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STOCHASTIC DESIGN OF RUBBLE MOUND BREAKWATERS
By
S.R. K. Nielsen 1) and H. F. Burcharth 2)

ABSTRACT

The paper presents a level III reliability method from which the armour layer of rubble mound
breakwaters can be designed, so that the total costs of construction price and expected main-
tenance expenses are minimized. Since the physics of the wave-structure interaction are not
yet fully understood the paper puts emphasis on the application of probability theory rather
than on hydraulic aspects.

The armour layer is considered a structural system made up of a number of basic unit areas. -
For each basic area a causal relationship must be established by modeltests between the wave
loadings and their effects in terms of damage rates. Variability of test results due to uncon-
trolled parameters is assessed by a variance analysis of the damage rates. Failure is, in the ma-
thematical context, taken as the failure of at least one basic unit, i.e. the system is of the weak-
est-link-type.

Two failure modes of a basic unit area are considered. The armour blocks may be destroyed
by rocking, either due to structural failure from heavy rocking or accumulated fatigue damages
caused also by smaller storms or to failure of the unit area because armour units are displaced,
so that the core of the breakwater is uncovered. The distribution function of lifetimes of each
basic unit area can then be calculated, assuming that the number of storms capable of giving
rise to any damage to the armour layer in any failure mode are specified by homogeneous
Poisson counting processes.

From the reliability analysis the expected repair price for future failures can be calculated. It
is demonstrated that the total price, made up of construction price and future maintenance
expenses, has a minimum at a certain design.

The outlined theory is finally demonstrated by a numerical example.

1. INTRODUCTION

A rubble mound breakwater can fail due to instability of the armour layer, damage to the wave
screen, erosion of the front toe (on minor breakwaters), damage to the back slope to overtop-
ping etc. Some of these failure modes are correlated, e.g. the stability of the armour layer is re-
duced if the front toe is damaged. However, the interaction of these modes are not yet well un-
derstood, and hence a total reliability analysis of a breakwater with due consideration to all
failure modes requires extensive model testing to establish all relevant relationships. An ana-
lysis can then, of course, be performed based on estimated distribution functions. The present
paper describes a level III reliability analysis of the unimodal failure of the armour layer. The
method takes into account the minimization of the construction price phis the expected repair
expenses from future failures within the stipulated lifetime of the structure. The unimodal re-
liability analysis of other failure modes can be treated in a similar way.

1) Civil Engineer, Ph.D., Rambell & Hannemann, Consulting Engineers and Planners, Norresundby, Derimark
2) Professor of Marine Civil Engineering, Aalborg University, Aalborg, Denmark




Both hydraulic and mechanical stability of the armour layer should be considered. The most
important parameters affecting these stability requirements have been listed below.

The hydraulic stability is influenced by

I Armour unit geometry and relative density.
Armour layer thickness and packing density.
Filler layer permeability and thickness.
Core permeability.
Cross section profile (slope angle, berms, wave walls, etc.).

II Deep and shallow water climate.
Joint probability distributions of wave height, -period, and -direction,
wave grouping, long and short term statistics and persistance of waves,
shoaling effects.

111 Bottom bathymetry.

v Water level variations (storm surge, tides, etc.).

As seen the number of parameters are large and their separate impact on the stability is not al- -
ways well established. Hence a general set of formulae determining the hydraulic stability does
not exist and it may take years before the necessary research and datacollection have been
finished. The lack of knowledge has led to a semiempirical approach, where a number of im-
portant parameters are combined into some overall parameters, identified by physical reason-
ings and dimensional analysis. The response of the structure in terms of damage rates, overtop-
ping, etc., and rocking percentages is then studied in model tests with the rest of the parameters
at reference values. Results from armour stability tests can be as shown on figure 10.

The hydraulic stability will gradually be reduced during time due to abrasion from suspended
materials. This can be modelled by a function which increases the damage rates with time. This
function is determined from hydraulic stability tests with units with different degrees of
rounding and from site experience. Weathering and thermal and chemical reactions also cause
rounding which can be modelled similar to abrasion and which will gradually reduce the
strength of the armour units. Further repeated loadings causing stress ranges above a certain
minimum level will cause fatigue and hence further reduce the strength. The mechanical stabi-
lity of the armour units is ensured when the residual strength exceeds the stresses induced by
the waveloading during the intended lifetime of the structure.

The two failure modes of the armour layer dealt with in the present model correspond to the
lack of mechanical and hydraulic stability. The damage rates in both failure modes are deter-
mined by model tests. The scatter of these results due to uncontrolled parameters is considered
in the final variance analysis of the damage rates.

2. BASIC ASSUMPTIONS AND RESULTS

In most cases model tests for each typical breakwater-seabed profile are performed in a wave
flume on a limited section of a breakwater. The local weakenings of the armour layer in similar
sections are not considered and hence the reliability of the breakwater is over- or underesti-
mated if the tests are not repeated several times. In order to deal with this scale effect rational-
ly, the armour layer is considered as a system of M basic unit areas, each with separate strength
and loading. Damage rates to specific waveloadings are determined for some or all of these ba-
sic areas. It is taken as failure of the breakwater armour layer when at least one basic unit area
fails, i.e. the system can be identified as a weakest-link-system.




Two failure modes of a basic unit area are considered. The first failure mode, k = 1 of the ar-
mour layer specifies the fracture of the armour units from rocking either due to structural fail-
ure from heavy rocking or accumulated fatigue damages from smaller storms. This failure mode
is relevant especially for the slender complex types of units such as Dolosse and Tetrapods.
The second failure mode, k = 2 indicates displacement of armour units at least of the magni-
tude of one characteristic diameter, resulting in exposure of the underlayers to the waves.

The accumulated damage percentage processes {D, ;(t)} and {D2 ;(t)} during the interval [0, t]
signifies the relative number of armour blocks in the i’th basic unit area, failing in mode 1 and
2, respectively.

These quantities are assumed on the form
N, .0

D, ;(t) = 2 ADy ;5 81,i(70 5 0) (1)
n=1

N2,i(t)

D, ;(t) = Z ADg; n 859i(Tg i ) (2)
n=1 .

Damages at basic unit area i in failure mode k take place at random times 0 <7, ; < .......
. < Tk,i,Nk (®) < t. {Nl,i(t)} and {N2’i(t) } are homogeneous Poisson counting processes

specifying the random number of such damage increments in the interval [0,t], ref. [4]. The in-
tensities A, ; of the counting processes indicate the expected number of storms per unit of
time capable of giving rise to any damage contributions in mode k at basic unit area i.

The damage increments ADk’ ,n€ 1,2, .., are stochastic variables, assumed to be mutually
independent and identically d1str1buted as the stochastic variable AD, ;. These quantities will
be further explained in a succeding section. The samples of ADk ; are p051t1ve Hence the reali-
zations of (1) and (2) are non-decreasing functions with probablhty 1.

S [0,t] YR, k € 1, 2 are deterministic, monotonic, increasing functions of time, specify-

ing long term tendencies of increased damage rates, e.g. due to abrasion. These functions are
normalized as follows

Sk i 0)=1 (3)

A typical realization of the accumulated damage percentage processes is shown on figure 1.

D, (t)A

1.071

Nk, i

’ADk,i,3'Sk,i(Tk,i,3)
}ADk,i,2 "Sk.i(Tki.2)
ADxk,i1 - sk.i(Tki 1)

Tiia Ti2 Tvi3

Figure 1: Realization of accumulated damage percentage process.




The distribution function of the accumulated damage percentage D, ;(t) at time t can now be
determined. Actually this quantity has the characteristic function

o
Mp, ;0@ = eXp<}\k,i ’ (Msp,  (51(r) 0) - 1) df> - 1)
»1 ‘0 i

where M aD R 7 C is the characteristic function of AD, ;.
i i

The expectation and variance of Dy ; (t) then become
b
;.tDk i t)=E [ADk,i] A j S i (r) dr (5)

0
+
Ulz)ki (t) = E[ADf{’i] RS ‘ Sf{’i (1) dr (6)
] '/0

The distribution of D, ;(t) is of the mixed type with a concentrated, although diminishing
probability mass €, ;(t) at D, ;(t) =0:

€ (£) =P(Dy ;(t) =0) =P(N ;(t) = 0) = exp(-Ay; * t) (7)

The remaining probability mass (1 - € ;(t)) is continuously distributed as specified by the fre-

quency function flo)k () (x), with expectation u%k _(t) and standard deviation oBk (t), see fi-
1 1 1

gure 2 : 5 o 3 : 3

/JDk ; (t)

#Bki (t) =1—'_—ek'35 (8)

3

< Ulz)k,i(t) Ek,i(t)

1
3
_ 2
1-eg;(t)  (1-eg;(0)? "D (t)> =t

or t
Dy (®)

The moments (8) and (9) provide that D, ;(t) will have the moments (5) and (6).

(x) |
fDi (1) ﬁ (1-£x.i (t))fgk,i (t)(X)_ l'LCE)k,i(to) +G|3k,i(t)
LDy (t)

KAD ki * OADL; = — ) i 0
N i ’ Dot ()
E‘LADk‘i .’—/4 uDk,l s

—/’A:’(/
BAD i _GADk,i' -

Eri(t) =exp (- Ak, it) -t

Figure 2: First order probability density function of accumulated damage percentage
process.




The distribution function of D, ; (t) approaches a normal distribution, as t -~ =, due to the
central limit theorem. Instead of the exact result (4), it then seems reasonable to apply the fol-
lowing approximation, which will be asymptotically correct

X -kp. ()

Fp, 0 (0= (1= ;(0) <1>< > + ey () (10)

,1
ga  (t
Dk,i( )

® indicates the distribution function of a standardized normal variable.
(4) requires the exact distribution function of AD, .

The approximation (10) only requires that the first and second order moments of ADk,i are
known, cf. (5) and (6).

Failure of basic unit area i occurs, when the accumulated damage percentages {Dl,i (t)} and
{D2,i (t)} for the first time exceed the allowable limits 9 and Mg i» which can be specified
separately for any basic area, depending on its position and importance. The reliability prob-
lem of a certain basic unit area then becomes an ordinary first passage probability problem.

The stochastic variables Dl,i(t) and Dz,i(t) can be considered mutually independent at large
time intervals [0,t]. Because the realizations of the processes {Dk,i(t)}’ k € 1,2, are non-de-
creasing with probability 1, it follows that the distribution function of the first passage time
Ll,i’ i.e. the elapsed time from the time of construction until the first failure of the basic unit
area i occurs, can be calculated as follows

P(L;;>t)=P(Dy;(t)<my A Dy;(t)<my;)=

F t)=1-F ) F : 11
Ll,i( ) Dl,i(t) (771’1) D2,i(t) (7?2,1) (11)

(11) follows from the fact that the event {L, ; > t} occurs if and only if no failure takes place
in any of the two failure modes during the interval [0,t]. The frequency function of L, ; is de-
termined by differentiation of (11) with respect to t. The result becomes

le,i (t) =- gl,i (t) - FD2,i(t) (nz’i) - gz’i(t) FDl,i(t)(nl,i) (12)

; My i =My ()
g (t) =3¢ FDk,i(t) (Mg i) = A i €xe,i (B) <1 - q)(—;r_;:—(t)_—»

S -e . (8) ¢<nk,i ~ P (t)> i (8) 0y (8) + 0 3 (8) (my 5 = me i (B))
. op, (© (03,0
(13)

¢ (+) signifies the frequency function of a standardized normal variable, and [.Li){ ; and df{’ ; are the
time derivatives of the functions (8) and (9).

For t = 0 we have
o2
f 0) = WEE F T R >
Ll,i() él k,i UADki /

]




where u , By and o, Dy, are the expected value and standard deviation of AD

On figure 3 some first passage density curves originating from (12) are shown. There may or
may not be a local maximum depending primarily on the magnitude of the variational coeffi-
cient V[ADk,i] = OADk i/#ADki of incremental damages. When V[ADk,i] is. large, no local

maximum occurs, see figure 3 b.

fi . (t)1/year
Ly f

0.030 0.060

0020 0040

0010 0.020 eq.(39)

eq.(12)
eq.(12)
;
50 0o or vears) 25 e > tlyears)

Figure 3: The first passage probability densities and the expected damage rate in the basic
unit area i, as calculated from equation (12) and (39). )\k =0.1, Ty 3= 0.1, S i(t)
=1.0. a) V[/_\Dk ]1=1.0. b) V[ADkz]—50

The distribution function of the first passage time Ll, a Of the entire armour layer can now be
calculated, assuming the lifetimes of all basic units to be mutually independent stochastic vari-
ables. This assumption will be valid if the elapsed time interval as well as the magnitude of the
selected basic unit areas is sufficiently large. Hence

M
FLl,A t)=1- i'I=T1(1 - FLl,i(t)) (15)

3. MODELLING OF DAMAGE INCREMENT

The wave condition in the basic unit area i is specified by the parameters (Hg; » Tp ;)» where
HSi is the significant wave height, and T b is the peak period (most probable wave period).
A storm is characterized by the growth and the succeeding decrease of wave heights, cf. figure

4. The maximum wave height HS — is assumed to be Weibull distributed, i.e.

Fpy . (=1 —E‘Cp(( ) "a), h€[h, <[ (16)

s,i,max

The significant wave heights within a éertain storm, on condition of the maximum wave height

si,max = X is assumed to be uniformly distributed in the interval [y %15 1.8,

-




0 5 hG[O,hl]
h-h
1
Hs,i IHs,i,ma.x( x) X ‘h]_ - 1
1 , he]x,e]

The uniform distribution is tantamount to the triangular growth and decrease curve shown on
figure 4.

Triangular growth
hs,imax{———————— and decrease.
hi
- to,i ,
> t
Figure 4:  Variation of significant wave height during a single storm.

Rocking induces impact stresses in the armour units. In the present paper this is considered the
main reason of fatigue damage, and possible damage contributions from wave loadings in-
capable of rocking the armour units are ignored. Further it is as a first approximation assumed
that any armour unit rocking in a storm also will be rocking in a later and severer storm. At a
certain limiting storm level ";,i percentage of the armour units will be rocking. Obviously, the
accumulated fatigue damage will be smallest in the last activated armour unit. Hence, when
this unit is failing due to accumulated fatigue damage exactly ’71 percentage of the armour
units must have failed.

AD1 ; signifies the fatigue damage increment in the last activated armour unit among all 771 i

percentage of armour units, rocking at the limiting storm level. For a storm with H
this quantity is assumed on the form

s,i,max =X

WX

_ dt
ADl’i _l TOi(AE) (18)
hy ’

dt is the time interyal with significant wave heights in the interval 1h, h + dh]. In accordance
with the assumption (17), dh and dt will be linearly dependent

_ dh 19
dt—to,ix_h1 (19)
to is the duration of a storm with H_; = h,, see figure 4. (17) and (19) have been based on a
great number of data samples, cf. flgure 5. As seen to ; turns out to be independent on x. The
data represent the largest storms in a 20 years period for a certain location. The smaller storms
represent sea states where movements are negligible in respect of fatigue damage.




Hs.i
HS‘ i,max. Hg > max Hg
‘ Legend |25m,30m 35m 4Om 45m 50m 55m 60m,65m 70m,75m ,80m,85m,90m| m
+ |7 [ss|s0o|a7|a |37 |32[28[23[19[w|[ 5] o of sn
L2 (e B0 [ 55| 51| 48 |46 42 (39 137 |36 |22[15| 1| 7] 3|93
Ag% a |3f227|(15| 5| 1| o0]ofl ol ofoflof|ofofo0]cwse
A% O v [39| 29|22 9] ufo|laolo|lolo|o|lo]| 0fuwg2
* Bk O |ew|w|22|w6] 7] 0(0|0lo|lolo|o|of|ofsrm
09 SV
: ¢ + x |4 35|26 |20]|w0| 7| ¢t|0jo|lo]o|0o|] o] 0|57
Q’A‘o O |37 |32 |26|2|17|12|8|]2|0|0o|lo]o| o] ools1s
if:b' e [43|38 (31|27 22 |2| 9| 1]0|lo0o|aoa|o]o]| o]so3
oofv+ A |37 |32|26|20|w|w0|7|3|0|0]o|lo]|o| als37
0871 e % vV | 65|58 (53¢ |ew|31|25|20|n| 30| o0o|o0o]|o0f7z19
A oe % x (10| 0| 0lo0ofoajo|o|lo|]o|lo|]o|o|a|ooloaz7
o + ® (17| 3| 0lo0o|olo|ofo0o|j]o|o]o|o]|o]| o306
o u!€ - B |3 |2|2})16| 7|0|0]0|lo0o| 0| 0| 0] ofofus0
4 + ¢ |32 |23|17| s|0of0|O0jo0ofo0o|o0of0o|o0o|o0]|o0]sms
o R #« |4 |37 (33|28 (|19|13| 7] 5| 3| 0|o|o|o] of?7os
» # oy # |63 ]33[30]15] 2}0]o0ojololo|ofo| o] o]fuas7
06+ A Ex v ® +O Numbers are hours where Hg 1S5 exceeded
Oe v
A A A
x_ # g Raw data by Delft Hydraulics Laboratory.
[ v
05 R
A
]
X
8 e T v
0471 A o
+
] v
o
+
03t
o
Qf + + + ﬁ>_
0 10 20 30 40 50 60 70 80 Ti (hours)

Figure 5:  Duration of storms T, with significant wave height exceeding level H s i

Basically it is assumed that the stress ranges from a single wave within a certain armour unit
can be identified by only one parameter. The average value of this quantity at a time where the
storm is specified by (Hs,i , Tp,i) is termed AEi. The dependency of AEi on (Hs,i , Tp,i) can
generally only be established by model- or full scale tests. The following explicit relationship
has been assumed in what follows

H.-h

- s, 1 s,i,0

AEi =40, o , Hs,i €] o[ (20)

1 ’
511 ~ i 510

AEi 1 1s the average stress range at the wave height he; .

AEi 1 depends to some extent on the magnitude of the armour units. hSi 0 is the wave height,
at which ncl’ ; bercentage of the armour units is rocking.

Ty ; (AEi) is the fatigue life of the armour units in a wave condition where the average stress
range is Ac?i. Consequently (18) in combination with (1) is a formulation of the conventional
Palmgren-Miner accumulated damage theory.

T, ; as a function of AEi is a material property, which has been assumed on the form

1 —_
Ao. . < Ag. < o
[(Agiyni ? i,min 1
_ op
Tpi(A0;)=T,; " (21)
o0 , 0 <Ag; < AG§ min




T, ; is the expected zero crossing period, "T is the expected dynamic tensile strength, Aal min
is the minimum stress range capable of inducing any fatigue damage in the material, and m, is

is obtained at a certain limiting wave height h. . As seen from

a material parameter. Ao, i vk

(20), by nin > by o

l min

1m1

In double logaritmic mapping (21) is identified as an ordinary Wohler curve, cf. f1g'ure 6.

Ao

°9 5 A
0
m;
1
log Aimin| N\
\\
: = : —»log == Toi
0 1 2 3 4 Tz,i
Figure 6:  Wohler curve for armour units.

Tp is assumed to be fully dependent on the significant wave height H ; as given by the follow-

ing explicit relationship

T, =t () (22)
pi - pil\h . 4

tp, 1 1s the wave period at the referential wave height h, i1

The zero crossing period T, ; is related to the peak period and significant wave height H_;as
follows

. \h
Tzi=tzi1§_&=tzil(%i>4 ' (43}
B R 50 BN g

On condition of the sample H
ed in the form

simae = X the displacement damage increment ADz,i is suggest-

dt
AD,; = f == - ADj; (b, t(h))
By 2

t,

X
0,1 . 1 o
T [' ADj; (b, (h)) dh (24)

where (19) has been applied.
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AD} ; (Hg; »
one characteristic diameter relative to their initial position in a storm (H
terval t, ;. Hence AD; i/t2 i indicates the damage rate.

Tp ;) is the relative number of blocks within the basic unit area i, displaced at least
Tp ;) during the in-

S, ?

The quantity ADE ; can easily be determined by model tests. As suggested in-[3] the results
may, due to lack of more precise formulae, be presented by a stability number S, and the surf
similarity parameter £, [5], defined as follows

H_ .
S = B (25)

3
: <Wi>” <Z§Ll>
B, Tw

. g
fi= 080 T (g7 )

1 (26)

where H_, =significant wave height in front of structure (exclusive reflected waves)
\TVi = average weight of armour units in basic area i
vg; = specific weight of armour units in basic area i
Yw = specific weight of water
a; = angle of slope at basic area i (e; < natural angle of repose)
g = acceleration of gravity

Further parameters can easily be included in the formulation if necessary.

For fixed armour unit weight, (25) and (26) represent simply a one-to-one mapping of the

basic wave load parameters (H_; , Tp ;) into a non-dimensional representation, see figure 7.

Heid s A
AD, =15%
Q2 Y/‘\‘ AD"; ;= 10%
AD, ;= 5%
AD = 0%
P >,

Tp, i

Figure 7:  One-to-one mapping of wave- and stability parameters. a) The domaine of wave
parameters giving rise to any damage. b) The stability curves of the equal degree
of displacement damage during the interval ty -
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Stability curves similar to (7b) can also be established for the rocking percentage R; in the ba-
sic unit area i, see figure 10. Note that the rocking percentage is assumed to be independent of
the time of exposure, whereas the displacement percentage increases linearly with this quanti-
ty. B

TO and AD ; in (18) and (24) have been defined as combined stochastic variables, depending
on (HS]l , ) However, a certain scatter is observed in tests when these quantities are deter-
mined, because a number of parameters have not been controlled.

The following conditional expectations and conditional variational coefficients are introduced

- _ _1_ _ -1

T, () = (E (g (g Ty = b, t(hm> 27)
£ (b) = [0 |(H,; , T, ;) = (b, 6(h))] (28)
ADj, () =E[AD,; | (H,; , T, ;) = (, t(h))] (29)

k;(h) = V[ADz’].l | (H Tp,i) = (h, t(h))] (30)

S,1°

These quantities are estimated from model tests. The primary contribution to §; is due to the

imperfection of the theoretical fatigue model (21). Because of scatter in the limiting wave

height hs 1,00 determined in hydraulic stability tests, cf (20), Ao will vary to some extent, even

on condition of H

Further the stochast1c variables 1/T0 ;(h;) and 1/T0 (hy) respectively AD2 (h;) and
9 (hy), are assumed to be fully correlated for every h1 » hy corresponding to unchanged re-

latlve material response to different sea states.

From (18), (19), (24), (27) - (30) then follows

X

t

0,i 1
E[aD,; | H_, =xl=— ‘J - du (31)
oL X~ hy h, To,1 ()
b o
. _ - O,l 1 =0
E [ADz,i ' Hy§ max = x] —'t—z-‘i' X -, J AD, ; (u) du (32)
2 h
1

' X
E[AD? . |H., __=x]= L (u)¢
[ 1,i s,i, max X] < > fl ‘/h' 0 1 (ul) TO 1( 2) (1 +§-l(ul)§l(u2)) du1 du2

(33)

E[AD 'I-I

s,i,max X] =

boi 1 \* [k =
<?(L 5(—_h> f fDoz,i(‘h)' ADj ;(up) (1 + x;(uy) &5 (up))duy duy  (34)

2,i

The unconditioned expectations E[ADk ] and E[AD} ;] are obtained by taking the expecta-
tion of the moments (31) - (34) with respect to the dlstnbutmn ofH

s,i,max "




12.

The intensities A, ; of the counting processes are obtained from the following expression

1]

A=A J £

ki 0 Hs,i,ma.x ’ Tp,i,max
Tei

(h,t) dh dt (35)

A is the expected (average) number of storms per year of engineering significance.

is the joint frequency function of the maximum significant wave height

f
Hs,i,ma.x’ p,i,max

during a storm.

H and associated peak period T

s,i,max p,i,max

The domain of integration Qy ; indicates the subset of the sampling space of (Hs,i,max ,
Tp,i,max) for storms, which gives rise to any damage in the k’th failure mode in the basic unit
area i. Qz,i has been indicated on figure 7, whereas Ql,i is given by the following expression,
cf. (16), (20), (21)

Q,;= {(ht) Ih>h} (36)

hO = Inax (hl ’ hi,min) (37)
1/Ay ; is identified as the return period of storms giving rise to damage in the k’th mode in the
basic unit area i.

4. THE EXPECTED FAILURE RATE OF BASIC UNIT AREAS

It is assumed that each basic unit area is fully repaired after a failure. Further, the length of the
intervals between succeeding failures is assumed to be mutually independent and identically di-
stributed stochastic variables.
The expected number of failures per unit of time v [0,t] ™R in the basic unit area i is then
related to the first passage probability density function f; ~ : [0,t] v R through the integral
equation Li
. ot
lei(t)'—'Vi(t)' J vi(t-r)lei(r) dr (38)
0 ’

v (t - 7)fp, .3 () represents the joint probability density of a failure at time t, and a first
i

passage failure at time 7, where 0 < 7 < t. Notice that the failure events have been assumed to
be independent. The identity (38) then follows, because the last term on the right hand side is
the probability density of failures at time t, which are not first-passages.

By a simple change of integration variable, (38) can be written as follows

t

v; (t) = le i(t) + fle (t=-7)p,(r)dr (39)
’ 0 )1

(39) is an inhomogeneous Volterra integral equation of 2. kind, from which the unknown
function , (t) can be obtained without any numerical difficulties.
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From (39) follows immediately

v, (0) = le (0) (40)

Nt

Further it can be shown that

: _ 1
el AU E(L, ;] b

The variation of »; at intermediate values has been shown on figure 3.

The expected number of failures per unit of time » A+ [0,8] 7Y R, of the entire armour layer
becomes

M
vy (B) = 2 Vi (t) (42)
= .

1

5. THE APPLICATION TO OPTIMUM DESIGN

The repair expenses P, during the stipulated lifetime T, of the structure, discounted to the
time of construction with the inflation-regulated rate of interest r can be written as follows

M Li(To)
B;= ¥ X Gclsg (43)

i=1 ¢=1

{Li(t), t € [0, TO]} are inhomogeneous Poisson counting processes, specifying the random
number of failures at times 0 < Ti1 < T2 L < Ti’Li(To) < T, in the basic unit area i.
The intensities »; : [0,T] N R, of the counting processes, i.e. the expected number of fail-
ures per unit of time, are determined from (39).

Ci, o is the total inflation-regulated cost of the 2th failure within basic unit area i, made up of
costs of site establishment, down time, social expenses, and repair. These quantities are assum-
ed to be mutual independent stochastic variables, identical distributed as the stochastic
variable C;. C, depends on the magnitude and duration of the storm at the instant of failure.
Consequently C; may be considered as a combined stochastic variable depending on (Hs,i,max’
T ), i.e. -

p,i,max

Ci = Ci(Hs,i,max’ Tp,i,max) (44)

The characteristic function of the stochastic variable P, becomes, cf. (4)
M To
=7
MP1 9) = exp<.217 f <Mci<(1 +r1) - e> - 1)- v (1) dT) (45)
i= 0
Mg : R 7 Cis the characteristic function of the stochastic variable G;.
1

Hence the expectation p, and variance of P; become
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M oo
p, =E[P,]= %'E[Ci] j L+1) v (r)dr (46)
i= ()
M TO -27
o = %’E[Cf] f 1+1) " cp(r)dr (47)
i= 0 :

The moments E[C;] and E[C?] can be calculated, if the explicit dependency (44) is known.

A shortcoming of (43) is that the rate of interest r will be neither constant nor controlled
during the interval [0,T]. Hence this quantity should rather be modelled as a stochastic pro-
cess {R(t), t € [0,T,]} with known expectation up (0) =1, and zero variance of,»(O) =0 at
time t = 0. Assuming that the rate of interest is continuously ascribed, (43) is replaced by

M Li(TO) 7.i.,SZ
P, =2 DG, ~exp(-f R(u) du) (48)
i=1 ¢=1 0

Because the process {R(t) } is independent of the other stochastic variables, (46) is replaced by

T
M 20 T
p, = JEIC] | Elexp(—fR(u)du)] . (Y7 | 49)
i=1 0 0

For a given design with construction price p,, the expected repair price p, can be calculated
from (46) or (49). If p, is relatively high, the breakwater will probably have a high reliability,
and hence the expected repair costs within a certain period will be low. If, however, p, is low,
high repair expenses are expected, because the breakwater is correspondingly weak. Conse-
quently p, will be a monotonic drecreasing function of p,. It then follows that the expected
total expenses of the breakwater, made up of construction price p, and maintenance expenses
P, have a minimum, when considered as a function of p, , cf. figure 8.

p(p1)A
(py) !
Po(P1)+ P
min. p +-
|
|
|
I
| .
i Po(p1)
' > P
Figure 8:  The variation of construction price p, plus the expected maintenance exﬁenses

pjasa function of p; .
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6. NUMERICAL EXAMPLE

The outlined theory will be demonstrated for a breakwater specified by the succeeding para-
meters )

Slope of angle : tana=1/1.5

Type of armour : Complex, slender unreinforced concrete units
1g = 23.8 kN/m’
Dynamic tensile strength ET = 6000 kPa

Reference armour unit : W, =150 kN

Number of units = 0.17/m?
Unit area : 32mx32m=1024 m?
Number of unit areas : M=20
Length of breakwater : 8=20x32=640m
Stipulated lifetime : T, =100 years
Specific weight of water ! 7y, =10.0 kN/m?
Long term distribution of
maximum wave heights, eq. (16) : h; =0.1m

h, =6.0m

hy =28
Duration of storms, eq. (19) : ty; =70 hours
Stress range relation, eq. (20) -t h; ;=129 m

Ac?i 1 = 6000 kPa
Fatigue parameters, eq. (21) ! m; =6.36

AEi min = 1250 kPa

The corresponding Wohler curve, obtained from test series with 5 repeated tests is shown on
figure 9.

AT /C_J-'T+

10

—_—
-~
_—
_——
-

10"t

; } + ———
10° 10" 102 10° 10 10° T, /T

Figure 9:  Wéhler curve for impact loaded armour units (. flexural stress). Number of stress
ranges to first sign of crack. Average value from 5 tests (Burcharth 1983).
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The variational coefficient & of T0 i/ T, ; » estimated from the above test-series, has been indi-
cated in table 1 as a function of Ag/ Aor.

Table 1: The variational coefficient of fatigue life duration as a function of'izverage stress
range.
Ao /o ¢ (A0)
0.208 2.103
0.302 1.550
0.500 1.171
0.698 0.146
0.854 0.404

Despite the scatter there is a tendency of increased variational coefficients as Ac decreases.
The functional relationship has been represented by the following linear fit:

The uncertainty contributions from the determination of the limiting wave height hS 0.0 have
been ignored in the present study.

Peak period relation, eq. (22)

p,1,1 =16.7s
h, =045
Zero crossing period relation, eq. (23) : Bys 4 & 11.5s
Intensity of significant storms D 0.85/year

The average rocking percentage R and the average damage increment AD ; and the associated
variational coefficient «; have been determined by model tests, see flgure 10. Notice that the
damage was not equally distributed over the quadratic area. The damage within a zone of 25%
amounted to approximately the double of the indicated values.

The slope of the stability curves has been taken from [3]. The stability curve corresponding to
p percentage of damage can be formulated analytically as follows

Si =851~ & , ry; = 0.325 (50)

where Spi has been tabulated below.

From a given wave height H_; and armour unit weight W, S; and §; are calculated from (25)
and (26). Sp ; is then obtained from (50), and the rocking percentage R = p, respectively dam-
age percentage AD = p and variational coefficient k;, are obtained by linear interpolation or
extrapolation from table 2.
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Legend: Each data set obtained from 20 tests

Rocking Displacement
R, in % AD,; in %
Si & i} o u g
A 1.67 4.30 1.46 0.90 0.11 0.32
A 226 3.68 3.28 1.74 0.54 0.79
o 2.58 3.46 5.03 2.57 1.73 2.26
® 3.19 3.10 7.21 2.82 3.45 2.74
x 3.47 2.98 10.15 3.16 5.98 3.24
1
S, % S = (Ye.i>3 Hs.i tane = 1/1.5 in all tests.
I .
5 - W (%Bu__‘]) Percentages are no. of units
w

rocking or displaced within a
quadratic area of 0.4 x 0.4 m
in a model where H =13.0
cm leads to rapid destruction.

%x
\A\R =1015/3.16, ADS =598 /324

0~

Ri =721/282, AD3 j=3.45/274

Ri=503/257 ADS;=173/2.26
Ri=3.28/1.74, AD$,=0.54/0.79

N Ri=1.46/090, AD$,;=0.11/032
0 " " : ; ; " —7
125 2 3 L 5 6 7 8
o9 \2
Ei'TP"<2E ™y ) tan o

Figure 10: Hydraulic rocking and displacement stability curves. Damage after t, ; = 3 hours
in prototype, corresponding to 1200 waves with expected zero crossing period
Tz’ ; ~ 9 s. (Burcharth and Brejnegaard 1982, 1983).




18.

Table 2: Hydraulic stability data.

Rocking Displacement
sp,i p k3 P K
(%) (%)

3.07 1.46 0.616 . 0.11 291
3.46 3.28 0.530 0.54 1.46
3.70 5.03 0.511 1.73 1.306
4.20 7.21 0.391 3.45 0.794
4.48 10.15 0.311 5.98 0.542

ni ; = 0.1. Hence the 10% rocking stability curve is determined by B = 4.466.

For W, =W, = 150 kN follows from (22), (25), (26), (50): B0 ™ 8.100 m.
From (20), (21) then follows :hi,min =9.100 m.

From (37) : hy = max(0.1, 9.100) =9.100 m.

The 0% displacement stability curve is determined by Bl = 2.970.

For W = V—V0 =150 kN follows from (22), (25), (26), (50) :h =4.177 m.

From (35) follows

9.100-0.1,2.8

Ay ;= 0.85exp (- ( 60 ) )= 0.0378 / year

4176 -0.1, 2

.8
Ng,; =0.85 exp (- (F=p5—") ) =0.606 / year

The moments of the damage rates become
E[ADl,i] = 1.618
E[AD,,;l = 0.07785
E[AD’1 i = 4345

E[ADZ;] = 0.04039

When V_Vi is varied, these quantities will vary proportionally.
The allowable damage limits ny_;, ni ;» and the functions s,_; in (1) and (21) have been selected
as follows

M =1 ’ ny; = 0.1

Mgi = 0.1

i =1 , kel,2
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The first passage density function of a basic unit area can now be calculated. The result has
been shown on figure 11 as a function of the armour unit weight. Notice the shift of the pro-
bability mass towards higher failure times, indicating increased reliability, as the average ar-
mour unit weight is increased.

As an example the construction price of the entire breakwater is taken as de;iehdent on the
average armour unit weight as follows
W\
pp=(a+b <W—>3 )¢ , a=0.35-10° Dkr./m, b=0.15-10° Dkr./m
0

The expected inflation regulated repair price of a basic unit area with length 32 m has been
assumed to be

x| L
E[C,]=32m ¢ <_ﬂ> 3 | ¢=0.2-10° Dkr./m

Wo
The authors are fully aware of the simplicity of these cost estimates. Down-time costs should
of course be included in a real case.

The expected total expenses made up of construction price and expected repair prices can now
be calculated for a specific rate of interest r and an average armour unit weight W. These rela-
tionship have been clarified on figure 12. The minimum of the curves specifies the optimum

armour unit weight Wopt’ according to the applied design criteria.

On figure 13 is shown the dependency of optimum design Wopt on the rate of interest r. When
the rate of interest r is low, the repair expenses should be minimized and hence W opt is high.

fL, (D1 /year A Basic unit area no.1
o: W=150 kN
m: W=200kN
¢ : W=250kN
0301 ¢ : W=300kN
a : W=350kN

0.20¢

0.101

t(years)

10 20 30

Figure 11: First passage densities as a function of the average weight of armour units in the
basic unit area i = 1.
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Rate of interest

»-

10001 a:R=2%
B:R=4%%
¢ R =6°/o
¢ R=8%%

8001 s :R=10%

600;

4001

Total expenses in life time (Dkr-10%)

W00 600 80
Average weight of armour units (kN)

Figure 12: The variation of expected total expenses of breakwater armour layer during stipu-
lated life time T, = 100 year, depending on armour unit weight W and inflation
regulated rate of interest r.

Wopt (kN) A
800

7001

60071

500 ; . ' — —3» rate of interest (%)
0 10 .

Figure 13: Optimal armour unit weight as a function of the inflation regulated rate of in-
terest during the stipulated lifetime.
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7. CONCLUDING REMARKS

A level III reliability method has been developed from which the armour layer of a rubble
mound breakwater can be designed, so that the total costs made up of construction price and

expected maintenance expenses are minimized. The theory was demonstrated by a numerical

example, where the armour unit weight is the only design parameter. The cost estimates for

construction and repair used in the numerical example are primitive and used as an illustrative

example only. More evaluated cost functions should be implemented in actual applications. An

extension to more complex problems where several parameters (slope of A angle, material

strength parameters etc., etc.) are introduced in the cost function, is straight forward. A com-

puter programme has been developed, from which all relevant quantities in the theory can be

determined.
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