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EXPERIMENTAL CHARACTERISTICS OF INDOORWIDEBAND MIMO RADIO
CHANNELS AND THEIR IMPACT ON STOCHASTIC MODELLING

Gerhard Steinböck1, Xuefeng Yin1,2, Troels Pedersen1 and Bernard H. Fleury1,3

Aalborg University1, Department of Electronic Systems, Aalborg, Denmark
Tongji University2, College of Electronics and Information Technologies, Shanghai, China

Telecommunications Research Center Vienna (ftw.)3, Vienna, Austria

ABSTRACT

We compare two methods for estimation of path-component
spreads in bi-azimuth and delay, namely the clustering ap-
proach and the density approach, in indoor environments.
Monte Carlo simulations reveal possible shortcomings of
the clustering approach. Published estimates of component
spreads in delay, azimuth of departure and azimuth of arrival
obtained with the clustering approach are reviewed and con-
trasted with estimates gathered using the density approach.
A detailed study of these experimental data, aided with the
insight gained from the simulation results, leads to the con-
jecture that in some cases the estimated spreads computed
with the clustering approach are too large. The settings of
the path component spreads of two widely used models in-
cluding bi-azimuth delay dispersion, namely the Winner II
Model and the 802.11 Tgn Model are revisited based on these
findings. The investigations stress the obvious, but apparently
sometimes forgotten, importance of validating the behavior
and performance of channel parameter estimation techniques
before using these tools to extract empirical information from
measurement data.

1. INTRODUCTION
The response of the radio channel is commonly modeled as
a superposition of a number of “path components”. Each of
these components represents the contribution of some elec-
tromagnetic wave, propagating from the transmitter to the re-
ceiver via a specific propagation path. Along this path the
wave may interact with a number of objects called “scatter-
ers”. The path components may be dispersive in delay, direc-
tion of departure (DoD), direction of arrival (DoA), Doppler
frequency and in polarizations, due to the electromagnetic and
geometric properties of the scatterers (see Fig. 1). In the se-
quel, we refer to these dimensions as dispersion dimensions.
In [1–3] it is stressed that stochastic models need to include
the dispersive behavior of individual path components in or-
der to accurately emulate real propagation channels.

This work was supported by the ICT-216715 FP7 Network of Excel-
lence in Wireless COMmunication (NewCom++) and by the project ICT-
217033 Wireless Hybrid Enhanced Mobile Radio Estimators (WHERE). The
Telecommunications Research Center Vienna (ftw) is supported by the Aus-
trian Government and the City of Vienna in the competence center program
COMET.

The Bartlett spectral estimator [4] is widely used to as-
sess dispersion of the radio channel in DoA, DoD or jointly
in both directions. The direction or bi-direction Bartlett spec-
trum usually provides a good insight into the distribution of
dominant path components, especially in wide-band scenar-
ios, when it is computed as a function of the delay. Indeed,
the nominal values, or centers of gravity, of these components
in these dimensions can usually be assessed with a reasonable
accuracy. The Bartlett spectrum is, however, not appropriate
to assess the dispersive behavior of these individual compo-
nents, because the spreads of these components are typically
below the resolution of practical antenna arrays.
High resolution methods rely on parametric models that

aim at circumventing the impact of the system response by
exploiting certain assumptions on the channel property. In
our particular application it is assumed that waves can be
considered as planar and specular, or nearly specular, over
small regions including the transmit and receive arrays. Two
main approaches for characterization of dispersive path com-
ponents have been proposed in the literature. The first ap-
proach uses density functions to describe the power spectral
density of dispersive path components and directly estimates
the parameters of these density functions [5–10]. We refer
to this approach as the “density approach”. The second, so-
called “clustering approach”, attempts to approximate the dis-
persive path components by superpositions of specular com-
ponents [11–15]. In a first stage a feasible high-resolution
technique, commonly based on the SAGE (Space Alternat-
ing Generalized Expectation-maximization) algorithm [16],
is applied on measurement data to estimate the characteris-
tics of these specular components. In a second stage the es-
timated components undergo a manual or automated pruning
process based on a predetermined selection criterion. Those
components retained are grouped in “clusters”, each cluster
representing an individual dispersive path component. The
dispersion characteristics of each dispersive path component,
i.e. nominal values and spreads, are then extracted from the
parameters of the specular components in the corresponding
cluster.
The paper is organized as follows. The signal model of

the radio channel including dispersive path components is in-
troduced in Section 2. Section 3 gives a short literature review
of previous works on the clustering and density approaches.

302978-1-4244-3677-4/09/$25.00 ©2009 IEEE
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Fig. 1. Schematic representation of multipath propagation.

The performances of the clustering and density approaches
are investigated in Section 4. This section also reviews val-
ues of component spreads obtained experimentally with both
approaches, as well as such values specified in two widely
used channel models including bi-azimuth-delay dispersion.
Concluding remarks are stated in Section 5.

2. SIGNAL MODEL

We consider the propagation environment depicted in Fig. 1.
The components of the complex baseband signal vector
s(t) ∈ C

M1 are fed to the inputs of the M1 transmit an-
tennas. The signals radiated by these antennas propagate via
D paths to theM2 receive antennas. The signalY(t) ∈ C

M2

at the outputs of these antennas reads [9]

Y(t) =

∫ ∞

−∞

∫
S2

∫
S2

c2(Ω2)c1(Ω1)
T
s(t− τ)

h(Ω1,Ω2, τ)dΩ1dΩ2dτ + W(t), (1)

where τ is the propagation delay and ci(Ωi) is the response
in direction Ωi of the transmit (i = 1) or the receive (i = 2)
array. Here, ( · )T denotes the transpose operation. A direc-
tion Ω is an element of the unit sphere S2. It is specified by
its azimuth φ ∈ [−π, π) and co-elevation θ ∈ [0, π] accord-
ing toΩ = [cos(φ) sin(θ), sin(φ) cos(θ), cos(θ)]T . The noise
vectorW(t) ∈ C

M2 is a spatially and temporarily white cir-
cularly symmetric complex Gaussian process.
It is assumed that the bi-direction-delay spread function

h(Ω1,Ω2, τ) of the radio channel can be decomposed intoD

uncorrelated (or orthogonal) processes:

h(Ω1,Ω2, τ) =

D∑
d=1

hd(Ω1,Ω2, τ). (2)

Each process is meant to be contributed by a wave propagat-
ing along a specific propagation path. Assuming that the D

processes in (2) are uncorrelated, the bi-direction-delay power
spectrum is of the form

P (Ω1,Ω2, τ) = E

[
|h(Ω1,Ω2, τ)|

2
]

(3)

=

D∑
d=1

Pd(Ω1,Ω2, τ), (4)

where E [ · ] denotes the expectation operator and

Pd(Ω1,Ω2, τ) = E

[
|hd(Ω1,Ω2, τ)|

2
]

(5)

is the bi-direction-delay power spectrum of the dth path com-
ponent.

3. DISPERSIVE PATH PARAMETER ESTIMATORS
In this section we briefly review two proposed high-resolution
techniques for estimating dispersive path components, namely
the clustering approach, which represents dispersive path
components with a sum of specular components, and the
density approach, which models the power spectral densi-
ties of individual dispersive path components by means of a
parametric family of density functions.

3.1. Clustering Approach
In the clustering approach the power spectrum of the dth dis-
persive path component of (5) is represented by Nd specular
components:

Pd(Ω1,Ω2, τ) =

Nd∑
j=1

Pd,j · δ(Ω1 −Ω1,d,j) ·

δ(Ω2 −Ω2,d,j) · δ(τ − τd,j), (6)

where Pd,j ,Ω1,d,j ,Ω2,d,j and τd,j are respectively the power,
the DoD, the DoA, and the delay of the jth specular compo-
nent of the dth dispersive path component, and δ( · ) denotes
the Dirac delta function. The number of specular components
Nd may depend on d. The nominal and spread parameters of
each dispersive path component are calculated as

η̄d =

∑Nd

j=1
Pd,jηd,j∑Nd

j=1
Pd,j

(7)

σηd
=

√√√√∑Nd

j=1
Pd,j(ηd,j − η̄d)2∑Nd

j=1
Pd,j

, (8)

where η may stand for φ1, θ1, φ2, θ2, or τ .
In the clustering approach estimation of dispersive path

components is performed in two stages. In the first stage, the
bi-direction-delay spread function is represented as a sum of
specular components:

h(Ω1,Ω2, τ) =

N∑
n=1

hn · δ(Ω1 −Ω1,n) ·

δ(Ω2 −Ω2,n) · δ(τ − τn). (9)

A high-resolution estimator, usually based on the SAGE algo-
rithm, is used to extract the parameters hn, Ω1,n, Ω2,n, and
τn, n = 1 . . . N from each channel realization. In the second
stage, the estimated specular components gathered from Nc

realizations, undergo a selection process and those compo-
nents retained are grouped into clusters. The components al-
located to one cluster form an estimate of its power spectrum
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(6). The corresponding component parameters are plugged
in (7) and (8) to obtain estimates of the nominal values and
spreads of the cluster in the dispersion dimensions.
The various implementations of the clustering approach

found in the literature differ in the pruning and grouping
methods in the second stage and in the investigated dis-
persion dimensions. In the sequel we shortly review these
implementations. All of them consider horizontal-only prop-
agation, i.e., a direction is specified by its azimuth only:
Ω = [cos(φ), sin(φ)]T .
In [13] static multiple-input multiple-output (MIMO) in-

door channel measurements are processed to assess disper-
sion in azimuth of arrival (AoA) and azimuth of departure
(AoD). The measurement data is partitioned into subsets col-
lected in frequency sub-bands and using specific sub-arrays.
The sub-bands and sub-arrays are selected in such a way that
the channel transfer functions corresponding to any two sub-
sets of data are nearly uncorrelated. Several thousand of spec-
ular path components are estimated from these subsets. The
estimated components are selected and grouped into clusters
by means of a visual inspection procedure relying on a com-
puted bi-azimuth Bartlett spectrum.
In [11, 14] delay-AoA dispersion in large office, foyer,

and laboratory environments is experimentally investigated
from single-input multiple-output (SIMO) measurement data.
The delay-AoA spread function reconstructed from esti-
mated specular components is convolved with either a 2-
dimensional Gaussian density kernel [11] or a Hanning win-
dow [14]. Pruning and grouping of the estimated components
are carried out by visual inspection of the squared-magnitude
of the smoothed delay-AoA spread functions.
The clustering approaches discussed so far rely all on vi-

sual inspection by a “trained” person. This step introduces
a significant amount of heuristic. Indeed, the individual deci-
sions of the trained person regarding the pruning and grouping
of the specular path components heavily influence the results
and make them difficult to compare. Moreover, the visual
cluster identification is time-consuming and therefore inap-
propriate for processing large amounts of measurement data.
A framework for automatic clustering of the estimated spec-
ular path components, using the k-means algorithm, is intro-
duced in [15] and applied in [12].

3.2. Density Approach
In the density approach the power spectral density (5) of path
component d is recast according to

Pd(Ω1,Ω2, τ) = Pd · f(Ω1,Ω2, τ ;θd), (10)

where Pd denotes the average power of the dth component.
The normalized bi-direction-delay power spectral density
f(Ω1,Ω2, τ ;θd) is an element of a family of density func-
tions indexed by the parameter vector θd .
In [9] the constrained maximum-entropy principle is pro-

posed to select the family. More specifically, the family is the

Table 1. Parameter settings for the simulations.
fc = 5.25 GHz τ̄=15 ns στ=3.5 ns

Bandwidth = 100 MHz φ̄1=0◦ σφ1
=11◦

SNR=30 dB, Nc=4 φ̄2=0◦ σφ2
=2◦

solution of the problem of finding the density function maxi-
mizing the entropy, under the constraint that density’s first and
second moments are specified. Various solutions for various
subsets of dispersion dimensions have been published [9,10].
They all lead to density functions of the von-Mises-Fisher
kind. The investigations performed in [9] aim at experimen-
tally characterizing bi-azimuth and delay dispersion. More-
over, horizontal-only propagation is assumed. The maximum-
likelihood estimator of the parameters Θ = [θ1, . . . θD] is
approximated using the SAGE algorithm [9]. The method is
applied in Section 4.2. The reader is referred to [9] for a de-
tailed description of the family of density functions and the
maximum-likelihood estimator.
For the sake of completeness it should be mentioned that

early implementations of the density approach have been al-
ready proposed, however with a different application in mind
[5–8].

4. NUMERICAL AND EXPERIMENTAL RESULTS
The density and clustering approaches are compared by sim-
ulation in Section 4.1. In Section 4.2 the density approach is
applied to measurement data. These obtained experimental
results are compared to empirical values found in literature
in Section 4.3 and parameter settings of stochastic models in
Section 4.4.

4.1. Accuracy of Spread Estimators
We consider the scenario described by the the settings in Ta-
ble 1 for the Monte Carlo simulation. The arrays at the trans-
mitter and the receiver have the same response, which coin-
cides with that of the 9-element circular array used to collect
the measurement data processed in Section 4.2 and [9]. In
each simulation run the signal model described in Section 2 is
used to generate the signal contributed by one dispersive path
component with dispersion characteristics reported in Table 1.
The density estimator described in [9] is applied to estimate
the parameters of the bi-azimuth-delay power spectrum.
We now describe the generic clustering approach consid-

ered for the simulations. This approach applies a pruning pro-
cedure similar to the clustering approaches described in Sec-
tion 3.1, and therefore is equivalent to share their behaviors.
The SAGE algorithm [16] processes the signals generated in
each run to estimate a certain fixed numberN of specular path
components, i.e. to compute an estimate of (9); Nc consecu-
tive runs are processed in this way to obtain Nc ·N specular
component estimates. Pruning of the path components is con-
ducted as follows: Among theNc ·N components, only those
with power larger than a given dynamic range (DR) with re-
spect to the maximum component power are retained. The
power of a component is its squared absolute weight. The
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Array orientation

Fig. 2. The investigated environment [17, Scenario TxR5].

retained set of path components form an estimate of (10). Es-
timates of the nominal azimuth and azimuth spread are com-
puted by plugging the parameters of these estimates in (7) and
(8). The average of 100 azimuth spread estimates is depicted
in Fig. 3 versus N for different DRs. Notice that no compo-
nent is discarded when DR=∞.
The results depicted in Fig. 3 show that the choice of the

DR and the parameter N heavily influence the behavior of
the clustering approach. For instance for the large true spread
in Fig. 3 (a) with N=4 and DR≥18 dB, the cluster based
method underestimates the spread. For a small true spread
as in Fig. 3 (b), the same setting leads to overestimation of
the spread. This example clearly exposes the difficulty in op-
timizing the setting of DR; the appropriate setting depends on
the true spread value as well as the number of components N

extracted for a cluster – both of which are unknown in real
measurements. Notice that N=4 is a typical value returned
by the high-resolution estimation algorithms used in the clus-
tering approaches.

4.2. Component Spreads of Measured Data Estimated
with the Density Approach
Measurement data collected in an office environment with a
channel sounder operating with the settings reported in the
first column in Table 1 are used to experimentally assess the
performance of the density estimator. A map of the inves-
tigated environment including the transmitter trajectory (in
red) and the receiver position is shown in Fig. 2. The trans-
mitter was pushed with an approximate speed of 0.5 m/s.
The data collected within the firstNc=20 measurements from
the instant the transmitter started moving are considered in
this investigation. The traveled distance between the data ac-
quisitions of 20 consecutive measurements is approximately
14 cm. We assume that the propagation conditions are ap-
proximately constant over this distance. A more detailed ex-
planation of the measurement campaign, referred to as TxR5,
can be found in [17]. The estimator described in [9] is used
to estimate the bi-azimuth-delay power spectral density of in-
dividual path components.
Due to the limited bandwidth of the sounding signal, we

set the minimum delay spread to be estimated to one tenth
of the sample interval, i.e. 0.5 ns. Moreover, the coupling
coefficients between the spreads in delay and azimuths are

〈σ̂
φ
1
〉
[◦
]

DR= ∞

DR= 18 dB

DR= 10 dB
DR= 3 dB

Density
approach

True spread

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25 (a)

Number of estimated specular componentsN (Clustering approach)
〈σ̂

φ
2
〉
[◦
]

DR= ∞

DR= 18 dB

DR= 10 dB

DR= 3 dBDensity
approach

True spread

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25 (b)

Fig. 3. Comparison of the estimated AoD spread (a) and AoA spread
(b) computed with the density estimator and the clustering method.
The clustering method uses different settings of the number of spec-
ular components N and DR. The error bars indicate the standard
deviations of the estimates.

only considered when the delay spread is strictly larger than
this value. To avoid numerical problems, we set the maximum
absolute value of the coupling coefficients between AoA and
AoD to 0.9 instead of 1.
The SAGE algorithm [9] estimatesD=8 path components,

using 6 iterations (per component). The dynamic range of the
component power is set to 30 dB, i.e. the components found
with power 30 dB less than the largest component power are
discarded. The results are reported in Table 2. In this table,
ˆ( · ) denotes an estimate of the parameter given as an argu-
ment. It can be seen that some of the dispersed components
are highly concentrated with small delay spread (≤0.5 ns).
Bi-azimuth Bartlett spectra computed at different delay

bins from the sample covariance matrix (Σ̂) are reported in
the first column of Fig. 4. The third column depicts the con-
tour plots of the bi-azimuth power spectra (P̂ (φ1, φ2, τ)) de-
rived from the estimated bi-azimuth-delay power spectrum
computed with the density approach. Finally, the second col-
umn depicts the bi-azimuth Bartlett spectra computed from
the covariance matrix (Σ(Θ̂)) reconstructed from the esti-
mated bi-azimuth-delay power spectrum. Most of the esti-
mated components have their delays in the three considered
bins. The shape and size of the corresponding footprints of
the dispersive components in two adjacent Bartlett spectra are
very similar. The estimated component power densities are
much more concentrated than the corresponding footprints in
the Bartlett spectra.

305



Table 2. Parameter estimates of the power spectral density of indi-
vidual components.

d P̂d σ̂τ,d σ̂φ1,d σ̂φ2,d ρ̂φ1,τ,d ρ̂φ2,τ,d ρ̂φ1,φ2,d

[dB] [ns] [◦] [◦]

1 −54 ≤ 0.5 3.7 3.0 − − −0.90

2 −56 ≤ 0.5 5.9 6.0 − − 0.39

3 −56 1.8 14.7 0.7 −0.42 0.06 0.39

4 −59 0.9 6.0 3.5 0.35 0.06 −0.90

5 −60 ≤ 0.5 5.7 14.1 − − 0.82

6 −58 ≤ 0.5 3.5 4.1 − − −0.90

7 −59 3.5 13.5 3.2 0.40 −0.01 −0.79

8 −64 5.3 2.9 8.0 −0.42 −0.01 −0.90

avg. 1.7 7.0 5.3

std. 1.8 4.5 4.1

−: values are neglected due to small delay spread estimates.

4.3. Comparison of Experimentally Obtained Path Com-
ponent Spreads
The upper part of Table 3 summarizes published estimates
of path-component spreads experimentally obtained using the
clustering methods described in Section 3, as well as the re-
sults presented in [18]. Minima, maxima and means of av-
erage values computed over different environments and po-
sitions are reported. The number of dispersive components
D and the number of specular components Nd are average
values as well. The results presented in this paper using the
density approach are summarized in Table 3 for comparison.
It can be observed from Table 3 that all cluster approaches

lead to larger delay spread compared to the values obtained
with the density approach. The same observation holds for
the minimum azimuth spreads, apart from [13]. It appears
that the reported maximum azimuth spreads are in accordance
for both approaches. All clustering approaches but [13] lead
to larger average values for the azimuth spreads. The range
and average of azimuth spread estimates presented in [13] are
more or less in agrement with the results obtained with the
density approach. Fig. 8 in reference [13] shows that this
“manual” clustering approach leads to an unbiased estimator
when the true azimuth spread is lower that 5◦. Above 5◦, the
estimator under estimates the true spread.
Although clear and definitive conclusions can be hardly

drawn from Table 3, the observed trend is that the considered
clustering approaches but [13] tend to lead to larger spreads
compared to the density approach. Two theses are proposed
that can explain this discrepancy: 1) The spread values are ob-
tained from experimental investigations of delay-azimuth dis-
persion in specific indoor channels [11,13,14,18]. Some path
components with small spreads that might be resolvable in the
bi-azimuth delay dimensions, i.e. with the density approach
in [9], might appear as one component with larger spreads
when resolved in the delay-azimuth dimensions only; 2) As
discussed in Section 4.1 over-estimation of the spreads might
be a result of the inherent behavior of the clustering approach.

4.4. Component Spreads in Standard Models, Revisited
The settings of the spread parameters of two widely used in-
door channel models supporting per-cluster direction and de-
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Fig. 4. Bi-azimuth spectra versus delay in an indoor environment.
(for more details see Section 4.2)

lay spreads are included in the bottom part of Table 3. The
reader is referred to the provided references for a detailed de-
scription of these models. The 802.11 Tgn channel Model
B (typical large open space and office environments, NLOS
conditions, and 100 ns rms delay spread) [19] is based on a
tapped delay line with inter-tap spacing of 10 ns. All cluster
taps exhibit the same azimuth spread. The Winner II Model
scenario A1 (Indoor Office) [20] relies on a geometric cluster
representation. A less complex implementation, based on a
“cluster delay line” in which each tap is considered as a clus-
ter, is suggested too. The inter-tap spacing is 5 ns. The tap
spacings of these two models are of the same order as the res-
olution of the sounding equipments used to collect the mea-
surement data based on which the results depicted in the top
part of Table 3 are obtained. For instance, the sounder used
to gather the data processed in Section 4.2 has a 10 ns reso-
lution. We conclude from this observation that the taps in the
802.11 Tgn andWinner II models can be viewed as dispersive
path components in the sense described in this paper.
The component spreads specified in the Winner II Model

A1 rely partly on the experimental results of [12,13] and cor-
respond to mean values reported in these references. They are
in accordance with the experimental values found in Table 2.
The setting of spread values of the 802.11 Tgn Model B has
been selected based on the results of [11, 14, 18]. The speci-
fied spread values are significantly larger that those given in
Table 2. The over-estimation trend of the clustering approach
mentioned in the previous section might partly explain this
observation.
The COST273 [21] model supports dispersion in bi-

azimuth and delay of so-called clusters of path components.
The values provided for the cluster spreads in picocell envi-
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Table 3. Selected published values of spread parameters for indoor
environments.
Ref. D Nd στ [ns] σφ,1 [◦] σφ,2 [◦]

min max avg. min max avg. min max avg.

Experimental Results

Table 2 8.0 ≤0.5 5.3 1.7 2.9 14.7 7.0 0.7 14.1 5.3

[11] 8.0 5.0 13.4 37.9 – 3.3 9.5 –
[12] 11.0 8.0 6.0 10.0 7.8 10.8 19.0 15.7 9.3 14.9 12.2

[13] 8.8 2.4 11.1 5.2 2.6 8.2 5.5

[14] 4.5 5 25 13.7

[18] 4.0 22.0 26.0 –

Settings in Two Commonly Used Channel Models

Winner II [20] 13.3 20.0 6.0 10.0 – 5.0 6.0 – 5.0 13.0 –
802.11 Tgn [19] 9.0 14.4 25.4 – 14.4 25.2 –

ronments [21] are usually much larger, e.g. στ=300 ns and
σφ,2=30◦. This indicates that these clusters cannot be iden-
tified with the dispersive components described in Section 3.
Clusters defined in the COST273 sense appear to be clusters
of such dispersive components. Further studies are, however,
necessary to clarify this conjecture.

5. DISCUSSION AND CONCLUSION
The paper addresses some important aspects related to the
high-resolution estimation of dispersion in radio channels. To
this end, we have studied the behavior and performance of
two approaches for estimating the spreads of individual path
components in indoor environments, namely the clustering
approach and the density approach.
The reported simulation results reveal the shortcomings

of the clustering approach, when it is used to estimate com-
ponent spreads. The method, combined with a trained visual
inspection, seems to work appropriately [13]. The heuristic
and manual steps in the selection of the clusters, however,
make it difficult to accept it as a qualitative tool. The simula-
tion results also show that the density approach is an efficient
alternative to the clustering approach. The review of exper-
imental component spreads presented in Section 4.3 demon-
strates the difficulty of comparing similar experimental qual-
ities, when they are gathered in different environments and
processed using different methods. It is conjectured that some
of the spread values reported in the literature are too large to
characterize bi-azimuth-delay dispersion of path components.
Two possible theses have been formulated to explain this ef-
fect: 1) the intrinsic behavior of the clustering approach and
2) the fact that the experimental investigations were limited
to azimuth-delay dispersion of the radio channel, so another
additional dimension, i.e. azimuth of departure, was not ex-
ploited to resolve path components.
Some of the reported experimental results have been used

to specify the settings of the component spreads of the Win-
ner II Model A1 (Indoor Office) and the 802.11 Tgn Model
B (typical NLOS large open space and office environments).
The discussion shows that the values selected in the parameter
settings of these models are as reliable as the estimators used
to extract the empirical information based on which these pa-

rameters are selected. This – apparently obvious observation
– stresses the necessity to validate channel parameter estima-
tors in order to clearly understand their behavior and perfor-
mance.
The discussions in Section 4.3 and Section 4.4 rely on

limited experimental evidence gathered from a small set of
results obtained with the density approach. However, further
experimental observations not reported here confirm the pre-
sented theses. Nevertheless, a more comprehensive study is
necessary in order to definitely confirm them, and especially
to confirm the conjecture that path component spreads in bi-
direction and delay are typically smaller that commonly be-
lieved.
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