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Abstract. We describe a procedure for inducing conditional densities
within the mixtures of truncated exponentials (MTE) framework. We
analyse possible conditional MTE specifications and propose a model
selection scheme, based on the BIC score, for partitioning the domain of
the conditioning variables. Finally, experimental results demonstrate the
applicability of the learning procedure as well as the expressive power of
the conditional MTE distribution.

1 Introduction

The main difficulty when modelling hybrid domains (i.e., domains containing
both discrete and continuous variables) using Bayesian networks, is to find a
representation of the joint distribution that is compatible with the operations
used by existing inference algorithms: Algorithms for exact inference based on
local computations, like the Shenoy-Shafer scheme [1], require that the joint
distribution over the variables in the network are closed under marginalization
and multiplication.

This can be achieved by discretizing the domain of the continuous variables
[2, 3], which is a simple (but sometimes inaccurate) solution. A more elaborate
approach is based on the use of mixtures of truncated exponentials (MTE) [4].
One of the advantages of this representation is that MTE distributions allow
discrete and continuous variables to be treated in a uniform fashion, and since
the family of MTEs is closed under marginalization and multiplication, infer-
ence in an MTE network can be performed efficiently using the Shenoy-Shafer
architecture [1]. Also, the expressive power of MTEs was demonstrated in [5],
where the most commonly used distributions were accurately approximated by
MTEs.

The task of learning MTEs from data was initially approached using least
squares estimation [6, 7]. However, this technique does not combine well with
more general model selection problems, as many standard score functions for
model selection, including the Bayesian information criterion (BIC) [8], assume
Maximum likelihood (ML) parameter estimates to be available.

Two kinds of distributions can be found in a Bayesian network: univariate
distributions (for nodes with no parents), and conditional distributions (for nodes



2 Helge Langseth, Thomas D. Nielsen, Rafael Rumı́, Antonio Salmerón

with parents). ML learning of univariate distributions was introduced in [9].
However, the problem of learning conditional densities has so far only been
described using least squares estimation [10]. In this paper, we study ML-based
learning of conditional densities from data.

2 Preliminaries

Consider the problem of estimating a conditional density f(x|y) from data. In
this paper we will concentrate on the case in which X and Y = {Y1, . . . Yr} are
continuous, and use Ω

X,Y ⊆ R
r+1 to represent the support of the distribution

function f(x, y). Furthermore, we let {I1, . . . , IK} be a partition of Ω
X,Y . An

MTE potential [4] for the random vector {X, Y1, . . . , Yr} is a function that, for
each k ∈ {1, . . . , K}, can be written as

f(x, y) = a0 +

m
∑

j=1

aj exp
(

bjx + cT

j y
)

, (x, y) ∈ Ik. (1)

The main problems to solve when inducing MTE potentials from data are
i) determining the partition {I1, . . . , IK}, ii) determining m (the number of
exponential terms) for each Ik, and iii) estimating the parameters. Throughout
the paper we will consider a training data set D with n records, and each record
containing observations of all r + 1 variables without missing values. We will
write D(R) to denote the subset of D where the restriction R is fulfilled. For
example D(y1 ≤ α) selects all records for which the variable y1 ≤ α.

3 Conditional distributions and MTEs

Before we investigate methods for learning conditional distributions from data,
we will consider how to define conditional MTE distributions. Unfortunately,
since the class of MTE potentials is not closed under division, we do not know
the most general form of the conditional distribution function. However, for a
function g(x, y) to be a conditional MTE distribution, there are three assump-
tions we will require to be fulfilled:

1. Generating joint: g(x, y) · f(y) should be an MTE potential over (x, y),
and the result should be equal to the joint density f(x, y), where f(y) is the
marginal distribution for Y .

2. Conditioning: g(x, y0) should be an MTE density over X for any fixed y0.
3. Closed under marginalization: For any BN structure and specification of

conditionals, the product
∏n

i=1 g(xi, pa (xi)) must support marginalization
of any variable in closed form, and the result should be an MTE potential.

The first two conditions are local in nature, whilst the third is global. Attend-
ing only to the local conditions, the natural way to define a conditional density
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would be as f(x|y) = f(x, y)/f(y), where f(x, y) and f(y) are MTEs. Formally,
a conditional MTE density under these assumptions would be of the form

f(x|y) =
f(x, y)

f(y)
=

a0

f(y)
+

m
∑

i=1

ai exp(cT

i y)

f(y)
· exp(bix), (x, y) ∈ Ik, (2)

where we have assumed that f(x, y) = a0 +
∑m

i=1 ai exp (bix + cT

i y), and f(y) =
∫

x
f(x, y)dx. Note that for any y0, f(x|y0) specifies an MTE potential for x.

X2

X1 X4

X3

Fig. 1. A example of Bayesian network.

However, the problems come when the defined conditional densities are con-
sidered globally in a Bayesian network, in which the marginalization operation is
necessary to perform inference. To illustrate the problem, consider the network
structure in Fig. 1. Observe that the joint distribution is

f(x1, x2, x3, x4) = f(x1)f(x2|x1)f(x3|x1)f(x4|x2, x3)

= f(x1)
f(x2, x1)

f(x1)

f(x3, x1)

f(x1)

f(x4, x2, x3)

f(x2, x3)

= f(x1, x2)
f(x3, x1)

f(x1)

f(x4, x2, x3)

f(x2, x3)
, (3)

but if the original conditional distributions are as in Equation (2), we find that
the joint distribution in the network, shown in Equation (3), is not an MTE.
Furthermore, standard inference algorithms, such as variable elimination [11],
cannot be directly applied. For instance, if the first variable to eliminate is X2,
the operation to carry out would be

∫

x2

f(x1, x2)
f(x4, x2, x3)

f(x2, x3)
dx2,

which cannot be calculated in closed form if the potentials are as in Equation (2);
the variable to integrate out appears in both the numerator and in the denomi-
nator.

When MTEs were first introduced [4], Moral et al. avoided these problems
by defining the conditional MTE distribution as follows:
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Definition 1. Let X1 = (Y 1, Z1) and X2 = (Y 2, Z2) be two mixed random
variables. We say that an MTE potential φ defined over ΩX1∪X2

is a condi-
tional MTE density if for each x2 ∈ ΩX2

, it holds that the restriction of φ to

x2, φR(X2=x2), is an MTE density for X1.

In this paper we focus on conditional distributions of continuous variables
with continuous parents. In our notation, Definition 1 is therefore equivalent to
requiring that the conditional distribution must have the functional form

f(x|y) = α0 +

m
∑

j=1

αj exp
(

βjx + γT

j y
)

, (x, y) ∈ Ik, (4)

where we will assume that m < ∞ in the following.
Moral et al. [4] noted that if one adopts the structural form of Equation (4),

then specific requirements are in play to ensure that f(x|y) is a conditional dis-
tribution. We will investigate one of these requirements in the following, namely
that

∑

k

∫

x:(x,y)∈Ik

f(x|y) dx = 1, for all y. As an example, consider Fig. 2,

where the support for f(x|y) is divided into 4 hypercubes I1, . . . , I4, such that
a specific MTE potential MTEk is defined for each Ik. In this example, the
requirement above implies that, e.g., f(x|y = 0) ties the two MTE potentials
MTE1 and MTE2 together, with the consequence that we cannot learn the MTE
potentials separately.

x

y

I1, MTE1 I2, MTE2

I3, MTE3 I4, MTE4

Fig. 2. The support for f(x|y) is depicted, and divided into 4 hypercubes I1, I2, I3,
and I4. An MTE potential MTEk is connected to each Ik.

The effect of tying the parameters of different MTE potentials is a dramatic
increase in the computational burden of learning conditional MTE distributions.
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In this paper we will therefore assume parameter independence for simplicity. One
consequence of this assumption is that

∫

x
f(x|y) dx must be a constant w.r.t. y,

which corresponds to:

∂

∂yℓ

∫

x

f(x|y) dx =
∂

∂yℓ

∫

x

m
∑

j=1

αj exp
(

βjx + γT

j y
)

dx

=

m
∑

j=1

αjγjℓ exp
(

γT

j y
)

∫

x

exp (βjx) dx

= 0.

Thus, for all (x0, y0) ∈ Ik where f(y0) > 0, we should have

m
∑

j=1

αjγjℓ exp
(

γT

j y0

)

∫

x

exp (βjx) dx = 0. (5)

Now, fixate an ǫ-ball around (x0, y0) s.t. the ball is in Ik and in the support of
f(x, y). We are interested in varying y inside this ball. Then, Equation (5) gives
rise to uncountably many constraints (one for each y in the ball), but where
we only have O(m) parameters that can be used to adhere to the constraints.
This over-specified system of equations can only be solved if γj = 0 for all j
(remember that αj = 0 is not a viable solution, since we need the density to
have some mass allocated). Thus, if the conditional distribution functions are to
follow Definition 1, and at the same time adhere to parameter independence, we
must constrain the functional form of the conditional distribution to

f(x|y) =

m
∑

j=1

αj exp (βjx) , (x, y) ∈ Ik. (6)

Thus, the conditional MTE potential f(x|y) is constant in y inside each hy-
percube I1, . . . , IK , and the only effect of the conditioning variables y on x is
through the definition of the hypercubes. This may at first glance seem like a se-
rious limitation on the expressiveness of conditional MTE distributions, however,
as we show in Section 5 this restricted form can still capture complex conditional
distributions.

In summary, there are some conditions that apply to the specification of
conditional MTE potentials in order to use MTEs with standard inference algo-
rithms. Moral et al. [4] therefore defined that the conditional MTE distributions
must be of the functional form given in Equation (4). However, this general form
implies parameter dependence, making automatic learning intractable. One ap-
proach to solve this problem is to assume parameter independence, which re-
stricts conditional MTE distributions to the form given in Equation (6). In this
case, learning conditional distributions reduces to the following two tasks:

1. Finding the split points/hybercubes for the conditioning variables.
2. Learning the parameters of Equation (6) for each hybercube.
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The latter item can be solved by algorithms for learning univariate MTE
potentials [9]. We will turn to this issue shortly, and thereafter look at a method
for learning the definition of the hypercubes from data.

4 Learning maximum likelihood distributions

4.1 The univariate MTE potentials

As already mentioned, MTE learning can be seen as a model selection problem
where the number of exponential terms and the split points must be determined.
In the following we briefly describe a learning procedure for the univariate case,
the interested reader is referred to [9] for details.

When determining the number of exponential terms for a fixed interval Ik,
we iteratively add exponential terms (starting with the MTE potential having
only a constant term) as long as the BIC score improves or until some other ter-
mination criterion is met. The learning algorithm regards the parameter learning
(with fixed structure) as a constrained optimisation problem, and uses Lagrange
multipliers to find the maximum likelihood parameters.

To determine the split points of the domain of the variable, a set of candidate
split points is chosen. Since the BIC score will be the same for any split points
defining the same partitioning of the data, it is not required to look at a set
of possible splits that is larger than the set of midpoints between every two
consecutive observations of Y . However, to reduce the computational complexity
of the learning algorithm we consider a smaller set of potential split points in
the current implementation: Each lth consecutive midpoint is selected, where l
is chosen so that we get a total of 10 candidate split points. We use a myopic
approach to select among the candidate split points, so that the one offering the
highest gain in BIC score is selected at each iteration. This is repeated until no
candidate split point increases the BIC score.

4.2 Learning conditional distributions

After having defined how to learn the parameters of the marginal distribution of
a variable X from data, we will now consider learning the hybercubes (i.e., the
split points) that define the conditioning part of the distribution (cf. Section 3).
We will again use the BIC-score for model selection, and for simplicity we will
start the discussion assuming that X has only one continuous parent Y . Recall
that learning the conditional distribution f(x|y) consists of two parts: i) Find
the split points for Y , and ii) learn the parameters of the marginal distribution
for X inside each interval.

The previous subsection reviewed how we can learn the marginal distribution
for X , and we will now turn to finding split points for Y . As was the case
when we learned the split points of the marginal distributions, we will also
now learn the split points of the conditioning variable using a myopic strategy:
When evaluating a candidate split point for a given interval Ik, we compare the
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BIC score when partitioning Ik into two (convex) sub-intervals with the score
obtained with no partitioning, i.e., we employ a one step look-a-head that does
not consider possible further refinements of the two sub-intervals.

Recall that we use D = [y, x] to describe the data, and the notation D(R) to
denote the subset of data for which a restriction R is true. The skeleton of the
learning algorithm can then be described as in Algorithm 1.

Function LearnConditionalsplit points1

Data: D, ωs, ωe

Result: splits

currentScore = Score(D, ωs, ωe);2

newScore = −∞;3

for each potential split point si do4

tmpScore = Score(D(y ≤ si), ωs, si) + Score(D(y > si), si, ωe) ;5

if tmpScore > newScore then6

newScore = tmpScore;7

bestSplit = si;8

end9

end10

if newScore > currentScore then11

splits = [12

LearnConditionalsplit points(D(y ≤ bestSplit), ωs,13

bestSplit),
bestSplit,14

LearnConditionalsplit points(D(y > bestSplit), bestSplit,15

ωe)];
else16

splits =∅;17

end18

return splits;19

Algorithm 1: Skeleton for the algorithm that learns the split points
for the conditioning variable y.

Algorithm 1 calls the external function Score to evaluate the different con-
figurations of split points, both the current setting (in Line 2), and the one after
adding a potential split point (in Line 5); note that the score function takes
three or four parameters depending on whether we split the interval. One way
of defining this score could be to fit a marginal MTE potential for each interval
(looking only at data defined for the corresponding intervals), and afterwards
calculate the BIC score for each of the intervals.

In Line 4, all potential split points for the conditioning variable are consid-
ered. Obviously, it suffices to only consider the observed values of the condi-
tioning variable as potential split points. Note, however, that if t different split
points are considered in Line 4, we will have to calculate the score 2t times in
Line 5, and if we let t be equal to the number of observations in our database,
the computational complexity of the algorithm will be intractable. We solve this
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in the same way as we did when learning marginal distributions, and select a
fixed number of candidate split points. In the current implementation, we select
the candidate splits by performing equal frequency-binning (with 10 bins) for
each of the conditioning variables, and using the boundaries as candidate split
points during learning.

The computational cost of calling the score-function in Line 5 may still be
substantial though, and we have therefore considered alternatives ways of eval-
uating a split point. First of all, recall that the intuition behind defining a split
point s for the conditioning variable y is that f(x|y ≤ s) and f(x|y > s) are
different (otherwise, we would reduce the BIC-score by introducing additional
parameters for the new hypercube). By following this line of argument, we drop
the calculations of the BIC-score in Line 5, and rather try to find good split
points based on the Kolmogorov-Smirnov test [12] for determining whether two
sets of data come from the same distribution. This modification is immedi-
ately accommodated in Algorithm 1 by simply replacing lines 2 and 5 with
CurrentScore= −∞ and tmpScore= 1 − kstest(Dj(y ≤ si),Dj(y > si)), re-
spectively; kstest(D1, D2) returns the p-value of the test that D1 and D2

come from the same distribution.
When working with more than one conditioning variable (i.e., r > 1) we need

to select both a split variable and a split point. As before we do the selection
greedily: iterate over all the conditioning variables, and for each variable find
the best split point. After that select the conditioning variable having the best
scoring split point. The recursive nature of the algorithm defines a binary tree in
which each internal node is a conditioning variable and the arcs emanating from
a node defines a partitioning of the associated interval (a so-called probability
tree, [4]). Each leaf is associated with a univariate MTE distribution over x
conditioned on the hybercube defined by the path from the root to the leaf.
The final algorithm is similar to Algorithm 1 except that for each conditioning
variable we also need to iterate over lines 4–10 and pick the best scoring variable
to split on; the full specification has been left out due to space restrictions.

5 Examples

Our first example shows how our Algorithms learn a conditional Gaussian dis-
tribution, and in particular we examine the effect of the size of the dataset we
learn from. We generated datasets of size 30, 50, 100, 250, and 1000 from the
distribution

[

x
y

]

∼ N

([

0
0

]

,

[

5 2
2 1

])

, (7)

and focused our attention on learning the conditional distribution f(x|y). The
potential split points for the conditioning variable y were defined by using the
split points in an 11-bin equal-frequency histogram, meaning that 10 candidate
split points were considered in each learning situation. As previously described,
we used the results of the Kolmogorov-Smirnov tests to prioritise these candidate
split points, and the BIC-score to determine whether or not a given candidate
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split point is to be accepted. The distribution over x for each y-interval was
selected in order to maximise the BIC score.

The obtained results for all datasets are given in Fig. 3 part (a) to (e) respec-
tively, and should be compared to the exact conditional density given in Fig. 3
(f); for further comparison, a scatter plot of the dataset with 250 cases in shown
in Fig. 4. The results are promising: We see a strong resemblance between the
target distribution and the gold standard distribution for all data sizes. We can
also see the effect of using the BIC-score to determine whether or not a candi-
date split point for y should be accepted: When only a few splits are employed
for the smaller datasets, all candidate split points for y were used when learning
from the largest dataset. Finally, it is also worth noticing that the support of x is
never divided into subintervals in these runs. This is to be expected, considering
that these MTE potentials are typically learned from only about 25 observations
each.

For illustration, we also ran the algorithm using a data set containing 250
configurations sampled from the distribution





x
y1

y2



 ∼ N









0
0
3



 ,





5 2 2
2 1 1
2 1 2







 . (8)

The result of the learning can be seen in Fig. 5, where we have skipped the
specification of the marginal MTE distributions in the leaves. Observe that the
tree is more fine-grained around the mean of Y1 compared to the parts of the
interval with smaller support in the distribution (i.e., more data is available to
capture the refinement). In particular, note also that the algorithm conditions
on Y2 is this interval.

6 Conclusions

In this paper we have investigated two alternatives for the definition of con-
ditional MTE densities. We have shown that only the most restrictive one is
compatible with standard efficient algorithms for inference in Bayesian networks.

We have also shown how the induction of this kind of conditional densities
can be approached from the point of view of maximum likelihood estimation,
including model selection for determining the partitioning of the domain of the
conditioning variables based on the BIC score.

Our future work on this subject will include the definition of a structural
learning algorithm based on the tools proposed on this paper and in [9].
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Fig. 3. The plots show the results of learning from 30, 50, 100 and 250 cases re-
spectively. The gold-standard distribution, shown in part (f), is the conditional Gaus-
sian distribution f(x|y) derived from the joint distribution in Equation (7). The
Kolmogorov-Smirnov tests were used to find the split points of the conditioning vari-
able (axis on the left-hand side), whereas the marginal distributions were obtained by
maximisation of the BIC score.
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Fig. 4. A scatter of the data set with 250 cases sampled from the joint distribution in
Equation (7). Note, in particular, the few cases sampled from the tails of the distribu-
tion.
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Fig. 5. A binary tree structure representing the conditional distribution learned from
250 cases sampled from the distribution in Equation (8).
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