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Pose Estimation and Adaptive Robot Behaviour
for Human-Robot Interaction

Mikael Svenstrup, Søren Tranberg, Hans Jørgen Andersen and Thomas Bak

Abstract— This paper introduces a new method to determine
a person’s pose based on laser range measurements. Such
estimates are typically a prerequisite for any human-aware
robot navigation, which is the basis for effective and time-
extended interaction between a mobile robot and a human. The
robot uses observed information from a laser range finder to
detect persons and their position relative to the robot. This
information together with the motion of the robot itself is
fed through a Kalman filter, which utilizes a model of the
human kinematic movement to produce an estimate of the
person’s pose. The resulting pose estimates are used to identify
humans who wish to be approached and interacted with. The
behaviour of the robot is based on adaptive potential functions
adjusted accordingly such that the persons social spaces are
respected. The method is tested in experiments that demonstrate
the potential of the combined pose estimation and adaptive
behaviour approach.

I. INTRODUCTION

Mobile robots are moving from factory floors out into less
controlled human environments such as private homes or
institutions. The success of this shift relies on the robots
ability to be responsive to and interact with people in a
natural and intuitive manner and accordingly human-robot
interaction is a novel and growing research field [5], [12].

To allow close, more effective and time-extended relation-
ships it is first necessary to determine the persons willing-
ness to engage in interaction, followed by a coordination
in time and space that respects the persons interest and
privacy. Several authors [2], [3], [6] have investigated the
willingness of people to engage in interaction with robots
that exhibit different expressions or follow different spatial
behavior schemes. In [13] models are reviewed that describe
social engagement based the spatial relationships between a
robot and a person with emphasis on the movement of the
actors. Human-aware detection, tracking and navigation were
discussed in [15], [10].

As a step in the direction of human aware robot behaviour,
we present a novel method for inferring a human’s pose from
2D laser range measurements. Here we define pose as the
position, and orientation of the body. Compared to vision
based pose estimation, such as [7], or 3D range scans [14],
using 2D laser range scanners provide extra long range and
lower computational complexity. The extra range enables the
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robot to detect the movement of persons moving at a higher
speed. The approach takes advantage of the inherent mobility
and typical sensors of a mobile robotic platform and does not
require any determination of the persons facial expressions
or other gestures, and hence the person does not have to
be facing the robot. The method relies on an algorithm for
detecting legs of persons. The algorithm has been tested in
a public transit space [16].

While the focus of this paper is on the pose estimation,
the use of the estimates in determining persons willingness to
engage in interaction is analyzed from the recorded kinematic
state of the person. By looking at knowledge from previous
encounters, the robot behavior is adjusted as described in
[1]. When the persons willingness has been determined it is
used as a basis for human-aware navigation using adaptive
potential functions centered around the person, inspired by
[15]. The navigation is adapted such that it respects the
persons social spaces as discussed in [6].

The pose estimation is validated through a number of ex-
periments. In addition, experiments indicate the effectiveness
of the combined algorithm for human-aware navigation.

II. MATERIALS AND METHODS

The basis for any interaction is the ability of the robot
to detect if a person is present, and if this is the case to
estimate the kinematic state of that person. The algorithm
for detecting legs of persons and converting these to person
position estimates is described in [8], and [19] been imple-
mented and adapted to keep track of individual persons. The
implementation has been proved robust for person speeds up
to 2m

s in a real world public space setting described in [16].
The position estimates from this algorithm form the basis for
deriving a pose estimate of a person.

A. Person Pose Estimation

The setup, where a person is moving around, while the
robot is following, can be seen in Fig. 1. The basic idea
for estimating the pose of a person (θ), is to take the
position estimates from the laser range finder algorithm and
combine them with robot odometry information to obtain a
pose estimate. Because we have both position and velocity
measurements to estimate a pose, it can not be calculated
directly, and a Kalman filter is therefore used to filter the
measurements. The filter produces a velocity estimate of the
person relative to the robot. After this a post filter is added
to obtain the person pose from the velocity estimates.
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Fig. 1. Person position and pose. The state variables ~ppers and ~vpers hold
the position and velocity of the person in the robot frame. θ is the pose of
the person. The variable θ is approximately the angle between φ (the angle
of the distance vector from the robot to the person) and ~vpers (the angle of
the person’s velocity vector), but not entirely the same because the body is
not necessarily oriented in the moving direction. ψ̇ is the rotational velocity
of the robot.

A standard discrete state space model formulation for the
system is used:

~x(k + 1) = Φ~x(k) + Γ~u(k) (1)
~y(k) = H~x(k) , (2)

where the state is comprised of the person position and
velocity and the robot velocity

~x =


px,pers

py,pers

vx,pers

vy,pers

vx,rob

vy,rob

 . (3)

Here p is positions and v is velocities, all given in the robot
coordinate frame. The position of the person relative to the
robot depends both on the person velocity and the robot
velocity. In this stage we omit the rotation of the robot:

px,pers(k + 1) = px,pers(k) + T (vx,pers(k)− vx,rob(k)) (4)
py,pers(k + 1) = py,pers(k) + T (vy,pers(k)− vy,rob(k)) , (5)

where T is the sampling time. This yields the following
state transition matrix:

Φ =


1 0 T 0 −T 0
0 1 0 T 0 −T
0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1

 . (6)

The measurements used are the person position, and the
odometry velocity data from the robot.

H =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (7)

To overcome the nonlinear effect the robot rotation has on
the state, a measurement driven Kalman filter, which is used
in [11], [17]. The idea is to use sensor readings to drive the
process model as an input - in this case odometry data from

the robot. Using polar coordinates, the position vector of the
person relative to the robot can be written:

~ppers =
[
d cos(φ(t))
d sin(φ(t))

]
(8)

where d is the distance to the person, and φ(t) is the angle
to the person. The change, i.e. the derivative becomes

ṗpers =
[

-d sin(φ(t))
d cos(φ(t))

]
φ̇(t) , (9)

where φ̇(t) has the opposite sign of the rotation of the robot
itself ψ̇, so the derivative becomes

ṗpers =
[

-d sin(φ(t))
d cos(φ(t))

]
(-ψ̇) =

[
py,pers

-px,pers

]
ψ̇ . (10)

Using an Euler integration, we can substitute Γ~u in the model
by

Γ~u =


py,pers(k)
-px,pers(k)

0
0
0
0

T
ˆ̇
ψ , (11)

where ˆ̇
ψ is the estimated robot rotation from the odometry

data.
The velocity vector is not necessarily equal to the pose of

the person. Consider a situation where the person is standing
almost still in front of the robot, but is moving slightly
backwards. This means that the velocity vector suddenly is
in the opposite direction, but the actual pose is the same.
Therefore the velocity estimate is filtered through a first
order autoregressive filter. The filter is made with adaptive
coefficients relative to the velocity. So when the person
is moving fast, we rely very much on the direction of
the velocity, but if the person is moving slow, we do not
change the pose estimate very much and rely on the previous
estimate. The autoregressive filter

θ(k + 1) = βθ(k) + (1− β) arctan
(
vy,pers

vx,pers

)
, (12)

where β is chosen relative to the absolute velocity v as:

β =

 0.9 if v < 0.1m/s
1.04− 1.4v if 0.1m/s ≥ v ≤ 0.6m/s

0.2 else
. (13)

B. Evaluating a Person’s Willingness to Interact

Although the robot is not perceived as a human being
when encountering people, the hypothesis is that human
behavioral reactions are the same as in human to human
encounters. If a person is interested, he or she will undoubt-
edly approach the robot in a straightforward manner. On the
contrary, if in no interest the person will carefully avoid the
path of the robot.

However, there may be many trajectories where the in-
terest of the person will be difficult to determine, i.e. many
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valid trajectories are possible and trajectories variate for each
robot-person encounter. In previous work [1] an adaptive
person evaluator based on a Case Based Reasoning (CBR)
system has been used. The CBR system is basically a
database system which holds a number cases describing
each encounter. The specification of a case is a question
of determining a representative set of features connected to
the event of a human robot encounter which can serve as
input. In this case we use the features velocity, position and
pose illustrated in Fig. 1. The output is the Person Interest
indicator, PI∈ [0, 1] which store the probability or indication
of the detected person’s interest to interact. The value 0
indicates no interest whereas 1 indicate interest.

The starting point of the CBR system is an empty database
holding no a priori correspondence between trajectories and
interest. When interacting, interest is confirmed by handing
over an object to the robot. Lack of interest is triggered if
no interaction has occurred after a fixed period of time. By
adding cases, the system gradually learns how to decode
trajectories into a interest level.

C. Human-aware Navigation

The robot behavior is inspired by the spatial relation
between humans (proxemics) as described in [9]. Hall divides
the zone around a person into to four categories, 1) the public
zone > 3.6m, 2) the social zone > 1.2m, the personal zone
> 0.45m, and the intimate zone < 0.45m. Social spaces
between robots and humans were studied in [18] supporting
the use of Hall’s proxemics distances and the human robot
interaction is therefore designed to be able to experiment
with different distances.

For modeling the robots navigation system a person cen-
tered potential field is introduced. The potential field has high
values where the robot is not allowed to go, and low values
where the robot should be. All navigation is done relative
to the person, and hence no global positioning is needed in
the proposed model. The method is described in [1], but is
slightly changed in this implementation. The potential field is
designed by the weighted sum of four Gaussian distributions
of which one is negated. The covariances of the distributions
are used to adapt the potential field according to PI.

The four Gaussian distributions are illustrated in Fig. 2
and has the following functions:

Attractor, this is a negated distribution used to attract
the robot to the person. Its variances σ2

x and σ2
y are both

set to 7.5 and its covariance σxy is set to 0.
Rear, this distribution ensures that the robot does not
approach a person from behind. Its variances σ2

x and σ2
y

are respectively set to 2 and 1 and its covariance σxy

to 0. It is only applied when the robot is behind the
person.
Parallel, this distribution is initially placed with its
major axis parallel to the xp-axis in the persons coor-
dinate frame. Its variances and covariance are adapted
according to the person interested in interaction.
Perpendicular, this distribution is initially placed with
its major axis perpendicular to the parallel distribution.

Fig. 2. Illustration of the four Gaussian distributions used for the potential
function around the person. The rear area to the left of the y axis. The
frontal area (to the right of y axis) which is divided in two, one in the
interval from [−45◦ : 45◦] and the other in the area outside this interval.
The parallel and perpendicular distributions are rotated by the angle α.

Its variances and covariance are adapted according to
the person interested in interaction. This distribution as
well as the parallel is only applied when the robot is in
front of the person.

The attractor and rear distribution are both kept constant
for all instances of the person interest indication PI. But
the parallel and perpendicular distributions are interactively
scaled and rotated according to the person’s changing PI
during interaction. This means that the robot continuously
adapt its behaviour to the current PI value. The potential
functions are scaled and adjusted according to Hall’s prox-
imity distances, and the preferred robot to person encounter
reported in [6].

The resulting potential field contour can be seen in Fig. 3
for three specific values of PI. In the extreme case with PI =
0 the potential field will like look Fig. 3(a) where the robot
will move to the dark blue area, i.e. the lowest potential app.
2 meters in front of the person. The other end of the scale
for PI = 1 is illustrated in Fig. 3(c), where the person is
interested in interaction and as result the potential function
is adapted so the robot is allowed to enter the space right
in front of him or her. In between, Fig. 3(b), is the default
configuration of PI = 0.5, in which the robot is forced to
encounter the person in approximately 45◦, while keeping
just outside the personal zone.

Instead of just moving towards the lowest point at a fixed
speed, then the gradient of the potential field is derived. This
allows the robot to move fast when the potential field is
steep, for example if the robot has to move fast away from
a person if getting in the way. On the other hand, the robot
has slow comfortable movements when it is close to where
it is supposed to be, i.e. near a minimum of the field.

III. EXPERIMENTAL SETUP

In order to validate all parts of the system, the above
algorithms have been tested in three steps by integrating one
feature at the time. First the basic person detection and pose
estimation algorithm is tested. Then this is combined with
the human aware navigation. Finally, also the person interest
estimation has been included. Each step has been validated
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Fig. 3. Shape of the potential function for (a) a person not interested in interaction, (b) a person considered for interaction, and (c) a person interested
in interaction. The scale for the potential function is plotted to the left and the value of the person interested indicator PI is denoted under each plot.

in real world experiment. All experiments have been done
with only one human in the area, since the purpose is to
demonstrate the proof of concept of the methods. However,
the methods should be valid with more persons around the
robot.

A. Test Equipment and Implementation

The basis for evaluation of the proposed methods was
a FESTO Robotino platform on which a head, capable of
showing simple facial expressions, is mounted (see Fig. 4).
On the platform, the robot control software framework
Player/Stage [4] has been implemented, which also enables
simulation before real world tests. The robot is equipped with
a URG-04LX line scan laser range finder and a contact to
press if you are interested in interaction. The case database
has been implemented using MySQL.

Laser

Contact

Fig. 4. The FESTO Robotino robot used for the experiments.

A 3D motion tracking system from Vicon (typically used
for indoor UAV applications) has been used to validate the
functionality of the algorithm through laboratory experi-
ments.

B. Pose Estimation

The pose estimation algorithm was validated through lab-
oratory experiments. The pose algorithm was tested isolated
from the system, i.e. all navigation and learning algorithms
were disabled. During the experiment, the robot was placed
on a fixed position in the lab, while a test person entered the
robot field of view and wandered around following different
patterns at velocities around 0.5 − 1.5m

s . While the robot

estimated the pose of the test person, the stationary tracking
system was concurrently reading the movements.

C. Human Aware Navigation

In this step, the human aware navigation algorithm was
added to the pose estimation system and tested in the robot
laboratory. In order to isolate the navigation algorithm, the
level of PI was set to a fixed value through each experiment
and was completed for PI = {0, 0.5, 1}. As in the former
experiment, the stationary tracking system was set to read the
position of the test person while he would approach the robot
following different patterns. Since the navigation algorithm
was enabled in this experiment, the movement of the robot
was also tracked.

D. Integration Test

In this step, the complete system was tested, i.e. the CBR
system was added. The test took place in a foyer at the
University campus with an open area of 7 times 10 meters.
This allowed for easily repeated tests with no interference
from other objects than the test person. The contact on the
robot was used to get feedback from the test persons whether
they were interested in interaction or not. The test persons
were asked to approach or pass by the robot in different
ways. In approximately half the cases, the test person would
end the trajectory by pressing the switch indicating interest
in interaction. The test started with an empty database, so
that the robot had no experience to start from. During the
experiments the PI values, the position, pose estimates were
logged in the database.

IV. RESULTS AND DISCUSSION

A. Pose Estimation

Fig. 5 shows the different trajectories performed. The
black dots are the position estimates from the robot, and
the lines extending from the dots are the corresponding pose
estimates. Some underlying coloured dots can be seen in
Fig. 5(a) and in the left line in Fig. 5(b). These are the
correct position estimates as measured by the motion tracking
system. The correct underlying positions are omitted in the
other plots, since they clutter the image unnecessarily. In
Fig. 5(a), a u-turn movement is performed where the person
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Fig. 5. While the robot was standing still, three types of movement was performed. The dots indicate the person positions, which the robot has estimated.
S robot, and in the left figure and the left trajectory of the middle figure, the correct trajectory measured by the Vicon underlying dots. The time evolution
is shown as colours.
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Fig. 6. This figure shows the motion of the robot when the person interest indication (PI) is fixed at three different levels. The colour bar shows the time
evolution. It can be seen that the robot keeps at a comfortable distance when the PI is low, and approaches the person from the front when PI = 1.

stands still for a few seconds close to the robot in the lower
left corner. This demonstrates that even though the person
stands still (and might even move slightly backwards), the
pose estimate keeps being correct towards the robot. When
the robot recognizes a person, it assumes that the pose is
close to 0, which explains the blue lines always pointing
towards the robot in the beginning of a trajectory. However,
as soon as the person start to walk, the pose estimate turns
and follows the motion. Note that it is not the Kalman filter
which estimates the velocity wrong, when the lines do not
follow the trajectory exactly. But it is the autoregressive filter
that does not allow the pose estimate to change too quickly.
The figures show that the pose estimator works satisfactory
and can be used to estimate pose in real world. Although
this laboratory test confirm that the pose algorithm works as
expected, the test is limited to only a few test runs and the
algorithm is not really fine tuned yet.

B. Human Aware Navigation

In this experiment, the robot is set to move according to
prespecified person indication (PI) values. The person moves
from the bottom left corner (in Fig. 6(a)-6(c)) towards the
robot. The elapsed time is shown by the trajectory colour
changing from blue to red. When PI = 0, it can be seen
that the robot tries to get away from the person. When it
reaches a comfortable distance, it settles around that position

relative to the person. When the person is partially interested,
the robot avoids the person and tries to stay at an angle
of approximately 45◦ degrees. Finally, when the person is
interested, the robot approaches the person from the front
until the border of the intimate zone is reached at around
45cm. The major colour change at the person trajectory
indicates that the person has been standing still. As soon
as the person starts to move away, the robot finds out that
it is behind and too close to the person, so it starts to move
away.

The shaky sinusoidal movement of the person trajectory
is due to the tracking of the person. It is caused by the fact
that the central part of the body moves like this when a
human walks. The experiment proves that the potential field
enables the robot to keep at the correct position relative to
the person, and that the pose estimator also works when the
robot is moving.

C. Integration Test

The output of the integration test was a trained CBR
database. The database can be seen in Fig. 7. The dots show
recorded test person positions, which was rounded to a grid
size of 40 × 40cm. Note that the positions are not global
coordinates, but relative to the robot while it is moving. The
extending lines, show the direction of the pose estimates, and
the colour the corresponding PI value, where red indicates
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Fig. 7. The figure shows the values stored in the CBR system after
completion of 20 test runs. Each dot represents a position of the test person
in the robot coordinate frame. The direction of the pose estimate of the test
person is shown by the extending line, while the level of interest (PI) is
indicated by the color range of the line.

an interested person, and blue indicates a person which is not
interested. The database shows that that persons right in front
of the robot with a pose close to 0◦ is typically interested
in interaction, whereas a pose pointing away from the robot
indicates that the person is not interested. The results reflect
the fact that the potential field makes the robot move so only
persons who are estimated as interested are allowed to come
close to the robot.

Clearly, the experimental work is still in its initial stage
and is not exhaustive. However, the tests demonstrates the
potential of the methods and of combining the pose estima-
tion algorithm with the proposed method for human aware
navigation.

V. CONCLUSIONS

This paper describes a new method for estimating the pose
of a person in an interaction scenario with a mobile robot.
The algorithm only relies on laser range finder data, which
makes it applicable for moving persons at larger distances
than normal vision techniques allow. A Kalman filter is used
to filter the measured positions of persons within view and
outputs a pose estimate.

The position and pose estimates are used in a Case
Based Reasoning system to estimate the person’s interest in
interaction, and the spatial behavior strategies of the robot
are adapted accordingly using adaptive potential functions.
The human robot interaction methodology described in this
paper is supported by laboratory and real world tests which
demonstrate the applicability of the pose estimator and the
spatial behaviour of the robot.

The real world tests demonstrate the potential of the
integrated system, which can be used for robots moving in
human environments. Generally, the conducted experiments
on the robots cognitive functionality show that the method of
CBR implemented can advantageously be applied to a robot,
which needs to evaluate the behavior of a person.

An interesting aspect for future work would be to combine
this pose estimation technique with a vision based technique.

This could give a more accurate pose estimate for close
interaction.
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