Aalborg Universitet

Strømmålinger ved Sæby Udløbsledning

september 1981 Larsen, Torben

Publication date: 1981

Document Version Også kaldet Forlagets PDF

Link to publication from Aalborg University

Citation for published version (APA):

Larsen, T. (1981). *Strømmålinger ved Sæby Udløbsledning: september 1981*. Aalborg Universitetscenter, Inst. for Vand, Jord og Miljøteknik, Laboratoriet for Hydraulik og Havnebygning.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Torben Larsen STRØMMÅLINGER VED SÆBY UDLØBSLEDNING September 1981

AALBORG UNIVERSITETSCENTER LABORATORIET FOR HYDRAULIK OG HAVNEBYGNING SOHNGARDSHOLMSVEJ 57 DK-9000 AALBORG DANMARK

AALBORG UNIVERSITETSCENTER

INSTITUTTET FOR VAND, JORD OG MILJØTEKNIK Sohngårdsholmsvej 57 DK-9000 Aalborg Danmark tlf.(08)142333

LABORATORIET FOR HYDRAULIK OG HAVNEBYGNING

Torben Larsen

STRØMMÅLINGER VED SÆBY UDLØBSLEDNING

September 1981

INDHOLDSFORTEGNELSE:

1.	Indledning	side	1
2.	Konklusion	side	2
3.	Kommentarer til måleresultater	side	3

BILAG:

Oversigtsplan og målerens ophængning	Bilag nr.	1
Timemidler af strømhastighed og -retning	Bilag nr.	2
Hyppighed af hastighed og retning	Bilag nr.	3
Plot af nord-syd komposanten	Bilag nr.	4

1. INDLEDNING

Med henblik på at vurdere tidevandsstrømmens amplitude i det kystnære område ud for Sæby har man i ca. 14 dage fra 25.5.81 til 11.6.81 haft udlagt en Aanderaa RCM 4 strømmåler ca. 1 m under overfladen på ca. 4 m vanddybde. Måleren lå ca. 900 m fra land i en linie, som var en forlængelse af udløbsledningen fra Sæby renseanlæg. Måleren var placeret inden for den midlertidige afmærkning, som var udlagt i forbindelse med arbejderne med en forlængelse af udløbsledningen (se bilag nr. 1).

2. KONKLUSION

- Strømmen domineres af tidevandsstrømmen, som skifter hver ca.
 6 1/4 time mellem nord og sydgående retning.
- 2.2 Amplituden i tidevandsstrømmens M₂-komponent med perioden 12.42 timer er ved en harmonisk analyse bestemt til 28,4 cm/s. De øvrige komponenter er tilsyneladende forsvindende og mindre end 4 cm/s.
- 2.3 Omkring strømvending drejer strømmen rundt med uret og holder sig større end 10 cm/s.
- 2.4 Den største strømhastighed som måltes var 80 cm/s, medianhastigheden var 28 cm/s, middelhastigheden var 29 cm/s og en vektoriel sammensætning af strømvektorerne gav en nordgående nettostrøm på 4 cm/s i denne to-ugers periode.

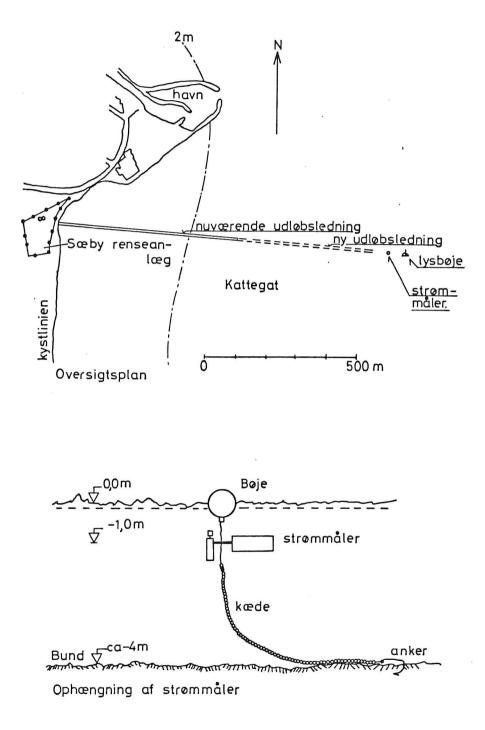
3. KOMMENTARER TIL MÅLERESULTATER

Strømmåleren af typen Aanderaa RCM 4 var indstillet til at registrere hvert 10. minut. På magnetbånd blev således følgende parametre registreret:

- 1) Strømmens middelhastighed over 10 min.
- 2) Strømretningen til registreringstidspunktet.
- 3) Temperaturen (er ikke medtaget i udskriften af bånd).

Bilag nr. 1 angiver målerens placering og ophængningsarrangement.

<u>Bilag nr. 2</u> angiver timemidler af strømhastighed og -retning. Middelværdidannelsen er foretaget vektorielt, idet 6 10-minutters strømvektorer er sammensat til en 1-times strømvektor.


<u>Bilag nr. 3</u> angiver en statistisk behandling af 10-minutters registreringerne, hvor henholdsvis hyppigheden og strømmens absolutte hastighed og hyppigheden af strømretningen ses.

<u>Bilag nr. 4</u> angiver grafiske timemidler af nord-syd komposanten af strømmen. Man ser tydeligt, at tidevandet er dominerende.

<u>Nettostrømmen</u> for de to uger blev bestemt ud fra en vektoriel sammensætning af samtlige registrerede strømvektorer og resultatet var, at nettostrømmen var nordgående med en hastighed af 3,8 cm/s. På grund af den korte måleperiode kan der imidlertid næppe generaliseres yderligere ud fra dette.

<u>Harmonisk analyse</u> (fourieranalyse) på diskrete frekvenser blev foretaget på en tidsserie som bestod af de på bilag nr. 4 viste strømkomposanter. Formålet var at bestemme amplituden i tidevandsstrømmen. Resultatet af analysen var følgende:

Tid	evandskomponent	Periode timer	Nord-syd strømamplitude cm/sec
s2	Jordens rotation i forhold til solen	12,00	3,6
^M 2	Jordens rotation i forhold til månen	12,42	28,4
ĸı	Solens og månens højde over Ækvator	23,93	0,6
ol	Jordens rotation i forhold til månen	25,82	3,3

Oversigtsplan og målerens ophængning

Bilag nr. l

SAEBY HAVLEDNING STROEMMAALINGER 25.5.1981 - 10.6.1981 MAALT MED AANDERAA RCM4 NR 674 RESULTATER BEHANDLET AF TORBEN LARSEN AUGUST 1981 DE ANGIVNE TIMEMIDLER AF STROEMMEN ER BEREGNET VEKTORIELT

TIMEMIDLER AF STROEMDATA

ΚL	DAG	۳ID	AAR	HAST CM/S	RETN AZ.
12 13 14	25 25 25	5 1	981 981 981	28.2 31.8 41.3	333 12 17
15	25	5 1	981	60.9	3
16	25		981	61.2	344
17 18	25 25		981 981	69.1 56.3	356
19	25		981	38.0	355 16
20	25		981	25.3	25
21	25		981	27.9	48
22	25		981	26.3	132
23 0	25 26		981 981	25.6 27.9	117 46
1	26		981	29.9	22
2	26		981	36.0	12
З	26		981	39.6	5
4	26		981	42.1	13
5 6	26 26		981 981	36.7 43.9	358 13
7	26		981	34.8	13
8	26		981	19.4	357
9	26		981	13.8	160
10	26		981	27.3	184
11	26		981	27.9	198
12 13	26 26		981 981	38.0 30.8	193 209
14	26		981	27.1	209
15	26		981	41.9	12
16	26		981	57.8	355
17	26		981	71.2	15
18 19	26 26		981	54.5	4
20	26		981 981	25.1 27.9	337 8
21	26		981	23.0	16
22	26		981	19.6	32
23	26		981	22.7	161
0	27		981	27.1	178
1 2	27 27		981 981	25.7 17.4	174 205
3	27		981	14.5	35
4	27		981	16.6	13
5	27		981	33.3	20
6	27		981	35.8	14
7 8	27 27		981 981	36.3 19.1	25 11
9	27		781 981	1.6	134
10	27		981	23.2	191

Timemidler af strømhastighed og -retning

Bilag nr. 2 side l

ΚL	DAG	MD AAR	HAST CM/S	RETN AZ.
K 123454789012301234567890123456789012322012345 11234567890123012345678901234567890123012345	DAG 222222222222222222222222222222222222	$ \begin{array}{c} \text{MD} & \text{AAR} \\ & 5 & 1981 \\ & 5 & 1981 \\ & 5 & 1981 \\ & 5 & 1981 \\ & 5 & 1981 \\ & 5 & 1981 \\ & 5 & 1981 \\ & 5 & 1981 \\ & 5 & 1981 \\ & 5 & 1981 \\ & 5 & 1981 \\ & 5 & 1981 \\ & 5 & 1981 \\ & 5 & 1981 \\ & 5 & 1981 \\$		
6 7 8 9 10	29 29 29 29 29 29	5 1981 5 1981 5 1981 5 1981 5 1981 5 1981	44.5 40.3 28.0 21.5 17.3	2 0 6 4 8

Bilag nr. 2

ΚL	DAG	MD AAR	HAST Cm/s	RETN AZ.
112345678901234567	29 29 29 29 29 29 29 29 29 29 29 29 29 2	5 1981 5 1	CH/S 17.3 22.1 29.9 22.5 27.0 24.6 20.9 15.6 30.7 43.1 31.6 30.7 43.1 31.2 43.1 31.2 43.1 31.4 10.9 10.1 11.9 26.3 32.4 23.2 14.8 723.5	AZ. 20 196 177 216 200 206 191 341 341 359 359 359 359 359 359 359 359 359 359
8 9 10	30 30 30	5 1981 5 1981 5 1981 5 1981	29.3 29.1 30.6 20.3	360 356 356
11 12 13 14 15 16 17	30 30 30 30 30 30 30	5 1981 5 1981 5 1981 5 1981 5 1981 5 1981 5 1981 5 1981	11.2 8.0 18.9 34.5 39.1 33.4 28.5	12 199 177 176 181 191 216
18 19 20 21 23 0 1 2 3	30 30 30 30 30 31 31 31 31 31	5 1981 5 1981	25.3 28.9 42.6 47.3 32.6 15.8 13.7 19.6 21.8 32.2	180 35 1 8 17 186 189 186 187
4 5 7 8 9 10	31 31 31 31 31 31 31 31	5 1981 5 1981 5 1981 5 1981 5 1981 5 1981 5 1981 5 1981	42.9 41.3 24.6 14.9 22.1 20.6	181 190 200 271 357 5 356

Bilag nr. 2

KL	DAG	MD AÀR	HAST CM/S	RETN AZ.
KL 123456789012301234567890123456789012322201234	DAG 3113131111111111111111111111111111111	MD AAR 5 1981 5 1981 5 1981 5 1981 5 1981 5 1981 5 1981 5 1981 5 1981 5 1981 5 1981 5 1981 5 1981 5 1981 5 1981 6 1981 <td< td=""><td></td><td></td></td<>		
5 6 7 8 9	ର ର ର ର	6 1981 6 1981 6 1981 6 1981 6 1981 6 1981	19.3 21.4 16.6 10.1 19.0	197 190 203 277 339
10	2	6 1981	30.7	349

Bilag nr. 2

ΚL	DAG	MD AÀR	HAST CM/S	RETN AZ.
11 12 14 15 17 18 20 22 20 1 2 20 1 2	<u> </u>	6 1981 6 1981	CM/S 33.5 27.0 18.7 15.4 23.0 21.8 16.8 22.9 18.3 12.6 24.7 42.0 41.3 35.9 28.2 28.2 14.6	AZ. 349 2 0 185 175 178 188 179 169 52 55 354 355 354 354 354 354
34567891112345678911123456789012230122301223012	ទាទាទាទាទាទាទាទាទាទាទាទាទាទាទាទាទាទាទា	 6 1981 	$\begin{array}{c} 11.4\\ 20.2\\ 21.8\\ 25.0\\ 20.7\\ 12.1\\ 15.0\\ 26.0\\ 29.6\\ 36.2\\ 27.1\\ 17.3\\ 31.9\\ 37.0\\ 37.0\\ 37.0\\ 37.4\\ 27.8\\ 27.8\\ 27.4\\ 24.0\\ 13.7\\ 37.5\\ 24.4\\ 17.7\end{array}$	173 170 173 171 189 229 328 5 7 16 39 106 178 182 205 186 190 207 310 182 207 310 352 212
3 4 5 6 7 8 9 10	4 4 4 4 4 4 4 4	6 1981 6 1981 6 1981 6 1981 6 1981 6 1981 6 1981 6 1981	22.2 24.4 22.8 15.6 19.0 25.8 25.3 15.7	183 204 199 186 177 193 188 221

Bilag nr. 2

KL	DAG	MD AAR	HAST CM/S	RETN AZ.
K 1123456789012301234567890123456789012301234567	DAG 4444444444444555555555555555555555555	MD AAR 6 1981 6 1981		
9 10	ሪ ሪ	6 1981 6 1981	14.8 9.4	212 276

Bilag nr. 2

KL	DAG	MD AAR	HAST CM/S	RETN AZ.
1123456789012301234567890112345678901222012	よんよんよんよん よん スファファファファファファファファファファファファ		CH/S 12.0 19.0 308.0 26.3 20.4 26.3 336.8 27.3 20.4 23.3 36.8 27.3 20.4 23.3 36.8 27.3 20.4 23.3 36.8 27.3 20.4 23.3 21.2 22.2 21.4 22.2 22.4 2.5 22.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.	AZ. 4023546579711111111111111111111111111111111111
3 4 5 7 8 9	888888888888888888888888888888888888888	6 1981 6 1981 6 1981 6 1981 6 1981 6 1981 6 1981 6 1981	36.4 34.4 28.2 23.6 21.6 13.0 21.5	360 360 360 355 22 212
10	8	6 1981	18.1	213

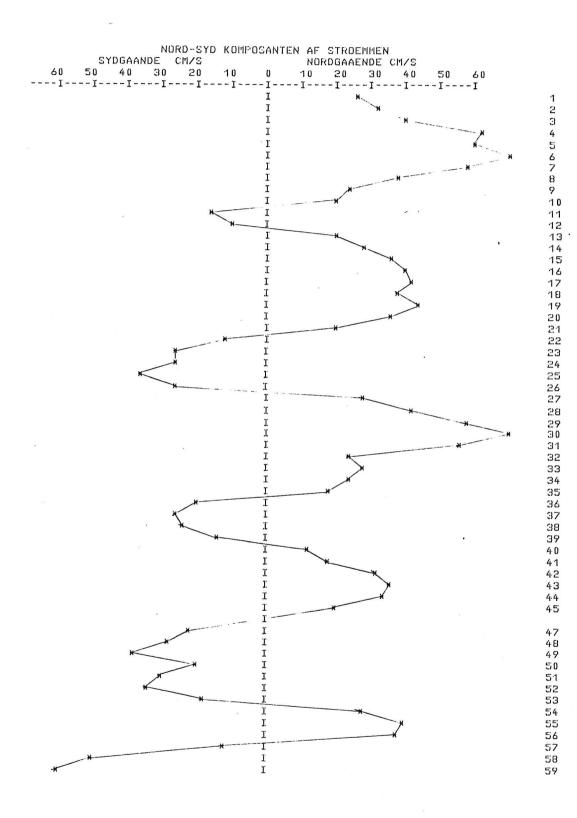
Bilag nr. 2

KL	DAG	MD AAR	HAST CM/S	RETN AZ.
11	8	6 1981	27.7	192
12	8	6 1981	27.3	199
13	8	6 1981	15.8	261
14	8	6 1981	32.3	352
15	8	6 1981	40.6	353
16	8	6 1981	37.7	359
17	8	6 1981	34.3	353
18	8	6 1981	30.8	353
19 20	8	6 1981	28.4	347
20	8 8	6 1981 6 1981	25.9	356
22	8	6 1981	23.1 12.2	358 322
23	8	6 1981	23.8	187
0	9	6 1981	29.9	178
1	9	6 1981	14.8	102
2	9	6 1981	22.9	17
З	9	6 1981	30.0	342
4	9	6 1981	33.9	359
5	9	6 1981	28.9	354
6 7	9 9	6 1981	24.8	359
8	9	6 1981 6 1981	31.0 30.5	1 8
9	9	6 1981	27.9	16
10	9	6 1981	20.7	94
11	9	6 1981	32.5	158
12	9	6 1981	35.6	169
13	9	6 1981	26.8	160
14	9	6 1981	25.1	135
15	9	6 1981	28.6	З
16	9	6 1981	40.4	1
17	9	6 1981	36.4	1
18	9	6 1981	29.7	353
19 20	9 9	6 1981 6 1981	26.5 24.8	353
21	9	6 1981	19.5	345 306
22	9	6 1981	24.0	86
23	9	6 1981	26.3	145
0	10	6 1981	31.1	181
1	10	6 1981	30.0	180
2	·1 0	6 1981	27.1	200
З	10	6 1981	20.1	347
4	10	6 1981	28.1	1
5	10	6 1981	30.7	357
6 7	10	6 1981 6 1981	30.6	345
8	10 10	6 1981 6 1981	28.7 28.3	360 348
9	10	6 1981	28.0	540
·10	10	6 1981	29.0	357
0.00	1000	1000 100 10 100 10		

Bilag nr. 2

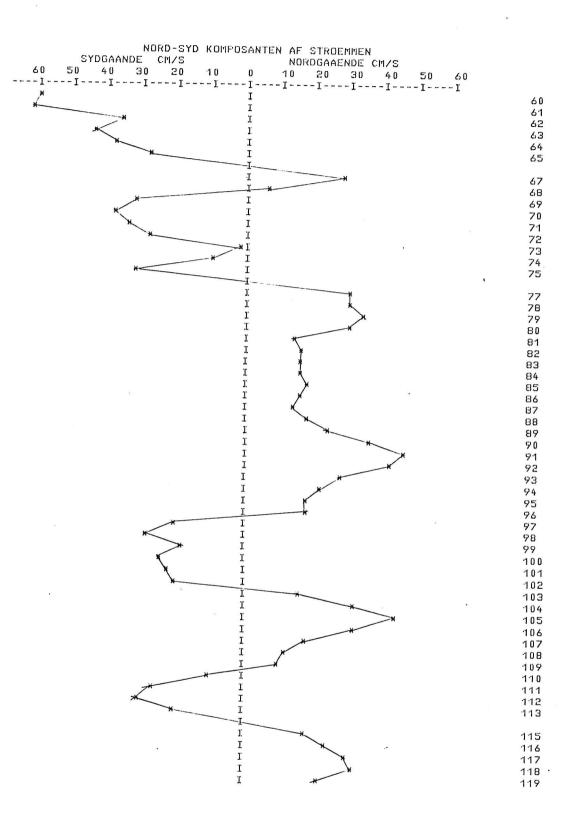
SAEBY HAVLEDNING STROEMMAALINGER 25.5.1981 - 10.6.1981 MAALT MED AANDERAA RCM4 NR 674 RESULTATER BEHANDLET AF TORBEN LARSEN AUGUST 1981 STATISTIK AF 10 MIN DATA

HYPPIGHED AF STROEMHASTIGHED

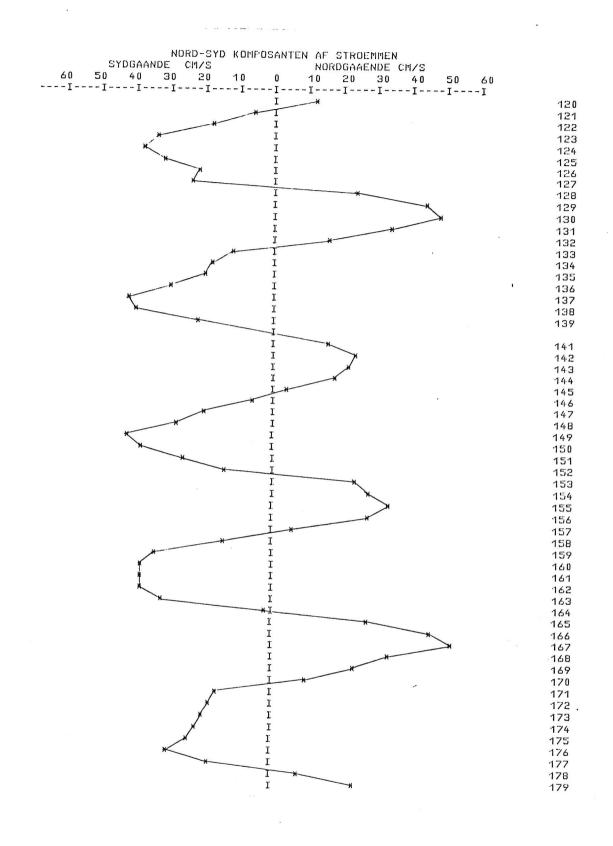

:= ::							
I	INTER	VAL		HYP	1		
I	CM/S	EC		×	Ι		
12 3	. = = = = =	=====	====				
I	0	5	T	0.0	I		
1	5	10	I	0.0	1		
I	·1 0	15	I	3.4	I		
I	15	20	I	5.8	I		
I	20	25	·I	11.3	I		
I	25	30	I	22.2	I		
I	30	35	I	14.3	I		
I	35	40	I	16.4	I.		
1	40	45	I	8.5	1		
Ι	45	50	I	4.4	Ι		
Ι	50	55	I	1.0	I		
Ι	55	60	Ι	2.0	1		
Ι	60	65	Ι	2.7	I		
I	65	70	I	2.7	1		
I	70	75	Ι	3.4	I		
I	75	80	Ι	1.7	I		
Ι.	80	85	Ι	0.0	I		
Ι	85	90	Ι	0.0	I		
I	90	95	Ι	0.0	I		
I	95	100	Ι	0.0	r		
Ι	100	105	Ι	0.0	I		
Ι	105	110	Ι	0.0	I		
1	110	115	Ι	0.0	I		
I	115	120	I	0.0	I		
== =							

HYPPIGHED AF STROEMRETNING

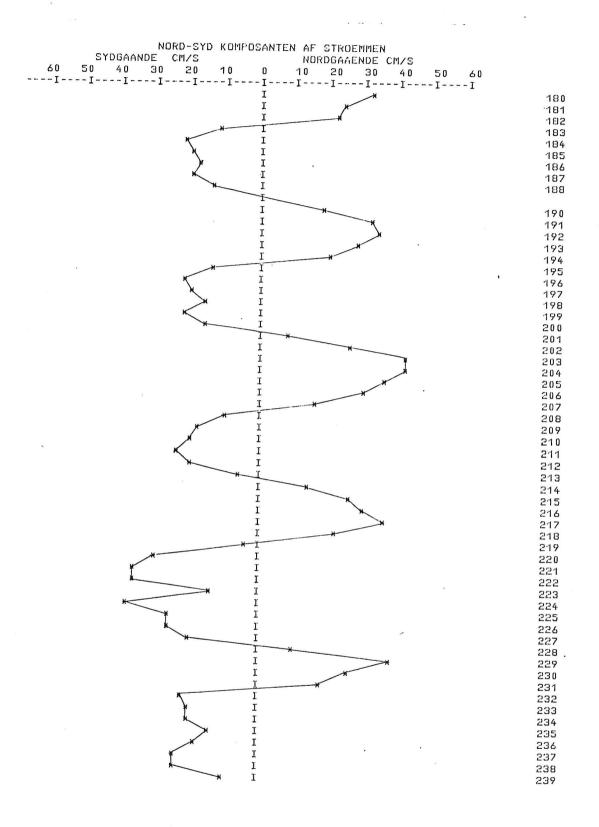
I	INTER	VAL		HYF	I
I	GR.			×	I
=======================================					
r	0	15	I	27.7	I
I	15	30	I	17.1	I
I	30	45	I	6.8	I
I	45	60	I	2.4	I
Ι	60	75	I	0.7	I
.1	75	90	I	0.7	I
I	90	105	I	·1.0	I
I	105	120	Ι	О.З	I
Ι	120	135	Ι	1.0	I
I	135	150	Ι	1.0	I
I	150	165	Ι	2.1	I
Ι	165	180	I	4.5	I
r	180	195	Ι	13.0	I
I	195	210	Ι	3.8	1
1	210	225	1	1.7	Ι
I	225	240	I	О.З	r
I	240	255	I	0.0	I
I	255	270	Ι	0.7	1
Ι	270	285	I	0.0	I
I	285	300	I	0.7	I
I	300	315	Ι	2.4	Ι
I	315	330	Ι	0.0	Ι
I	330	345	I	1.4	I
I	345	360	I	10.6	I

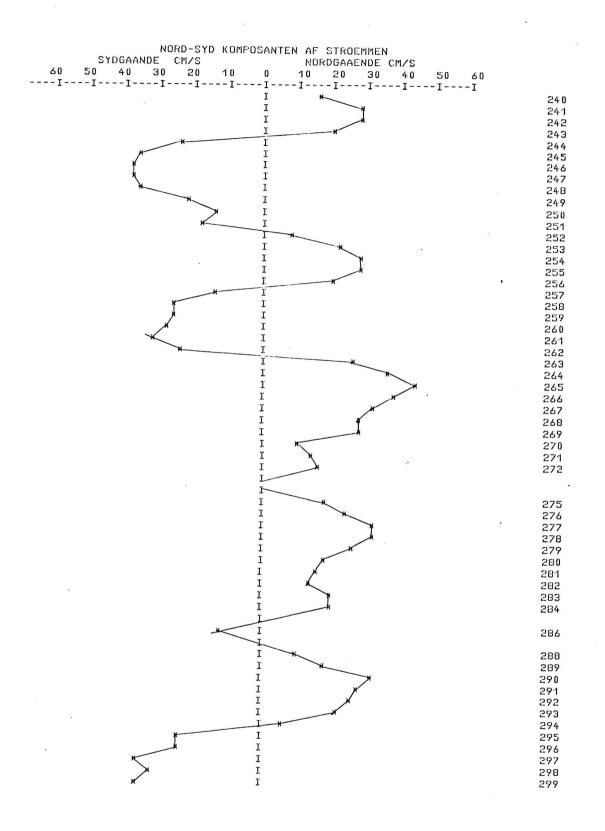

Hyppighed af hastighed og retning

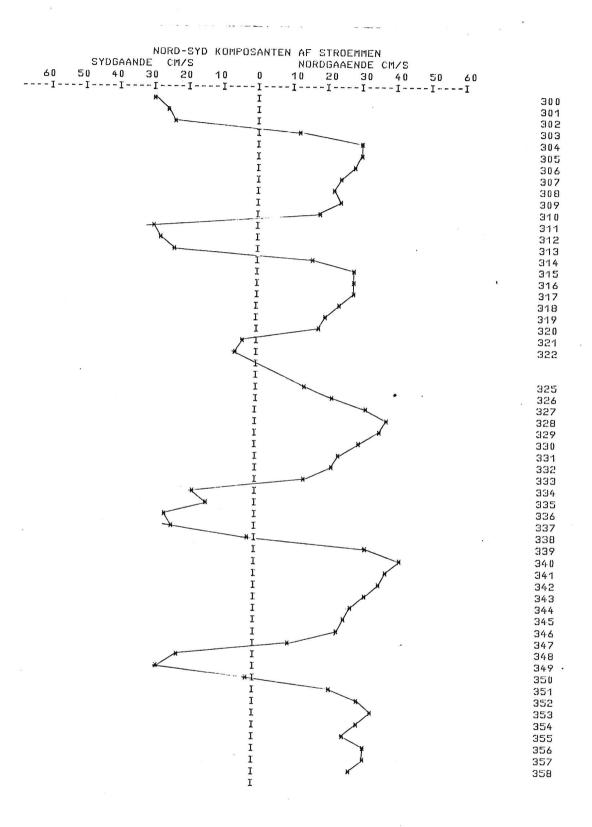
Bilag nr. 3

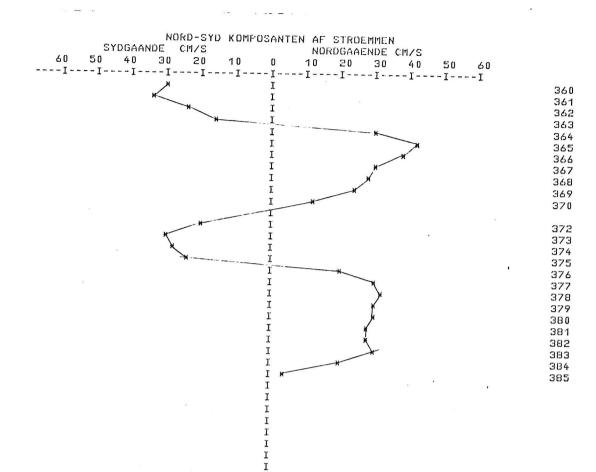


Bilag nr. 4


side l


Bilag nr. 4


Bilag nr. 4


Bilag nr. 4

Bilag nr. 4

Bilag nr. 4 side 6

Bilag nr. 4 side 7