting
Joints 0 and 1, is shown in Fig. 4 along with the forces and moments acting at
the ends. These consist of an axial force P, a transverse force T', and a beam
midpoint moment M with positive directions as shown. The beam connecting
joints 0 and 1 will be denoted as beam 1, that connecting joints 0 and 2 as
beam 2, and that connecting joints 1 and 2 as beam 3.

We assume all beams to have length a and uniform thickness ¢ such that
the ratio t/a < 1. Thus this structure can be considered to be a form of
two-dimensional low density foam with volume fraction ¢ = 2v/3(¢/a). The
beams are assumed to undergo linear elastic deformations of simple stretching
due to the axial forces P, and Bernoulli-Euler bending due to the moments M
and transverse forces T'. In terms of the joint displacements and rotations, the
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Fig. 4. Forces and moments on one of the beams of the
structural element with sign conventions as indicated.

forces and moments in beam 1 are

. EA
2a

Tyo = g?gi ((Ul — 1) — V3(v1 — vo) + a3y + 1,/)0))

(V3w ~ o) + (01~ w0))

EI
Mo = o (%1 — o)
Similarly, the forces and moments in beam 2 are

EA
Py = - (v2 — vo)

Ty = 9‘53‘{ (2(11,2 - UO) = a’(¢2 + 1/)0))

Myy = %{ (2 — o)

and in beam 3,

Py = %{1— (—\/§(U2 —up) + (v2 — Ul))

T21 = %{ (('LL2 — ’LL1) -+ \/g(’l)z = Ul) + a(1/12 + ¢1))

My, = %{(102 — 1)

(14)

(15)

(16)
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This solution of the statically indeterminate structure problem satisfies com-
patibility of displacements and rotations at the joints.

To effect a continuum representation of this structure, we now assume the
existence of continuous displacement fields u(z, y) and v(z, y), and a continuous
rotation field 9 (x,y) such that the displacements and rotations of joints 1 and
2 can be expressed as Taylor series about the joint 0. This presumes that the
displacement and rotation fields are differentiable to whatever order necessary,
and

aV30u abu a® [ 0% 0%u 0%u
(w1 —uo) = == aﬁié@‘*‘*@‘(f”ggf”‘@a—xéf@f)“L“'
avV38v adv a2 0%y 8%v 0%v
(v = o) _TEE+§5§+§(3EP+2‘/§3may+a 2)*
_aV30y ady a® [ 8% %y 8%y
| (%1 — o) = —— % 25y T8 (3—2+2\/§8$3y+8y2 +4
(u — )—— 8_u+(_1,i@+
2T Ty T 2 gy
or o) = a2 T
2 o) = Oy 26y2
B ('M a? 8%y
(¢2—¢0) + 9 a .2 + -
(17)

where we have retained terms of order a?, and all derivatives are evaluated at
the point 0. We note that

(u2 —u1) = (ug —uo) — (u1 — ug)

with similar expression involving v; and ;.

With the displacements and rotations expressed by (17), the forces and
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moments in beam 1 become

Py = A{S?—E Bv+\/—(6u BU)

4 0 0 Or
av3 U 0%u 0%u
—|--—4— (35—2—#2\/53—338—374‘5—%’7)

0%v 0%v
+Z(362+2\/_68 5-)}

3EI Ou Ov Ou Ov Ou Ov
T“’—-Y{ﬁ(%*@)‘(@*%)”(Wara—w)

2 2 2
+a\/§6_¢+a@+g<3a Y 193 iuera——?-)

8y 4 \"8z2 dzdy = Oy
; a\/— ( gz_v_)
4 \"og? By?‘
_ oy Oy 0%y Oy Y
Mo = _2'{‘/—31; oy +4( 2 T3 T ) |
(19)
and similarly in beam 2
P — EA Ov ga%
20 — 8y zayz
6EI ([0 0 0
Ty = T{(—E-I-—E) -+ (27,0-{-—“—92)
a Oy Oz Oy Oz (20)
v, O
+a By + Gayz
B oY ad*yY
o= 51 (G4 55%)
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and finally in beam 3

. 13_4{33_“+5v_ (24 2)

4 oz ' By Oy Oz
av3 0%u 82u
+ 4 ( 822 +2\/—8w8y 6y2)
a (. 8% 0%*v 8211
Z( 207 >V 5ty ay2)}
- g{_ﬁ(@_a_v)_@ﬂ) |
a z Oy 0y Oz (21)
29 @ Y av/3 o oY —+3a- 09
Oz Oy
a (8% 0%u Bzu
4 < oxz? g+ dxdy By )
, av3 [, 8% 0% 0"
~T<62+2\/—6w3y 5@)}

B oy O 0% 82¢
M21_~_EZ—{\/§%_6 +4( 82+2\/_6w6y 6y2)}'

The representative volume element of Fig. 2 is shown in more detail in
Fig. 5. The boundary of this element passes through midpoints as shown. The
forces and moments in the 3 beams associated with the joint 0 are given by
(19), (20), (21). The forces and moments in the remaining beams within the
representative element are obtained from Taylor series expansions about the
joint 0 of these three known forces. These expansions are consistent with our
assumption that the displacement and rotation fields are differentiable as often
as necessary. For example, the forces and moments in the beams associated
with the joint 3 of Fig. 2, located at the point (—+v/3a/2, —a/2) with respect to
the joint 0, are denoted by Py3,T13, Mi3 etc. and are given by

a\/§ BPlo a BP:LO

Pz = Fro - 2 fz 2 Oy
aV308Tyy  adT 22
Tia = T — . (22)
18 10 2 8z 2 by +
M
M13 _ Mlo _ a\/§8 10 _ EBMm

2 Oz 2 Oy



4.2 Effective Stresses 13 °

Fig. 5. Representative volume element for the equilateral
triangle structure with resultant forces and moments on the

six faces.

with similar expressions for the forces and moments in the other beams. All
variables are evaluated at the center of the element. This procedure determines
all forces and moments in the beams of the representative volume element.

4.2 Effective Stresses

The effective stresses and couple stresses are determined by volume averaging
the forces and moments acting on the boundary of the representative volume
element. The volume averaged stresses Gog are given by

N
Voap = Y zaFg (23)

n=1

where V = a%v/3 /2 is the area of the representative volume element.
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Using (23), the stresses become

Gas = _@{E_L +ML2}

8 | M ? MN
_ \/5{ 2, (M+N), }
Opy = 2 Y7t = — L2
_ V3 (M + N)
(Umy‘*'a'yz):T“MN Ls
_ _ V3
(Ufcy Uym):WLcl

To evaluate these stresses and couple stresses, we have introduced the beam
stretching compliance M and the beam bending compliance N such that

w3 (0 w1 () 2

where, per unit depth, A = ¢t and I = #3 /12. We note that for low density
materials with ¢/a < 1, the bending compliance N is much greater than the
stretching compliance M, i.e. N > M.

An alternative estimate of the shear stress difference (Goy — Gyz) can also
be obtained from the moment equilibrium equation (3c). We have

Kik,i + €rijoi; =0 (26)

and integrating this over the representative volume element and utilizing the
divergence theorem provides

/ﬂik’idv -+ ekz-j/ O'ijdV =0
Vv 14

or
/Sﬂiknids +erijVoi; =0
and
fgmde + exijVoi; =0.

For concentrated moments M7 at NV points on the boundary, we get

N
ZM;? + ekz-jV&z-j =0 (27)

n=1
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For our two-dimensional system with k =3 (z), (27) gives
N
V(Gay — Gya) = —ZM: (28)
n=1

Evaluation of (28) provides

a®V3

5'my'“5'ya: == 94N V2¢ (29)

and the two expressions for the shear stress difference as given by (29) and (24)
provides the moment equilibrium relation

2
—_ 2 g2
Ly=-35V'¥
or
Ou Ov a?
o+ 22 ) vy =
‘(¢+8y 8:6) 12V1,b 0 (30}

We note that the shear stress difference is of order a? compared with the

other stresses of (24).
Volume averaged expressions for the couple stresses can be obtained from
the moment equilibrium equation. We multiply (26) by z; to get

Pik,iTl + ekijoiiT =0 (31)

We now integrate this expression over the representative volume element

/ uik,im,dV + ek,-j/ a,;,-a:;dV = {)
v 14

/ [(warz) i — pineyi] dV + ekij/ oijzdV =0
v v

and apply the divergence theorem to the first term to get

/uik,immids — / ,Ll.lde + ek-,;j/ az-ja:ldV =0 (32)
S vV 1

and finally

Vi = /mka:ldS + ekij/ Uij:l?[dV = (33)
S v
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For a system of concentrated moments acting on the surface S of the
volume V, the integration over the surface reduces to a summation over the
concentrated moments. For our two-dimensional geometry we take k = 3 and
[ =1,2in (33) to get the representations

N
[L13 = ZIE?M;dS + / (0'12 — 0'21):1:1dV
a=d v (34)

N
ﬂ23 = Zm?Mé‘dS -+ / (0'12 — 0'21)112dV
14

n=1

The integrals of (34) are not readily evaluated. However, these integrals

are of order a® which is higher than the moment terms which are of order a?. -
Suppressing the integrals of (34) gives the couple stresses

¥y
(35)

__ a® &

. T SN By

The relations of (24) and (35) provide the constitutive equations for the
equilateral triangle structure which satisfy the three-fold symmetry conditions.
For this structure, the coefficients of (9) and (13) are

V3 _ V3(M +N) V3

a1=4—M,CL2 SMN y a3 =a4=a5=0, UJG:E (36)
and
a’v3
bi=Gnr s ba=bg=by=bs =bg=b; =bg = (37)
respectively.

We note that as the strut length a — 0, fig, — 0, fy; — 0 and Ly — 0.
The constitutive relations (24) are then representative of a simple material
which is isotropic in the plane.

4.3 Example—Simple Bending

As an example of the stresses developed during deformation of this structure,
we consider the response to a simple bending deformation defined by Fig. 6

N-M
u= —kyz, v:%k[x2+(%ﬂﬁ))y2J, Y =kzx (38)
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Fig. 6. Simple bending of a strip.

where k is the curvature of the bent material. For this equilateral triangle
structure under conditions of simple bending there is a definite micropolar

effect since

2(N + M) AN
= —_— L T — e———————— = =

_ V3(N + M) _ _ _

5ee = ~3raN L )Y O T =T =0, (40)
and

_ a? _

oz = s 7o Poe =0 (41)

We note that as the strut length a — 0 the micropolar effect vanishes and
the rotation 1) becomes equal to the local infinitesimal rigid rotation.

We observe that couple stresses are induced on surfaces with normal in
the z-direction. Thus this stress and displacement field is representative of the
response of a rectangular beam of depth h, width b, and length [ bent with
uniform curvature k, see Fig. 6. The moment M which must be applied at the
ends of the beam to support this deformation is given by

(N + M)kbh® M(3N + M) (a2
44/3M(3N + M) [1 2(N + M)? ('ﬁ) ]

The second term in the brackets represent the global effect of the couple
stress piz, on the simple bending of a beam made of material with equilateral
triangle structure. Note that in deriving the above expressions we assume that
the characteristic length a is small compared to the overall dimensions of the
structure under investigation which for this problem implies that (a/h) € 1.
For typical structures of this type, (t/a) < 1 and the bending compliance N
is much greater than the stretching compliance M, ie. N > M. Under these
conditions, the moment M becomes

-t )]

(42)

=
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5 Hexagonal Structure

5.1 Forces and Moments in Beams

Fig. 7. Spatially periodic hexagonal lattice with the repre-
sentative volume element shown shaded.

We consider the spatially periodic hexagonal structure as shown in Fig. 7,
in which a representative volume element of this structure is also shown. The
fundamental element of this structure is shown in Fig. 8 and consists of three
beams emanating from the joint 0 at equal angles of 120° from each other. Note
that the fundamental element is only a subset of the representative volume
element. Deformations of the fundamental element are defined by the relative
motion of points 1 and 2 with respect to the point 3 through the position vectors
b: and by as shown. The motion of point 1 is defined by the triad (u1,v1,%1)
with similar representations for the motion of points 0,2 and 3. The individual
beams connecting the joints have forces and moments acting at the ends similar
to those shown in Fig. 4 for the equilateral triangle. The beam connecting the
joints 0 and 1 will be denoted as beam 10, that connecting joints 0 and 2 as
beam 20, and that connecting joints 0 and 3 as beam 30.

The forces and moments in these beams are expressed in terms of the
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Fig. 8. Fundamental structural element for the hexagonal
' lattice with position vectors by and bs. Force and moment
conventions as shown.

displacements and rotations of the ends (joints) and take the form

EA
Py = — (v1 — o)

T = %E'?T{ (2(u1 — uo) + a(¥1 + o))

(44)
My = %{(7/11 — o),

where the double subscript 10 indicates effects in beam 1 as referred to the
joint 0. Similarly, the forces and moments in beam 2 are

Py = %;ji (\/_3—(u2 —ug) — (v2 — ’Uo))
Ty = —%E§£ (('UQ —ug) + V3(vg — vo) — a(ya + 1/)0)) (45)

My = %(1”2 — o) -
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and in beam 3,

Py = 12;4 (\/§(U3 —ug) + (vs — vo))
Ty = g (~(us — o) + V3(us — vo) + alwps + o)) (46)

M3g = 7 (¢3 — o),

In this analysis it is necessary to eliminate the displacements and rotation
at the joint 0 to obtain representations of the displacements and rotations -
of the position vectors b; and by. To accomplish this, we invert the force-
displacement relations to get the displacement-force relations. For beam 10,
these become

a
(u1 —w) = (aT1o — 6M10) — arhg

12E1
: a
(vi —wo) = E—APm (47)
(Y1 — o) = Eanm,

and for beams 20 and 30 we get

av3 a?

a

(ug —wp) = m—on 4RI (aTao — 6 M) + —%bo
2
a a®v/3 av3
(va —wp) = —9gAT® T oiET (aT20 — 6 M) + ———1/10 (48)
a
(1h2 — o) = ETM%,
and
av'3 a?

a
(usg —up) = —2EAP30 = SAET (aTs50 — 6 M) + *lbo

2\/‘ \/“
a a
(v3 —vg) = _2EAP3O + — S4BT (aT50 — 6M3q) — ——lbo (49)

(3 — o) = EEM3O
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To relate these displacements and rotations to the joint 3 we observe that

(us —u3) = (u; — uo) — (us — vo)
(’Ui - '1)3) = (’Ui — ’UQ) — (‘U3 - ’Uo) for i = (1,2) (50)
(¥i — ¥3) = (¥; — o) — (b3 — o)

Substituting (47), (48), and (49) into (50) provides the six relations

(u1 — u3)
aVe o 3a
= +55 1% + 5557 (2aT0 + aTso — 12Mio + 30Mso) — -4
(v1 — v3)
a2vV3 o3
=+—— (2P
+2EA ( 10 + 30) WUMET (CLT30 + 6M30) —+ —7103

(Y1 —2) = Eaf (Mo — M3p)

(uz — u3)
-a\/_(P + Pag) — 9 (aTyo — aTsy — 6Mao + 6Mao)
SEA 20 T80 T oy (6520 T 4530 20 30
(ve “’03)
a?V/3
= - T: T30 — 18 M
2EA — P3o) 2AET (aTz + aT30 — 6 M2 + 18 30) + aV/313

(Y2 —3) = E.% (Mg — Ms3p) -
(51)

Equilibrium of the fundamental element requires

2Ty o — Tao — T30 + V3(Pag — P3p) =0
2P1g — Pao — Pso — V/3(T2o — T30) =0 (52)
2(M10 —+ M20 + M30) — CL(T10 + Tzo + Tgo) = 0.

The nine equations of (51) and (52) are sufficient to determine the six forces
and three midpoint moments of the three beams in terms of the displacements
and rotations of the joints 1,2, and 3. As in the triangular structure, we
introduce the beam stretching and bending compliances M and N given by
(25). From (51) and (52), the axial and transverse forces and midpoint moment
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in beam 01 are given by

12¢/3M (M + N)Pig = (3M + N)v3(2(vy — vs) — (v2 — v3))

—3(M — N)(uz — u3) + 3Ma(vpo — 13), (53)

48N(M + N)Tyo = 6a(M + N)s
+(M + N)(2(u1 — uz) — (ug — uz) — v3(vg — vs))
+8N (2(u1 — uz) — (ug — u3) + v3(vz — v3))
+2a(M + 5N)(¢1 — t3) + 2a(M — N)(3h2 — v3),
(54)

and
96N Mo = a{ [Q(Ul - U3) - ('U'Z - ’LL3) - \/§(U2 - ’113)]

55
+6a¢3+1§—a(¢1 —¢3)+23—a(¢2—¢3)}- =
Similar expressions may be obtained for the forces and moments in beams 02
and 03.

To effect a continuum representation of this structure, we again assume the
existence of continuous displacement fields u(z, y) and v(z, y), and a continuous
rotation field 9 (z,y) such that the displacements and rotations of joints 1 and
2 can be expressed as Taylor series about the joint 3. This provides

) = ;r(@ *ﬁgZ>+§§—2( +2\faa:a ay)
= 5 (i)« 5 (T i +s5)
(uz —uz) = a 3Z_Z+32L2_g%
(v2 — v3) =a\/—-g—z 3;22_:2’
(¢2*1/)3)——a\/~__+3_;_%2$_7é”

(56)

where we have retained terms of order a? and all derivatives are evaluated at
point 3. With the displacements and rotations expressed by (56), the beam
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forces and moment in beam 10 are given by

Py = Z—M—(—A—g—_i_—m {(3M+N)g—;—(M—N)%}
a Ou Ov
To = BN+ o) {(M+N) (2"/““55”?92) (57)

Oou Ov
+8N<-5§+5£>}
a’ u Ov 10a 0y
Mo = 3—2‘1‘7{<2¢+a—y“5;)+T@}’

where the terms in (57) are now evaluated at joint 0 of Fig. 7. The forces and
- midpoint moments in beams 20 and 30 are represented in a similar way.

Ple‘

Py v

Fig. 9. Representative volume element for the honeycomb
structure with resultant forces and moments on the six faces.

The representative volume element of Fig. 7 is shown in more detail in
Fig. 9 where we have relabeled the joints as shown. Note that the sides of
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this element pass through the beam midpoints. The forces and moments in
the 3 beams associated with the joint 0 are known explicitly in a form similar
to that of (57). The forces and moments in the remaining beams within the
representative element are obtained from Taylor series expansions about the
joint O of these three known forces. These expansions are consistent with our
assumption that the displacement and rotation fields are differentiable as often
as necessary. For example, the forces and moments in the three beams 12, 22,
and 32 associated with joint 2 of Fig. 7, located at the point (—a+v/3/2, —3a/2)
with respect to the joint 0, are denoted by Py, Tia, Mia, Py etc. and are
given by

a\/g 8P10 3a 8P10 4

= Pig =~ -
Pia 10 2 Oz 2 Oy
a\/§ 8T10 3a BTlo 5
o _3a0Ty (58)
Thz 10 2 Oz 2 Oy +
V3OMyy 3a M
Mz = Myo — 2 0 _ 22010

with similar expressions for the forces and moments in beams 22 and 32. In
these expressions, all variables are evaluated at the center of the element (0, —a)
with respect to the point 0 of Fig. 7. This procedure determines all forces and
moments in the beams of the representative volume element in terms of the
displacement and rotation fields.

5.2 Effective Stresses

Estimates of the effective stresses and couple stresses may be determined by
many different methods. Here, we have chosen to do it by volume averaging of
the forces and moments acting on the boundary of the representative volume
element. The volume averaged stresses .3 are then given by

N
Voap =Y aiFp (59)

n=1

where V = a29+/3 /2 is the area of the representative volume element.
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Using (59), the stresses become

oz = 4\/1§ML1 * 2\/§(J\14 Y
Tov = 4\/1§ML1 - 2\/5(1\}1 T o
(Goy + Tya) = —mLs
and by
Oy = 300) = o [ B4 = 594 1)

We note that the term V2 occurring in (61) is isotropic and thus satisfies
the three-fold symmetry condition. The moment equilibrium equation (26)
provides a second representation for the shear stress difference in the form

(12

24v/3N

which shows that the shear stress difference (54 — Oys) and the shear strain
difference L4 are both of order a2. Furthermore, L4 and 1 satisfy the relation

[VZ4 + 2V2L4] (62)

(&w —&w)z_
Yy Yy

2
Lo+ ‘;—iv%p =0 (63)

where we have suppressed terms of order a*. Using (63), the shear stress
difference is given by

-

By — T ) = =

WUV 93N
The couple stresses are estimated by volume averaging as given by (35)

which provides

Ly (64)

_ a? [0y 30L4 3
hee = vy (00 * 580 | 70O
a’? [mb 38Ls

s = ———=— +-—=—|+0(*®
Huz = 94V3aN ] (#)

(65)

8y 8 9y

The relations of (60), (64) and (65) provide the constitutive relations for
the honeycomb structure which satisfy the three-fold symmetry conditions. For
this honeycomb structure, the non-zero coefficients a; of (12) are

1 1 1 (66)

a] = , Qg = , Qg =
oA T aBM AN 43N
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and the non-zero b; of (12) are

2 2

a a
; bp = — 67
2%4V3N' ' 64v3N (67)

9.3 Example—Simple Bending

Also for the honeycomb material we analyze the simple bending deformation
defined by Fig. 6. Here,

u=—kyz, v:%k[:cz—}—(%vﬂf_—l_—ﬂ%yﬂ, Y =kz (68)

where k is the curvature of the bent material. The quantities

: AM 2(M + N)
[i=—— " Ly=— A T La=0. Ls=0 (69
! @M+Nf% 2T EM N Y BT +=0 (69}

provide the stresses

1 _ 2 B _ 8
Uzm:_\/g(?)M_‘-N)ky, Umy:Uym:ny:O7 (70)
and the couple stresses
2
a
[y, = k v Hyz =0 71

Again, as the strut length a — 0 the micropolar effect vanishes and the
rotation 1 becomes equal to the local infinitesimal rigid rotation.

This stress and displacement field is again representative of the response
of a rectangular beam of depth h, width b, and length ! bent with uniform
curvature k. Here, the moment M which must be applied at the ends of the
beam to support this deformation is given by

kbh® BM+N)a1
= 1+ — 7 (= 72
6ﬁMM+N)[ 4N Q> (72)
Again, for N > M, the moment M becomes
kbh? 1 /a\2
= 1+=(= 73
M eﬁm[*%(J] (73)

Comparison with (43) for the equilateral triangle structure shows that
the moment required to bend the equilateral triangle structure through the
curvature k is significantly greater than for the hexagonal structure.
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6 Comparison with Other Work

In a recent micropolar analysis of both the equilateral triangle and the honey-
comb structures, Chen et al. (1998) develop expressions for the strain energy
density of the structure as a superposition of the strain energies of the individ-
ual struts. This leads them to the erroneous conclusion that the strain energy
density of the equilateral triangle structure is three times that of the honey-
comb because the equilateral triangle structure contains three times as many
struts per unit volume at each orientation as the honeycomb. This approach
ignores the actual connectivity of the individual structures and also equilibrium
conditions at the joints.

ay a9 Qe b1

V3 | VB(M+N) | V3 | a®>V3
4N

Present | apg SMN 24N
‘ V3 | VB(M+N) | V3 | a*V3
Chen et al. —
4M SMN AN | 6N

Table 1. Results for the equilateral triangle structure.

While their results for the stresses in the triangle structure agree with ours,
see Table 1, their constitutive relation for the honeycomb predicts a much too
stiff behavior, see Table 2. This is also demonstrated by our results for the
two simple bending deformations of (43) and (73). In general any deformation
pattern dominated by bending of the beams is predicted to require loads that
are much too great. Also, for homogeneous deformations, their results do not
agree with those of Warren & Kraynik (1987). For both structures the couple
stresses obtained by Chen et al. (1998) are four times those obtained here, see
Tables 1 and 2. The source of this difference is not clear but may be related
to their definition of the strain tensor. It appears that their strain tensor
is symmetric but they also introduce an independent rotation  which is not
accounted for in their definition of the strain tensor. In fact, the quantity
(0 — w) = L(eys — €xy), and if the strain tensor is symmetric, § = w and is
not an independent rotation. Chen et al. (1998) then go on and utilize their
constitutive relations to investigate the fracture toughness of these reticulated

materials.
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a3 az aeg by b7
1 1 1 a? a’
Present
4/3M | 2V/3(M +N) | 4/3N | 24v3N | 64v3N
2
W & S 1 1 1 a 0
4V/3M | 2v/3(M + N) | 4/3N | 243N
1 (N + M) 1 a’
Chen et al. 0
4v/3M 8vV3MN 43N | 6v3N

Table 2. Results for the honeycomb structure.

Wang & Stronge (1999) have provided an analysis of the micropolar be-
havior of the honeycomb structure. They utilize a novel representative volume
elément and obtain the stresses and couple stresses from equilibrium conditions
enforced on the element. They also enforce the three-fold symmetry condition
and account for equilibrium at the joints and connectivity of the structure.
Their constitutive equations agree with those presented here, see Table 2. Their
constitutive equations for the couple stresses assume only a non-zero b; which
1s consistent with our results in that the term involving by is actually of order
a* and should therefore be ignored for consistency. They use their constitutive
equations to solve an interesting contact problem on the half-plane.

7 Discussion

In the classical couple stress and micropolar theories, a characteristic length
appears which is assumed to be an intrinsic material property. One of the ma-
jor problems involved in relating these theories to observed material behavior is
the determination of this characteristic length. In general, most heterogeneous
materials will exhibit a number of length scales depending on the composition
of the particular material under investigation. This has stimulated an interest
in the mechanical properties of random structures characterized by a fractal
dimension (Limat 1988b). The approach utilizes the theory of micropolar elas-
ticity within the framework of lattice percolation theory. In this theory, the
material is generally modeled as a two-dimensional lattice of rigid particles
which undergo motions of both translation and rotation, and are connected
by elastic ligaments of random rigidity. Each ligament is assumed to deform
independently. The mechanical response of this lattice structure is represented
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in the form of an elastic strain energy density function taken as the sum of the
strain energy of each ligament, and involves the strains and rotations within
the lattice in a form characteristic of micropolar materials. Connectivity of the
lattice and equilibrium of the forces and moments induced on the rigid particles
by the elastic ligaments is generally not considered in these models.

Ignoring the specific connectivity of the structure can have significant ef-
fects on estimates of the elastic constants. This has been pointed out by Warren
& Kraynik (1997) and by Zhu, Knott & Mills (1997) in their investigations of
the mechanical response of the three-dimensional spatially periodic connected
tetrakaidecohedron. They show that the effective elastic constants for this con-
nected structure are approximately 30 percent less than those for a random
~ array of tetrahedral joints (Warren & Kraynik 1988). They also point out that

torsion effects of the struts is significant for distortion type deformations.

In this investigation of micropolar effects in spatially periodic structures,
the characteristic length is well defined as the intrinsic beam length a associated
with the geometry of the structure. We have shown that in the transition from
the discrete structure to the continuum model representative of the material’s
mechanical response, it is necessary to carry terms through second order in a in
the Taylor series representations of the displacements and rotations of the ma-
terial points. In their analysis, Askar & Cakmak (1968) retain only first order
terms and we have shown that this does not provide a micropolar continuum.
The necessity of carrying the second order terms to investigate micropolar ef-
fects has been pointed out previously by BaZant & Christensen (1972), who
suppress a number of strain gradient terms in the constitutive relations they
develop which we feel should be included for consistency. Typically in most
micropolar work, and also in the couple stress theory, the only second gradients
of displacements considered are the infinitesimal rotation gradients. We see no
a priori justification for suppressing all other strain gradients. In the limit as
a — 0 the continuum model reduces to that of a simple hyperelastic material.

The mechanical response of low-density solid foams has been studied using
micromechanical models of a spatially periodic structure (Warren & Kraynik
1987, Warren & Kraynik 1988). These models assume a homogeneous defor-
mation of the structure and show how the elastic response depends on specific
aspects of the cell morphology and microstructure. Under these conditions,
the elastic response is not micropolar. These low-density foams are often used
for shock and vibration mitigation, and in these applications are often loaded
beyond the elastic limit and crushed. At the present time there is no adequate
micromechanical model which characterizes this generally inelastic and non-
recoverable deformation. Experimental evidence indicates that this crushing
or buckling of the foam is highly localized (Klintworth & Stronge 1989, Papka
& Kyriakides 1994), occurring along thin bands running through the structure.
Thus this crushing or buckling of the structure represents a deformation of
the structure which is not homogeneous but highly localized, and the contin-
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uum model of this crushing may be representative of a micropolar material
as suggested by the work of BaZant & Christensen (1972). The linear elas-
tic micropolar model developed here cannot be used to investigate localized
deformations to failure when these deformations become large. Micropolar ef-
fects, however, may provide information on where and under what conditions
eventual failure modes initiate. To actually obtain failure patterns for a given
loading orientation, the nonlinear material behavior for the specific material
used to fabricate the reticulated structure must be characterized as done by
Papka & Kyriakides (1998). But since actual nonlinear material behavior is
very diverse, these large deformation analyses become material specific and
loose their generality. The present analysis may also be useful for investigat-
ing the properties of polydisperse cellular structures and indicate under what
conditions the structure resembles a micropolar continuum. '
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