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Abstract

Bayesian networks with mixtures of truncated exponentials (MTEs) are gaining popularity
as a flexible modelling framework for hybrid domains. MTEs support efficient and exact
inference algorithms, but estimating an MTE from data has turned out to be a difficult
task. Current methods suffer from a considerable computational burden as well as the
inability to handle missing values in the training data. In this paper we describe an EM-
based algorithm for learning the maximum likelihood parameters of an MTE network when
confronted with incomplete data. In order to overcome the computational difficulties we
make certain distributional assumptions about the domain being modeled, thus focusing
on a subclass of the general class of MTE networks. Preliminary empirical results indicate
that the proposed method offers results that are inline with intuition.

1 Introduction

One of the major challenges when using prob-
abilistic graphical models for modeling hybrid
domains (domains containing both discrete and
continuous variables), is to find a representa-
tion of the joint distribution that support 1)
efficient algorithms for exact inference based on
local computations and 2) algorithms for learn-
ing the representation from data. In this paper
we will consider mixtures of truncated exponen-
tials (MTEs) (Moral et al., 2001) as a candi-
date framework. MTE distributions allow dis-
crete and continuous variables to be treated in
a uniform fashion, and it is well known that the
Shenoy-Shafer architecture (Shenoy and Shafer,
1990) can be used for exact inference in MTE
networks (Moral et al., 2001). Also, the expres-
sive power of MTEs was demonstrated in (Cobb
et al., 2006), where the most commonly used
marginal distributions were accurately approx-
imated by MTEs.

Algorithms for learning marginal and condi-

tional MTE distributions from complete data
have previously been proposed (Rumı́ et al.,
2006; Romero et al., 2006; Langseth et al., 2010;
Langseth et al., 2009). When faced with incom-
plete data, (Álvarez et al., 2010b) considered a
data augmentation technique for learning (tree
augmented) naive MTE networks for regression,
but so far no attempt has been made at learning
the parameters of a general MTE network.

In this paper we propose an EM-based algo-
rithm (Dempster et al., 1977) for learning MTE
networks from incomplete data. The general
problem of learning MTE networks (also with
complete data) is computationally very hard
(Langseth et al., 2009): Firstly, the sufficient
statistics of a dataset is the dataset itself, and
secondly, there are no known closed-form equa-
tions for finding the maximum likelihood (ML)
parameters. In order to circumvent these prob-
lems, we focus on domains, where the proba-
bility distributions mirror standard parametric
families for which ML parameter estimators are



known to exist. This implies that instead of try-
ing to directly learn ML estimates for the MTE
distributions, we may consider the ML estima-
tors for the corresponding parametric families.
Hence, we define a generalized EM algorithm
that incorporates the following two observations
(corresponding to the M-step and the E-step,
respectively): i) Using the results of (Cobb et
al., 2006; Langseth et al., 2010) the domain-
assumed parametric distributions can be trans-
formed into MTE distributions. ii) Using the
MTE representation of the domain we can eval-
uate the expected sufficient statistics needed for
the ML estimators. For ease of presentation we
shall in this paper only consider domains with
multinomial, Gaussian, and logistic functions,
but, in principle, the proposed learning proce-
dure is not limited to these distribution fami-
lies. Note that for these types of domains exact
inference is not possible using the assumed dis-
tribution families.

The remainder of the paper is organized as
follows. In Section 2 we give a brief introduc-
tion to MTE distributions as well as rules for
transforming selected parametric distributions
to MTEs. In Section 3 we describe the pro-
posed algorithm, and in Section 4 we present
some preliminary experimental results. Finally,
we conclude in Section 5 and give directions for
future research.

2 Preliminaries

2.1 MTE basics

Throughout this paper, random variables will
be denoted by capital letters, and their values
by lowercase letters. In the multi-dimensional
case, boldfaced characters will be used. The
domain of the variables X is denoted by ΩX .
The MTE model is defined by its corresponding
potential and density as follows (Moral et al.,
2001):

Definition 1. (MTE potential) Let W be a
mixed n-dimensional random vector. Let Z =
(Z1, . . . , Zd)

T and Y = (Y1, . . . , Yc)
T be the dis-

crete and continuous parts of W , respectively,
with c + d = n. We say that a function f :
ΩW 7→ R

+
0 is a Mixture of Truncated Exponen-

tials potential if for each fixed value Z ∈ ΩZ of
the discrete variables Z, the potential over the
continuous variables Y is defined as:

f(y) = a0 +

m
∑

i=1

ai exp {b
T

i y} , (1)

for all y ∈ ΩY, where ai ∈ R and bi ∈ R
c,

i = 1, . . . ,m. We also say that f is an MTE
potential if there is a partition D1, . . . ,Dk of ΩY

into hypercubes and in each Dℓ, f is defined as
in Eq. 1. An MTE potential is an MTE density
if it integrates to 1.

A conditional MTE density can be specified
by dividing the domain of the conditioning vari-
ables and specifying an MTE density for the
conditioned variable for each configuration of
splits of the conditioning variables. The follow-
ing is an example of a conditional MTE density.

f(y|x)=


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












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


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





























1.26 − 1.15e0.006y

if 0.4 ≤ x < 5, 0 ≤ y < 13 ,

1.18 − 1.16e0.0002y

if 0.4 ≤ x < 5, 13 ≤ y < 43 ,

0.07 − 0.03e−0.4y + 0.0001e0.0004y

if 5 ≤ x < 19, 0 ≤ y < 5 ,

−0.99 + 1.03e0.001y

if 5 ≤ x < 19, 5 ≤ y < 43 .

2.2 Translating standard distributions
to MTEs

In this section we will consider transformations
from selected parametric distributions to MTE
distributions.

2.2.1 The Multinomial Distribution

The conversion from a multinomial distribu-
tion into an MTE distribution is straightfor-
ward, since a multinomial distribution can be
seen as a special case of an MTE (Moral et al.,
2001).

2.2.2 The Conditional Linear Gaussian
Distribution

In (Cobb et al., 2006; Langseth et al., 2010)
methods are described for obtaining an MTE



approximation of a (marginal) Gaussian distri-
bution. Common for both approaches is that
the split points used in the approximations de-
pend on the mean value of the distribution being
modeled. Consider now a variable X with con-
tinuous parents Y and assume that X follows a
conditional linear Gaussian distribution:1

X|Y = y ∼ N (µ = b+wTy, σ2).

In the conditional linear Gaussian distribu-
tion, the mean value is a weighted linear com-
bination of the continuous parents. This im-
plies that we cannot directly obtain an MTE
representation of the distribution by following
the procedures of (Cobb et al., 2006; Langseth
et al., 2010); each part of an MTE potential
has to be defined on a hypercube (see Defini-
tion 1), and the split points can therefore not
depend on any of the variables in the potential.
Instead we define an MTE approximation by
splitting ΩY into hypercubes D1, . . . ,Dk, and
specifying an MTE density for X for each of
the hypercubes. For hypercube Dl the mean of
the distribution is assumed to be constant, i.e.,
µl = b + w1midl1 + · · · + wjmidlj , where midli
denotes the midpoint of Yi in Dl (by defining
fixed upper and lower bounds on the ranges of
the continuous variables, the midpoints are al-
ways well-defined). Thus, finding an MTE rep-
resentation of the conditional linear Gaussian
distribution has been reduced to defining a par-
titioning D1, . . . ,Dk of ΩY and specifying an
MTE representation for a (marginal) Gaussian
distribution (with mean µl and variance σ2) for
each of the hypercubes Dl in the partitioning.

In the current implementation we define the
partitioning of ΩY based on equal-frequency
binning, and we use BIC-score (Schwarz, 1978)
to chose the number of bins. To obtain an MTE
representation of the (marginal) Gaussian dis-
tribution for each partition in ΩY we follow the
procedure of (Langseth et al., 2010); four MTE
candidates for the domain [−2.5, 2.5] are shown
in Figure 1 (no split points are being used, ex-
cept to define the boundary).

1For ease of exposition we will disregard any discrete
parent variables in the subsequent discussion, since they
will only serve to index the parameters of the function.
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Figure 1: MTE approximations with 5, 7, 9 and
11 exponential terms, respectively, for the trun-
cated standard Gaussian distribution with sup-
port [−2.5, 2.5]. It is difficult to visually distin-
guish the MTE and the Gaussian for the three
latter models.

Notice that the MTE density is only positive
within the interval [µ − 2.5σ, µ + 2.5σ] (con-
fer Figure 1), and it actually integrates up to
0.9876 in that region, which means that there is
a probability of 0.0124 of finding points outside
this interval. In order to avoid problems with 0
probabilities, we add tails covering the remain-
ing probability mass of 0.0124. More precisely,
we define the normalization constant

c =
0.0124

2
(

1−
∫ 2.5σ
0 exp{−x}dx

) ,

and include the tail

φ(x) = c · exp {−(x− µ)} .

for the interval above x = µ+2.5σ in the MTE
specification. Similarly, a tail is also included
for the interval below x = µ− 2.5σ. The trans-
formation rule from Gaussian to MTE therefore
becomes

φ(x) =























c · exp {x− µ} if x < µ− 2.5σ,

σ−1
[

a0 +
∑7

j=1 ajexp
{

bj
x−µ
σ

}

]

if µ− 2.5σ ≤ x ≤ µ+ 2.5σ,

c · exp {−(x− µ)} if x > µ− 2.5σ.

(2)



2.2.3 The Logistic Function

The sigmoid function for a discrete variable
X with a single continuous parent Y is given by

P (X = 1 | Y ) =
1

1 + exp{b+ wy}
.

(Cobb and Shenoy, 2006) propose an 4-piece
1-term MTE representation for this function:

P (X = 1 | Y = y)

=































0 if y < 5−b
w ,

a10 + a11(b, w) exp{b
1w(y − b(w + 1))}

if 5−b
w ≤ y ≤ b′

w ,

a20 + a21(b, w) exp{b
2w(y − b(w + 1))}

if b′

w < y ≤ −5−b
w , 1 if y > −5−b

w ,

(3)

where ak0 and b1, b2 are constants and a11(b, w)
and a21(b, w) are derived from b and w. Note
that the MTE representation is 0 or 1 if y <
(5 − b)/w or y > (−5 − b)/w, respectively.
The representation can therefore be inconsistent
with the data (i.e., we may have data cases with
probability 0), and we therefore replace the 0
and 1 with ǫ and 1−ǫ, where ǫ is a small positive
number. (ǫ = 0.01 was used in the experiments
reported in Section 4.)

In the general case, where X has continuous
parents Y = {Y1, . . . , Yj} and discrete parents
Z = {Z1, . . . , Zk}, then for each configuration
z of Z, the conditional distribution of X given
Y is given by

P (X = 1 | Y = y,Z = z) =

1

1 + exp{bz +
∑j

i=1 wi,zyi}
. (4)

With more than one continuous variable as
argument, the logistic function cannot easily be
represented by an MTE having the same struc-
ture as in Equation 3. The problem is that the
split points would then be (linear) functions of
at least one of the continuous variables, which
is not consistent with the MTE framework (see

Definition 1). Instead we follow the same proce-
dure as for the conditional linear Gaussian dis-
tribution: for each of the continuous variables
in Y ′ = {Y2, . . . Yj}, split the variable Yi into a
finite set of intervals and use the midpoint of the
lth interval to represent Yi in that interval. The
intervals for the variables in Y ′ define a parti-
tioning D1, . . . ,Dk of ΩY ′ into hypercubes, and
for each of these partitions we apply Equation 3.
That is, for partition Dl we get

P (X = 1 | y,z) =
1

1 + exp{b′ +w1y1}
,

where b′ = b+
∑j

k=2midkl w
k
l . In the current im-

plementation Y1 is chosen arbitrarily from Y ,
and the partitioning of the state space of the
parent variables is performed as for the condi-
tional linear Gaussian distribution.

3 The General Algorithm

As previously mentioned, deriving an EM al-
gorithm for general MTE networks is compu-
tationally hard because the sufficient statistics
of the dataset is the dataset itself and there is
no closed-form solution for estimating the maxi-
mum likelihood parameters. To overcome these
computational difficulties we will instead focus
on a subclass of MTE networks, where the con-
ditional probability distributions in the network
mirror selected distributional families. By con-
sidering this subclass of MTE networks we can
derive a generalized EM algorithm, where the
updating rules can be specified in closed form.

To be more specific, assume that we have
an MTE network for a certain domain, where
the conditional probability distributions in the
domain mirror traditional parametric families
with known ML-based updating rules. Based on
the MTE network we can calculate the expected
sufficient statistics required by these rules (the
E-step) and by using the transformations de-
scribed in Section 2.2 we can in turn update
the distributions in the MTE network.

The overall learning algorithm is detailed in
Algorithm 1, where the domain in question is
represented by the model B. Note that in or-
der to exemplify the procedure we only consider



the multinomial distribution, the Gaussian dis-
tribution, and the logistic distribution. The al-
gorithm is, however, easily extended to other
distribution classes.

Algorithm 1: An EM algorithm for learn-
ing MTE networks from incomplete data.

Input: A parameterized model B over
X1, . . . ,Xn, and an incomplete
database D of cases over
X1, . . . ,Xn.

Output: An MTE network B′.
Initialize the parameter estimates θ̂B1

randomly.
repeat2

Using the current parameter estimates3

θ̂B, represent B as an MTE network B′

(see Section 2.2).
(E-step) Calculate the expected4

sufficient statistics required by the
M-step using B′.
(M-step) Use the result of the E-step5

to calculate new ML parameter
estimates θ̃B for B.
θ̂B ← θ̃B.6

until convergence ;7

return B′.8

3.1 The EM algorithm

The transformation rules for the conditional lin-
ear Gaussian distribution, the multinomial dis-
tribution, and the logistic distribution are given
in Section 2.2. In order to complete the specifi-
cation of the algorithm, we therefore only need
to define the E-step and the M-step for the three
types of distributions being considered.

3.1.1 The M-step

Given a database of cases D = {d1, . . . ,dN}
we derive the updating rules based on the ex-
pected data-complete log-likelihood function Q:

Q =

N
∑

i=1

E[log f(X1, . . . ,Xn) | di]

=

N
∑

i=1

n
∑

j=1

E[log f(Xj | pa(Xj)) | di] .

The updating rules for the parameters for the
multinomial distribution and the Gaussian dis-
tribution are well-known and can be found in
Appendix A (see (Álvarez et al., 2010a) for a
derivation).

A closed form solution does not exist for the
weight vector for the logistic function, and in-
stead one typically resorts to numerical opti-
mization such as gradient ascent for maximiz-
ing Q. To ease notation, we shall consider the
variable Xj with discrete parents Zj and con-
tinuous parents Y j (we drop indexes for the
parents whenever those are clear from the con-
text). Also, we use w̄z,j = [wT

z,j, bz,j]
T and

ȳ = [yT, 1]T, in which case the gradient ascent
updating rule can be expressed as

ˆ̄wz,j := w̄z,j + γ
∂Q

∂w̄z,j
,

where γ > 0 is a small number and

∂Q

∂w̄z,j
=

N
∑

i=1

P (z | di)

[
∫

y
P (xj = 1, ȳ | di,z)

gz,xj=1(ȳ)ȳdy−
∫

y
P (xj = 0, ȳ | di,z)gz,xj=0(ȳ)ȳdy

]

.

In order to find the partial derivative we need
to evaluate two integrals. However, the com-
bination of the MTE potential P (xj , ȳ | di,z)
and the logistic function gz,xj

(ȳ) makes these
integrals difficult to evaluate. In order to avoid
this problem we use the MTE representation of
the logistic function specified in Section 2.2.3,
which allows the integrals to be calculated in
closed form.

3.1.2 The E-step

In order to perform the updating in the M-
step we need to calculate the following expecta-
tions (see Appendix A):

• E(Xj | di,z)

• E(XjȲ | di,z)

• E(Ȳ Ȳ
T
| di,z)

• E

[

(Xj − l̄
T
z,jȲ )2 | di,z

]



All the expectations can be calculated ana-
lytically (see Appendix B). The main point to
notice in the calculations is that rather than cal-
culating e.g. E(Ȳ Ȳ

T
| di,z) directly we instead

consider each of the components E(YjYk | di,z)
in the matrix individually.

4 Experimental results

In order to evaluate the proposed learning
method we have generated data from the Crops
network (Murphy, 1999). We sampled six com-
plete datasets containing 50, 100, 500, 1000,
5000, and 10000 cases, respectively, and for
each of the datasets we generated three other
datasets with 5%, 10%, and 15% missing data
(the data is missing completely at random (Lit-
tle and Rubin, 1987)), giving a total of 24 train-
ing datasets. The actual data generation was
performed using WinBUGS (Lunn et al., 2000).

Price

CropSubsidize

Buy

Figure 2: The Crops network.

For comparison, we have also learned baseline
models using WinBUGS. However, since Win-
BUGS does not support learning of multinomial
distributions from incomplete data we have re-
moved all cases where Subsidize is missing from
the datasets.

The learning results are shown in Table 1,
which lists the average (per observation) log-
likelihood of the model wrt. a test-dataset con-
sisting of 15000 cases (and defined separately
from the training datasets). From the table we
see the expected behaviour: As the size of the
training data increases, the models tend to get
better; as the fraction of the data that is missing
increases, the learned models tend to get worse.

The results also show how WinBUGS in gen-
eral outperforms the algorithm we propose in

this paper. We believe that one of the rea-
sons is the way we approximate the tails of the
Gaussian distribution in Eq. 2. As the tails are
thicker than the actual Gaussian tails, the like-
lihood is lower in the central parts of the distri-
bution, where most of the samples potentially
concentrate. Another possible reason is the way
in which we approximate the CLG distribution.
Recall that when splitting the domain of the
parent variable, we take the average data point
in each split to represent the parent, instead
of using the actual value. This approximation
tends to give an increase in the estimate of the
conditional variance, as the approximated dis-
tribution needs to cover all the training samples.
Obviously, this will later harm the average pre-
dictive log likelihood. Two possible solution to
this problem are i) to increase the number of
splits, or ii) to use dynamic discretization to
determine the optimal way to split the parent’s
domain. However, both solutions come with a
cost in terms of increased computational com-
plexity, and we consider the tradeoff between
accuracy and computational cost as an inter-
esting topic for future research.

The algorithm has been implemented in
Elvira (Consortium, 2002) and the software,
the datasets used in the experiments, and the
WinBUGS specifications are all available from
http://elvira.ual.es/MTE-EM.html.

5 Conclusion

In this paper we have proposed an EM-based
algorithm for learning MTE networks from in-
complete data. In order to overcome the com-
putational difficulties of learning MTE distribu-
tions, we focus on a subclass of the MTE net-
works, where the distributions are assumed to
mirror known parametric families. This sub-
class supports a computationally efficient EM
algorithm. Preliminary empirical results indi-
cate that the method learns as expected, al-
though not as well as WinBUGS. In particular,
our method seems to struggle when the por-
tion of the the data that is missing increases.
We have proposed some remedial actions to this
problem that we will investigate further.



ELVIRA WINBUGS
No. Cases Percentage of missing data Percentage of missing data

0% 5 % 10% 15% 0% 5 % 10% 15%

50 -3.8112 -3.7723 -3.8982 -3.8553 -3.7800 -3.7982 -3.7431 -3.6861
100 -3.7569 -3.7228 -3.9502 -3.9180 -3.7048 -3.7091 -3.7485 -3.7529
500 -3.6452 -3.6987 -3.7972 -3.8719 -3.6272 -3.6258 -3.6380 -3.6295

1 000 -3.6325 -3.7271 -3.8146 -3.8491 -3.6174 -3.6181 -3.6169 -3.6179
5 000 -3.6240 -3.6414 -3.8056 -3.9254 -3.6136 -3.6141 -3.6132 -3.6144
10 000 -3.6316 -3.6541 -3.7910 -3.8841 -3.6130 -3.6131 -3.6131 -3.6135

Table 1: The average log-likelihood for the learned models, calculated per observation on a separate
test set.
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A Updating rules

The updating rules for the parameters for the
multinomial distribution (i.e., θj,k,z = P (Xj =
k|Z = z)) and the conditional linear Gaus-
sian distribution (i.e., Xj |Z = z,Y = y ∼
N (̄l

T

z,jȳ, σ
2
z,j)) are given by

ˆ̄lz,j ←

[

N
∑

i=1

f(z | di)E(Ȳ Ȳ
T
| di,z)

]−1

[

N
∑

i=1

f(z | di)E(XjȲ | di,z)

]

σ̂z,j ←

[

1
∑N

i=1 f(z | di)

N
∑

i=1

f(z | di)E
[

(Xj − l̄
T
z,jȲ )2 | di,z

]

]1/2

θ̂j,k,z ←

N
∑

i=1

P (Xj = k,Z = z | di)

|sp(Xj)|
∑

k=1

N
∑

i=1

P (Xj = k,Z = z | di)

B Expected sufficient statistics

To illustrate the calculation of the expected suf-
ficient statistics we consider the calculation of
E

[

(Xj − l̄
T
z,jȲ )2 | di,z

]

(see Section 3.1.2):

E
[

(Xj−l̄
T

z,jȲ )2 | di

]

= E[X2
j | di]−

2̄l
T

z,jE[XjȲ | di] + E[(̄l
T

z,jȲ )2 | di]

For the second component in the summation
we need to calculate a vector of expectations,
where the kth element is E[XjYk | di]. By let-
ting the ranges of Xj and Yk be [xa, xb] and
[ya, yb] (dropping the j and k indices for sim-
plicity), respectively, it is easy to show that the
expectation can be calculated on closed form:

E [XjYi | di] =
a0
4
(y2b − y2a)(x

2
b − x2a)+

m
∑

j=1

aj

cj2bj
2

(

− exp{bjya}+ bjyaexp{bjya}+

exp{bjyb} − bjybexp{bjyb}

)(

− exp{cjxa}+

cjxaexp{cjxa}+ exp{cjxb} − cjxbexp{cjxb}

)

.

For E[X2
j | di] and E

[

(̄l
T

z,jȲ )2 | di

]

the cal-

culations are similar; for the latter it im-

mediately follows from E

[

(̄l
T

z,jȲ )2 | di

]

=

l̄
T
z,jE

[

Ȳ Ȳ
T
| di

]

l̄z,j.
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