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Abstract. Timed-Arc Petri Nets (TAPN) is a well studied extension

of the classical Petri net model where tokens are decorated with real

numbers that represent their age. Unlike reachability, which is known to

be undecidable for TAPN, boundedness and coverability remain decid-

able. The model is supported by a recent tool called TAPAAL which,

among others, further extends TAPN with invariants on places in order

to model urgency. The decidability of boundedness and coverability for

this extended model has not yet been considered. We present a reduc-

tion from two-counter Minsky machines to TAPN with invariants to show

that both the boundedness and coverability problems are undecidable.

1 Introduction

Time-dependent models have been extensively studied due to increasing de-
mands on the reliability and safety of embedded software systems. Timed au-
tomata [11] and various time-extensions of Petri nets (e.g. [4]) are among the
most studied time-dependent models. A recent paper by Srba [14] provides a
comparative overview of these models.

Timed-Arc Petri Nets (TAPN’s) [4] is a popular time-extension of Petri Nets
[10] in which each token is assigned an age (a real number), and time intervals
on arcs restrict the ages of tokens that can be used to fire a transition. The
reachability problem has been shown undecidable for TAPN [12]. In particular,
a TAPN cannot correctly simulate a test for zero on a counter [3]. However,
other problems, like boundedness and coverability remain decidable [2][1].

Recent work on the verification tool TAPAAL by Byg et al. [5] have, among
other things, introduced invariants on places into the TAPN model as a way to
represent urgency. However, urgency alone does not allow a TAPN to correctly
simulate a test for zero on a counter. Nevertheless, we show that invariants
on places makes the coverability and boundedness problem undecidable. We
adopt the main idea from [12] (see also [6] for a similar proof technique for
another time extension of Petri nets), in which a two-counter Minsky machine
(2-CM) is weakly simulated by a TAPN. In contrast to their reduction, the
extension of invariants allows us to detect when the net incorrectly simulates
the 2-CM. Further, our reduction allows us to prove the undecidability of both
the coverability and boundedness problems.



2 Basic Definitions

Many of the definitions in this section are following [13]. The set of all time
intervals I and the set of time intervals for invariants IInv are defined according
to the following abstract syntaxes where a ∈ N0, b ∈ N and a < b:

I ::= [a, a] | [a, b] | [a, b) | (a, b] | (a, b) | [a,∞) | (a,∞)
IInv ::= [0, 0] | [0, b] | [0, b) | [0,∞)

We define the predicate r ∈ I for r ∈ R+
0 in the expected way.

Definition 1 (Timed-Arc Petri Net with Invariants). A Timed-Arc Petri
Net with Invariants (ITAPN) is a 5-tuple N = (P, T, F, c, ι) where P is a finite
set of places, T is a finite set of transitions such that P ∩ T = ∅, F ⊆ (P ×
T ) ∪ (T × P ) is the flow relation, c : F |P×T → I is a function assigning time
intervals to arcs from places to transitions, and ι : P → IInv is a function
assigning invariants to places.

We let B(R+
0 ) denote the set of finite multisets over R+

0 . For a B ∈ B(R+
0 ) and

some d ∈ R+
0 , we let B + d = {b + d | b ∈ B}. Notationally, we use multisets as

ordinary sets with the operations ∪, \,⊆,∈ implicitly interpreted over multisets.
Let us now define a marking on a ITAPN.

Definition 2 (Marking). A marking M on a ITAPN N = (P, T, F, c, ι) is a
function M : P → B(R+

0 ), such that for every place p ∈ P it holds that for every
token x ∈ M(p), x ∈ ι(p). The set of all markings over N is denoted M(N).

A marked ITAPN is a pair (N,M0) where N is a ITAPN and M0 is the initial
marking. We only allow initial markings in which all tokens have age 0.

The preset of a transition t is •
t = {p ∈ P | (p, t) ∈ F} and the postset of t is

t
• = {p ∈ P | (t, p) ∈ F}.

Definition 3 (Firing rule). Let N = (P, T, F, c, ι) be a ITAPN, M some mark-
ing on it and t ∈ T be a transition of N .

We say that t is enabled if and only if ∀p ∈ •
t. ∃x ∈ M(p). x ∈ c(p, t), i.e.

there is a token with an appropriate age at every place in the preset of t.
If t is enabled in M , it can be fired, whereby we reach a marking M

� defined
by ∀p ∈ P. M

�(p) =
�
M(p) \ C

−
t (p)

�
∪ C

+
t (p) (note that all operations are on

multisets and there may be multiple choices for the sets C
−
t (p) and C

+
t (p) for

each p. We simply fix the sets before firing t), where

– C
−
t (p) =

�
{x} if p ∈ •

t ∧ x ∈ M(p) ∧ x ∈ c(p, t)
∅ otherwise

– C
+
t (p) =

�
{0} if p ∈ t

•

∅ otherwise

i.e. from each place p ∈ •
t we remove a token with an appropriate age, and we

add a new token with age 0 to every p ∈ t
•.



Definition 4 (Time delays). Let N = (P, T, F, c, ι) be a ITAPN and M some
marking on it. A time delay d ∈ R+

0 is allowed if and only if (x + d) ∈ ι(p)
for all p ∈ P and x ∈ M(p), i.e. by delaying d time units no token violates
the invariants. By delaying d time units we reach a marking M

�, defined as
M

�(p) = M(p) + d for all p ∈ P .

A marked ITAPN (N,M0) is said to be k-bounded if the number of tokens
in each place does not exceed k for any marking reachable from M0. A marked
ITAPN is bounded if it is k-bounded for some k ∈ N.

Problem 1 (Boundedness). Given a marked ITAPN is it bounded?

A marking M on a ITAPN (N,M0) is said to be coverable if there exists a
marking M

�, reachable from M0, s.t. M
�(p) ⊇ M(p) for each place p in the net.

Problem 2 (Coverability). Given a marked ITAPN (N,M0) and some marking
M , is M coverable?

3 Undecidability of Boundedness and Coverability

In this section we will prove the undecidability of boundedness and coverability
by reduction from two-counter Minsky machines.

Definition 5. A Two-Counter Minsky Machine (2-CM) with two non-negative
registers r1 and r2 is a sequence of instructions (I1 : Ins1; I2 : Ins2; . . . Ie−1 :
Inse−1; Ie : HALT ) where for every j, 1 ≤ j < e, Insj is one of the two types:

– ri := ri + 1; goto Ik; where i ∈ {1, 2} and k ∈ {1, 2, . . . , e} (Increment).
– if ri > 0 then ri := ri − 1; goto Ik; else goto I�; where i ∈ {1, 2} and k, � ∈
{1, 2, . . . , e} (Test and decrement).

The last instruction is always the HALT instruction. A configuration of a 2-CM
is a triple (j, v1, v2) where j ∈ {1, 2, . . . , e} is the index of instruction Ij to be
executed and v1 and v2 are the values of the registers r1 and r2, respectively.

The computational step relation of a 2-CM is defined as expected and we use
the notation (j, v1, v2) → (j�, v�1, v�2) to denote that we perform the current in-
struction Ij with values v1 and v2 in the registers, resulting in the configuration
(j�, v�1, v�2).

Definition 6 (The Halting Problem for 2-CM). Given a 2-CM, is it pos-
sible to reach the halt instruction from the initial configuration (1, 0, 0), i.e.
(1, 0, 0) →∗ (e, v1, v2) for some v1, v2 ∈ N0?

Theorem 1 (Minsky [9]). The halting problem for 2-CM is undecidable.

We will now describe the reduction from 2-CM to ITAPN. Given a 2-CM (I1 :
Ins1; I2 : Ins2; . . . Ie−1 : Inse−1; Ie : HALT ) we construct a ITAPN
(P, T, F, c, ι) where
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(c) Simulation of Ij : ri := ri + 1; goto Ik.
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telse2
j

[0, 0]

[0, 0]

tthen
j

[0, 0]

[0, 0]

(d) Simulation of Ij : if ri > 0 then ri := ri − 1; goto Ik; else goto I�.

Fig. 1: ITAPN models for 2-CM simulation.

– P = {pj , qj | 1 ≤ j < e} ∪
�
pr1 , p

reset
r1

, pr2 , p
reset
r2

�
∪ {pcount} ∪ {pe, phalt}

– T =
�
t
reset
r1

, t
reset
r2

�
∪

�
tj , t

goto
j | Insj is of type increment

�
∪�

t
else1
j , t

else2
j , t

then
j | Insj is of type test and decrement

�
∪ {te}

The number of tokens in pr1 and pr2 correspond to the values of r1 and r2, the
number of tokens in pcount remembers the number of computation steps which
have been simulated in the net and p1, . . . , pe corresponds to the instructions
Ins1, . . . , Inse such that the place pj contains one token if and only if the current
instruction is Insj . For the flow relation we will split it into 4 parts.

– F1 contains the arcs for the registers. For each register ri, i ∈ {1, 2}, we add
the following arcs to F1

(pri , t
reset
ri

), (treset
ri

, pri), (preset
ri

, t
reset
ri

), (treset
ri

, p
reset
ri

) where

c((pri , t
reset
ri

)) = [1, 1], c((preset
ri

, t
reset
ri

)) = [0, 0] and ι(pri) = [0, 1] .

This is illustrated in Figure 1a. The number of tokens on pri indicates the
value of the register. Notice the invariant on the register which disallows
tokens with an age greater than 1. Placing a token on p

reset
ri

allows us to
reset the age of all tokens of age 1 in the register.



– F2 contains the arcs for the increment instructions. For each increment in-
struction Ij : ri := ri + 1; goto Ik;, we add the following arcs to F2

(pj , tj), (tj , preset
r2

), (tj , qj), (tj , preset
r1

), (preset
r2

, t
goto
j ), (qj , t

goto
j ),

(preset
r1

, t
goto
j ), (tgoto

j , pcount), (tgoto
j , pk), (tgoto

j , pri) where c((pj , tj)) = [1, 1],

c((preset
r2

, t
goto
j )) = [0, 0], c((qj , t

goto
j )) = [0, 0] and c((preset

r1
, t

goto
j )) = [0, 0] .

This is illustrated in Figure 1c. Notice that we require a delay of one time
unit before firing tj . Because of this, we allow tokens in each register to be
reset (by placing tokens on p

reset
r1

and p
reset
r2

). Following this, by firing t
goto
j

a token is added to pcount, register ri is incremented by adding a token to
pri and control is given to the next instruction Ik by placing a token on pk.

– F3 contains the arcs for the test and decrement instructions. For each test and
decrement instruction Ij : if ri > 0 then ri := ri − 1; goto Ik; else goto I�;,
we add the following arcs to F3

(pj , t
else1
j ), (pj , t

then
j ), (pri , t

then
j ), (telse1

j , qj), (telse1
j , p

reset
r3−i

), (qj , t
else2
j ),

(preset
r3−i

, t
else2
j ), (telse2

j , p�), (telse2
j , pcount), (tthen

j , pcount), (tthen
j , pk) where

c((pj , t
else1
j )) = [1, 1], c((pj , t

then
j )) = [0, 0], c((pri , t

then
j )) = [0, 0],

c((preset
r3−i

, t
else2
j )) = [0, 0] and c((qj , t

else2
j )) = [0, 0] .

This is illustrated in Figure 1d. Notice that when we follow the else branch
(firing transition t

else1
j ), we can only reset the ages of tokens in the register

on which we are not testing for emptyness.

– F4 contains the arcs for the HALT instruction. Formally it is defined as

F4 = {(pe, te), (te, pcount), (te, phalt)} where c((pe, te)) = [1, 1] .

This is illustrated in Figure 1b. Again we require a time delay of one time
unit before te can be fired and a token placed at phalt.

– The flow relation F can then be defined as the union of the four parts, i.e.
F = F1 ∪ F2 ∪ F3 ∪ F4 and we let ι(p) = [0,∞) for all p ∈ P \ {pr1 , pr2} .

We define the initial marking M0 such that M0(p1) = {0} and M0(p) = ∅ for
all p ∈ P \ {p1}.

Let (N,M0) be the marked ITAPN simulating a given 2-CM. Notice that
every place in the net except for pr1 , pr2 , pcount is 1-safe (i.e. contains at most
one token). In a correct simulation of the 2-CM by our net, a configuration
(j, v1, v2) of the 2-CM corresponds to any marking M where

M(pj) = {0}, M(pri) = {0, 0, . . . , 0}� �� �
vi times

for i ∈ {1, 2}, (1)

|M(pcount)| = n where n ∈ N0 and M(p) = ∅ for all p ∈ P \ {pj , pr1 , pr2 , pcount} .



We will now describe how to simulate the three types of instructions of a 2-CM
in a correct way. Assume there is a token of age 0 in pj .

If Ij is an increment instruction, we need to delay for one time unit in order
to enable tj (see Figure 1c). Because we delayed one time unit, all tokens in the
registers are now of age 1. In a correct simulation, we fire repeatedly transitions
t
reset
r1

and t
reset
r2

until all tokens in pr1 and pr2 are of age 0. Note that it is possible
to cheat in the simulation, as it is possible to leave some tokens of age 1 in pr1

or pr2 when firing t
goto
j .

If Ij is a test and decrement instruction there are two possibilities (see Fig-
ure 1d). If there is a token of age 0 at pri , we fire t

then
j in order to decrement

the number of tokens in register ri, and hand over the control to Ik by placing a
token on pk. Otherwise, in the correct simulation we delay one time unit before
firing t

else1
j . Then we reset the age of all the tokens in the other register, pr3−i to

0. We then proceed by firing t
else2
j . This will hand over control to instruction I�

by placing a token on p�. Again note that it is possible to cheat in the simulation,
either by leaving tokens of age 1 at pr3−i when proceeding to the next instruction
or by taking the else-branch even though there is a token at pri (because the
net does not force us to fire transition t

then
j when it is enabled).

If Ij is the halt instruction, we delay one time unit before we fire the last
transition te and add a token to phalt.

After every instruction one token is added to pcount. We will now prove a
lemma detailing what happens if we cheat.

Lemma 1. Let (j, v1, v2) be the current configuration of a 2-CM CM, (N,M0)
the associated ITAPN and M a marking corresponding to (j, v1, v2) (see Equation
1). If the net cheats then during the simulation of CM in the next computation
step it is not possible to simulate an increment instruction, go to the halt state,
nor to take the else-branch of a test and decrement instruction. Further, the net
can do at most v1 + v2 decrements before getting stuck.

Proof. We can perform an incorrect simulation in two ways:

– If all tokens in pr1 and pr2 are not reset to age 0 in an increment or test and
decrement instruction before going to the next instruction.

– In a test and decrement instruction, the net can fire the transition t
else1
j even

if there is a token of age 0 in pri . This is possible by delaying 1 time unit to
enable the transition. However, this will result in the tokens in pri having
age 1 and these can not be reset before going to the next instruction.

In both cases we end up in a marking M
� where there is at least one token of

non-zero age in either pr1 or pr2 . Observe that the simulation of increment, halt
and the else-branch of a test and decrement instruction all require a delay of
1 time unit (see Figure 1) which would violate the invariants ι(pr1) or ι(pr2).
Thus, the only possibility is to take the then-branch of a test and decrement
instruction. However, this is only possible as long as there are tokens of age 0 in
pr1 or pr2 . There are v1 and v2 tokens in pr1 and pr2 , repectively. Thus, the net
can do at most v1 + v2 decrements before getting stuck. ��



3.1 Undecidability Results

First we prove the undecidability of the boundedness problem.

Lemma 2. Given a 2-CM CM and the associated ITAPN (N,M0), CM halts if
and only if N is bounded.

Proof. We start by proving that if N is bounded then CM halts. Assume that
N is k-bounded. Further, assume by contradiction that CM does not halt. After
simulating k+1 computational steps of CM correctly, the net will be in a marking
M where |M(pcount)| = k + 1. This is a contradiction to the assumption that N

is k-bounded.
Now we prove the implication in the other direction. Assume that CM halts

in n steps. We will show that N is 2n-bounded. If we simulate CM correctly,
there will be at most n tokens at the registers, and exactly n tokens at pcount.
Hence, the net must cheat in order to become unbounded. In the worst case, it
cheats at the last step, when there are at most n− 1 tokens in the registers and
n− 1 tokens at pcount. Then we have that the net is 2n-bounded since there will
be at most 2(n− 1) tokens at pcount by Lemma 1. ��

From Lemma 2 we conclude the following theorem.

Theorem 2. The boundedness problem is undecidable for ITAPN.

We now prove the undecidability of the coverability problem.

Lemma 3. Let M be a marking such that M(phalt) = {0} and M(p) = ∅ for all
p ∈ P \ {phalt}. Given a 2-CM CM and the associated marked ITAPN (N,M0),
as defined above, CM halts if and only if M is coverable from M0.

Proof. First we prove that if CM halts then M is coverable from M0. Assume
that the CM halts. By simulating CM correctly in N , we can easily see that we
reach a marking M

�, with a token in phalt, hence M
�(p) ⊇ M(p) for all p ∈ P .

Now we prove that if M is coverable from M0 then CM halts. Assume that
M is coverable from M0. By assumption there exists a reachable marking M

�

such that M
�(p) ⊇ M(p) for all p ∈ P . By definition of coverability, it holds that

0 ∈ M
�(phalt) and by Lemma 1 this is only possible if we simulate CM correctly

in the net, hence CM halts. ��

From Lemma 3 we conclude the following theorem.

Theorem 3. The coverability problem is undecidable for ITAPN.

4 Conclusion

We proved that coverability and boundedness is undecidable for Time-Arcs Petri
Nets with Invariants by reduction from two-counter Minsky machines. The fol-
lowing table shows a summary of known results about Petri Nets (PN). Our
results are emphasized.



Reachability Boundedness Coverability
PN decidable [8] decidable [7] decidable [7]

TAPN undecidable [12] decidable [2] decidable [1]
ITAPN undecidable [12] undecidable undecidable
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