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a b s t r a c t

Iterative refinement clustering algorithms are widely used in data mining area, but they are sensitive to
the initialization. In the past decades, many modified initialization methods have been proposed to
reduce the influence of initialization sensitivity problem. The essence of iterative refinement clustering
algorithms is the local search method. The big numbers of the local minimum points which are embedded
in the search space make the local search problem hard and sensitive to the initialization. The smaller
number of local minimum points, the more robust of initialization for a local search algorithm is. In this
paper, we propose a Top–Down Clustering algorithm with Smoothing Search Space (TDCS3) to reduce the
influence of initialization. The main steps of TDCS3 are to: (1) dynamically reconstruct a series of
smoothed search spaces into a hierarchical structure by ‘filling’ the local minimum points; (2) at the
top level of the hierarchical structure, an existing iterative refinement clustering algorithm is run with
random initialization to generate the clustering result; (3) eventually from the second level to the bottom
level of the hierarchical structure, the same clustering algorithm is run with the initialization derived
from the previous clustering result. Experiment results on 3 synthetic and 10 real world data sets have
shown that TDCS3 has significant effects on finding better, robust clustering result and reducing the
impact of initialization.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is a useful approach in data mining processes for
identifying patterns and revealing underlying knowledge from
large data collections. The application areas of clustering include
image segmentation, information retrieval, and document classifi-
cation, associate rule mining, web usage tracking and transaction
analysis. Generally, clustering is defined as the process of partition-
ing unlabelled data set into meaningful groups (clusters) so that in-
tra-group similarities are maximized and inter-group similarities
are minimized at the same time.

In essence, clustering involves the following unsupervised
learning process, which can be written as:

Define an ‘encoder’ function c(x) to map each data object xi into
a particular group Gk(c(x) = k) x 2 Gk k = 1, . . . ,K), so that a cluster
criterion QðcÞ ¼

PK
k¼1

P
cðxiÞ¼k;cðxjÞ¼kdistðxi; xjÞ is minimized.

As we know, this is a classical combinatorial optimization prob-
lem and solving it is exactly NP-hard, even with just two clusters
[6]. According to computation complexity theory [22], no complete
algorithm can get the overall optimal solutions in a polynomial

time, unless P = NP. Iterative refinement method, a popular
approximate algorithm, is widely adopted by various unsupervised
learning algorithms. A general iterative refinement clustering pro-
cess can be summarized as Algorithm 1 [19].

Algorithm 1. General iterative refinement clustering

Initialization: Initialize the parameters of the current cluster
model.
Refinement: Repeat until the cluster model converges.

(1) Generate the cluster membership assignments for all
data objects, based on the current model;

(2) Refine the model parameters based on the current
cluster membership assignments.

The intuitionistic denotation of iterative refinement clustering
algorithm is shown in Fig. 1. The horizontal axis denotes feasible
solutions of clustering problem and the vertical axis is the corre-
sponding objective function values of feasible solutions. In this pa-
per, the feasible solution is the results of ‘encode’ function (or the
clustering results) and the objective function value is the values of
cluster criterion QðcÞ ¼

PK
k¼1

P
cðxiÞ¼k;cðxjÞ¼kdistðxi; xjÞ. Without loss of

generality, we assume that point 3 is selected as the initialization
of an iterative refinement clustering algorithm, and by repeating
step (1) and (2), the algorithm will converge to point 4, one of
the feasible solutions with sub-optimal objective function value.
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If point 1 is chosen as the initialization of the same clustering algo-
rithm, it will lead the algorithm converges to point 2, a worse solu-
tion with a higher cluster criterion value.

That the initialization model must be correct is an important
underlying assumption for iterative refinement clustering algo-
rithm. It can determine the clustering solution [19], that is, differ-
ent initialization models will produce different clustering results
(or different local minimum points as shown in Fig. 1). Since the
problem of obtaining a globally optimal initial state has been
shown to be NP-hard [9], the study on the initialization methods
towards a sub-optimal clustering result hence is more practical,
and is of great value for the clustering research. Recently, initializa-
tion methods have been categorized into three major families: ran-
dom sampling methods, distance optimization methods and
density estimations [11]. Forgy adopted uniformly random input
objects as the seed clusters [8], and MacQueen gave an equivalent
way with selecting the first K input objects as the seed clusters
[17]. In the FASTCLUS, a K-means variance implemented in SAS
[21], the simple cluster seeking (SCS) initialization method is
adopted [23]. Katsavounidis et al. proposed a method that utilizes
the sorted pairwise distances for initialization [15]. Kaufman and
Rousseeuw introduced a method that estimates the density
through pairwise distance comparison, and initializes the seed
clusters using the input objects from areas with high local density
[14]. In Ref. [7], a method which combines local density approxi-
mation and random initialization is proposed. Belal et al. find a
set of medians extracted from a dimension with maximum and
then use the medians as the initialization of K-means [3]. Niu
et al. give a novel algorithm called PR (Pointer Ring), which initial-
izes cluster centers based on pointer ring by partition traditional
hyper-rectangular units further to hyper-triangle subspaces [18].
The initialization steps of K-means++ algorithm can be described
as: choosing an initial center m1 uniformly at random from data
set; and then selecting the next center mi = x0 from data set with
probability distðx0;mÞ2=

P
x2Ddistðx;mÞ, where dist(x,m) denote the

shortest distance from a data object x to the closest center m; iter-
ative until find K centers [1]. The main steps of initialization cen-
ters of K-means by kd-tree are: first, the density of a data at
various locations are estimated by using kd-tree; and then use a
modification of Katsavounidis’ algorithm, which incorporates this
density information, to choose K seeds for K-means algorithm
[20]. And recently, Lu et al. treat the clustering problem as a
weighted clustering problem so as to find a better initial cluster
center based on the hierarchical approach [16].

The goal of these modified initialization methods, is to reduce
the influence of sub-optimal solutions (the local minimum points)
bestrewed in the whole search space, as shown in Fig. 1. Although

iterative refinement clustering algorithms with these modified ini-
tialization methods have some merits in improving the quality of
cluster results, they are also have high probability to be attracted
by local minimum points. Local search method is the essence of
iterative refinement clustering algorithms. Lots of the local mini-
mum points make a local search problem hard and sensitive to
the initialization. Those proposed modified initialization methods
are only focused on how to select an initialization which can im-
prove the quality of iterative refinement clustering algorithm,
but the search space embedded lots of local minimum points is
ignored.

Smoothing search space method reconstructs the search space
by filling local minimum points, to reduce the influence of local
minimum points. In this paper, we first design two smoothing
operators to reconstruct the search space by filling the minimum
‘traps’ (points) based on the relationship between distance metric
and cluster criterion. Each smoothing operator has a parameter,
smoothing factor, to control the number of minimum ‘traps’. And
then, we give a top–down clustering algorithm with smoothing
search space (TDCS3) to reduce the influence of initialization. The
main steps of TDCS3 are to: (1) dynamically reconstruct a series
of smoothed search space as a hierarchical structure: the most
smoothed search space at the top, and the original search space
at the bottom, other smoothed search spaces are distributed be-
tween them, by ‘filling’ the local minimum points; (2) at the top le-
vel of the hierarchical structure, an existing iterative refinement
clustering algorithm is run with random initialization to generate
the cluster result; (3) from the second level to the bottom level
of the hierarchical structure, the same clustering algorithm is run
with the initialization derived from the cluster result on the previ-
ous level. Experiment results on 3 synthetic data sets and 10 real
world data sets have shown that TDCS3 has significant effects on
finding better, robust cluster result and reducing the influence of
initialization.

The contributions of this paper are: (1) we discuss the question
why iterative refinement clustering algorithm are sensitive to ini-
tialization; (2) we deal with the initialization sensitivity problem
by smoothing the search space of iterative refinement clustering
algorithms; (3) two smoothing operators are designed based on
distance metric; (4) based on the smoothed search spaces, a top–
down clustering algorithm is proposed to reduce the influence of
initialization. More importantly the existing iterative refinement
clustering algorithm can be run in TDCS3 to improve the quality
of cluster results.

This paper is organized as follows: in Section 2, we first discuss
the local search method and the definition of smoothing search
space, and then two smoothing operators are designed based on
distance metrics. In Section 3 the top–down clustering algorithm
with smoothing search space is proposed, and the strength of the
proposed algorithm is also discussed. Then, the experiments on 3
synthetic and 10 real world data sets are conducted and results
are presented in Section 4. Finally, we conclude this paper in Sec-
tion 5.

2. Smoothing search space and smoothing operator

2.1. Local search and smoothing search space

Local search method is the essence of iterative refinement clus-
tering algorithms. During the mid-sixties, local search method was
first proposed to cope with the overwhelming computational
intractability of NP-hard combinatorial optimization problems.
Give a minimization (or maximization) problem with objective
function f and feasible region F, a typical local search algorithm
requires that, with each solution xi 2 Rd, there is associated a

Fig. 1. An example of iterative refinement clustering algorithm.
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predefined neighbourhood N(xi) � Rd. Given a current solution
point xi 2 Rd, the set N(xi) is searched for a point xi+1 with f(xi+1) < f(-
xi) (or f(xi+1) > f(xi)). If such a point exists, it becomes the new cur-
rent solution point (xi xi+1), and then the process is iterated.
Otherwise, xi is retained as a local optimum with respect to N(xi).
Then a set of feasible solution points is generated, and each of them
is ‘locally’ improved within its neighborhood. Local search methods
only check the neighbourhood of current feasible solution xi, so the
search range has been dramatically reduced and the convergence
speed has been accelerated. A major shortcoming of local search
is that the algorithm has a tendency to get stuck at a locally opti-
mum configuration, i.e., a local minima point, as the point 2 or 4
shown in Fig. 1.

Different neighbourhood structures result in difference terrain
surface structures of the search space and produce different num-
bers of local minimum points. The effectiveness of a local search
algorithm relies on the number of local minimum points in the
search space [10], that is, local minimum points make a search
problem hard. The smaller the number of local minimum points,
the more effective a local search algorithm is. In order to reduce
the influence of local minimum to local search algorithm, some lo-
cal minimum ‘traps’ must be filled. Gu and Huang [10] has called

the method of filling minimum ‘trap’ as the smoothing search
space, and it is able to dynamically reconstruct the problem struc-
ture and smooth the rugged terrain surface of the search space. The
smoothed search space could ‘hide’ some local minimum points,
therefore, improving the performance of the traditional local
search algorithm. Fig. 2 is the illustration of smoothing search
space.

At the former discussing, we can find that lots of the local min-
imum points which are embedded in the search space make a local
search problem hard and sensitive to the initialization. The essence
of iterative refinement clustering algorithms is the local search
method, thus they have the same real reason for initialization sen-
sitivity problem.

The main idea of smoothing search space is always common,
but different application areas have different ways to smoothing
the search space. In clustering area, clustering is defined as the pro-
cess of partitioning unlabelled data objects into meaningful groups
(clusters) so that the value of cluster criterion Q(c) is minimized.
Minimizing Q(c) value means that the intra-similarities of all clus-
ters are maximized or the distances of each data object to its clus-
ter center is minimized. So the cluster criterion Q(c) has a close
relationship with the similarity or distance between data objects.

2.2. Smoothing operator

In this section, we designed two smoothing operators based on
the relationship between Q(c) and distance measure, to fill the
minimum ‘traps’ embedded in the rugged surface of search space.

Let D = {x1,x2, . . . ,xN},xi 2 Rd be a set of data objects that needs to
be clustered. And note dist: Rd � Rd

´ R+ be a given distance func-
tion between any two data objects inRd. Dist is a distance matrix
which contains the distances between all data objects of D, and
Dist(i, j) denotes the distance between data object xi and xj,
dist(xi,xj).

2.2.1. Displacement smoothing operator
Based on average distance of distance matrix Dist, we design the

displacement smoothing operator as below.

Definition 1. Given a data set D = {x1,x2, . . . ,xN}, and its distance
matrix Dist, the average distance of Dist is defined as:

Fig. 2. The illustration of smoothing search space. Many local minimum ‘traps’ are
filled after running a smoothing operator. The real line curve shows the original
search space which has lots of minimum ‘trap’, and dashed shows the smoothed
search space with fewer minimum ‘trap’.

Fig. 3. The illustration of a series smoothed search spaces with different terrain surface, which are generate by displacement methods with different smoothing factor a.
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Dist ¼ 1
NðN � 1Þ

XN

i¼1

XN

j¼1

Distði; jÞ ð1Þ

Definition 2. Given a smoothing factor a P aorg, the displacement
smoothing operator reconstructs the smoothed search space
according to:

Distaði; jÞ ¼
Dist þ ðDistði; jÞ � DistÞa if Distði; jÞP Dist

Dist � ðDist � Distði; jÞÞa if Distði; jÞ < Dist

(
ð2Þ

According to Definitions 1 and 2, a series of smoothed search
spaces with different numbers of minimum ‘traps’ will be recon-
structed during a ? aorg. A smoothed search space generated from
a large a exhibits a smoother terrain surface, and a search space
generated from a smaller a exhibits a more rugged terrain surface.
The search space will return to the original search space when
a = aorg. Let’s note the smoothed search space according to the larg-
est a as the top search space and the original search space as the
bottom search space, as shown in Fig. 3.

Algorithm 2 describes the details of the reconstruction process
for smoothing the search spaces. In the first step, we calculate
the average distance of Dist, and during the second step, a distance
transformation is run to change each distance Dist(i,j) 2 Dist with
average distance Dist and the difference between dist(xi,xj) and
Dist. The main time cost of displacement smoothing operator is
the process of the distance transformation. For a distance Dis-
t(i, j) 2 Dist, the time cost of distance transformation is O(1). For
all the distances belong to Dist, the total time consumed is O(N2).

Algorithm 2. Displacement smoothing operator

Input: distance matrix Dist, smoothing factor a
Output: smoothed search space Sa

(1) Calculate the average distance Dist of Dist;
(2) For any Dist(i, j) 2 Dist

If Distði; jÞ < Dist then
Distaði; jÞ ¼ Dist � ðDist � Distði; jÞÞa;

Else
Distaði; jÞ ¼ Dist þ ðDistði; jÞ � DistÞa;

End if;
End for;
(3) Sa Dista and return.

In this paper, we set aorg = 1, then there are two extreme cases
of the series of the clustering instances, which are based on the dis-

tance, are: (1) if a� aorg, then Distaði; jÞ ! Dist, this is the trivial
case; (2) if a = aorg, then Dista(i, j) = Dist(i, j), which is the original
problem.

2.2.2. Kernel smoothing operator
The main idea of the displacement smoothing operator is the

linear transformation of distance based on Dist and the exponential
of the difference between dist(xi,xj) and Dist. This smoothing oper-
ator fits linear problems well, but is weak to solving non-linear
problems. So another smoothing operator which could be extended
to non-linear situation is designed to deal with non-linear cluster-
ing problem. This smoothing operator, named kernel smoothing
operator, is based on the smoothing kernel.

Definition 3 [2]. Given a real value function f:Rn ? R and a
smoothing kernel g:R ? R, which is a continuous, bounded, non-
negative, and symmetric function whose integral is one, the g-
transform of f is defines as

fh igðxÞ ¼
Z

Rn
f ðyÞgðky� xkÞdy: ð3Þ

The Gaussian kernel function g(z) = exp(�z2/(2r2)) is the most
widely used kernel function. Fig. 4 give an example of applying a
smoothing transformation to the piece-wise constant function L
and we estimate the transformed function.

Lh igðxÞ ¼
Z

Rn
LðyÞgðky� xkÞdy: ð4Þ

From Fig. 4, we can see the ‘traps’ of minimum point has been
smoothed by the Gaussian kernel function with different r, the
smoothing factor.

In this paper, we use the kernel smoothing method to smooth
the distance function dist(xi,xj) and reduce the influence of lots of
minimum value embedded in the search space. We assume that
there is no missing value in data set D, that is, distance function dist
is a continuous function. Let LðxÞ ¼ distðxi; yjÞ ¼

Pd
l¼1kxil � yjlk

2, the
smoothing method for clustering is defined as:

distðxi; yjÞg ¼ distðxi; xjÞ � expð�distðxi; xjÞ2=ð2r2ÞÞ ð5Þ

Algorithm 3. Kernel smoothing operator

Input: data set D, smoothing factor r
Output: smoothed search space Sa

(1) Sa = zeros(N, N);
(2) for any pairwise data objects xi,xj 2 D

Sa(i,j) = dist(xi,xj)* exp(�dist(xi,xj)2/2r2)
(3) return Sa

The main steps of kernel smoothing operator are shown in Algo-
rithm 3. For any pairwise data objects belonging to the data set D, a
Gaussian kernel influence is added to distance function dist(xi,xj) to
smooth the surface of search space. Once transformation on a pair-
wise data object xi,xj needs O(1) time, so for the transformation of
N2 pairwise data objects, at least need O(N2) time.

3. Clustering algorithm based on smoothing search space

Based on the smoothing operator and the smoothing factor, a
series of smoothed search spaces with different number of mini-
mum ‘traps’, are reconstructed as a hierarchical structure. Any iter-
ative refinement clustering algorithm can be run on each
smoothed search space from the top search space down to the bot-
tom search space. A clustering algorithm is proposed to realize this
process in this section. For simple description, we use the symbol a
to denote the smoothing factor in the rest of this paper.

Fig. 4. The illustration of smoothing space after running kernel smoothing operator
on piece-wise function. The real line curve illustrates the original search space, and
all the dashed are the smoothed search space, by run a kernel smoothing operator
with different smoothing factor r on the original search space.

392 Y. Zong et al. / Knowledge-Based Systems 23 (2010) 389–396
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3.1. Top–down clustering algorithm based on smoothing search space

We give a top–down clustering algorithm with the smoothing
search space (TDCS3) in this section. The main steps of TDCS3
are as follows: (1) dynamically reconstruct a series of smoothed
search space by running a smoothing operator; (2) an existing iter-
ative refinement clustering algorithm is run on the current
smoothed search space and the clustering result is generated; (3)
based on the clustering results, a new initialization is generated
and service it as the initialization to the next smoothed search
space; (4) repeat step (1)–(3) until returning to the original search
space of the hierarchical structure (see Fig. 3). Algorithm 4 is the
main description of TDCS3.

Algorithm 4. TDCS3

Input: Data set D, Cluster number K and Smoothing factor a
Output: cluster results C

(1) Generate the top smoothed search space Sa with a;
(2) Run any iterative refinement clusteringK on Sawith

random initialization, and generate the cluster
resultsCa;

(3) while a P aorg

(3.1) Generate the initializationInita from Ca;
(3.2) a0  a � k and generate new smoothed search

spaceSa0 with a 0;
(3.3) Run K on Sa0withInita,and generate the cluster

resultsCa0;
(3.4) a a0,Ca Ca0;

(4) ReturnC Ca.

From the top search space to the bottom search space of the
hierarchical structure, any existing iterative refinement clustering
algorithm K, such as K-means [13], MeanShift [24] and so on, could
be run on those search spaces. At the top smoothed search space,
algorithm K is run with random initialization, and the correlative
clustering result is generated. The initialization from the clustering
result on the former smoothed search space of hierarchical struc-
ture will be regarded as the initialization of K on the current
smoothed search space and lead the search of algorithm K to con-
verge to a better sub-optimal result (a local minimum point with
lower value of cluster criterion). Iteratively run these steps until
returning to the bottom search space.

3.2. Strengths of TDCS3

TDCS3 focuses on reducing the influence of lots of minimum
‘traps’ which are embedded in the search space of iterative refine-
ment clustering algorithms. Compared to traditional iterative
refinement clustering algorithms, TDCS3 has the following
benefits:

(1) Intelligent characteristicIn TDCS3, a series of smoothed
search spaces with different numbers of minimum points
are reconstructed. The smoothed search spaces are the dif-
ferent level topological structures of the original search
space. The quality of cluster results on more smoothed
search space is high, for the number of minimum ‘traps’
are less. So the initialization from the clustering result on
more smoothed search space can capture good structure of
clusters. The initialization from the clustering results on
the former search space can lead the search on current
search space to a better minimum point.

(2) Flexible characteristicIn TDCS3, the smoothing operator and
the iterative clustering algorithm K are not solely fixed.
According to different applications and demands, the

smoothing operator could be redesigned and the iterative
refinement algorithm would be reselected.

(3) Adaptive characteristicTDCS3 inherits the merits of iterative
refinement clustering algorithms and reconstructs their
search space to reduce the probability of getting stuck into
a worse sub-optimal minimum point. So it is able to improve
the quality of cluster result of any existing iterative refine-
ment clustering algorithm.

4. Experiments

4.1. Benchmark

In TDCS3, any existing clustering algorithm based on iterative
refinement algorithm could be integrated to run with two smooth-
ing operators: the displacement smoothing operator (DS) and the
kernel smoothing operator (KS). We denote an iterative refinement
clustering algorithm K run in TDCS3 with displacement smoothing
operator DS as TDCS3_K_DS. In similar way, the meaning of TDCS3
_K_KS means that an iterative refinement algorithm K is run in
TDCS3 with kernel smoothing operator. K is a common symbol
for any existing iterative refinement clustering algorithm, and
can be replaced by an existing clustering algorithm’s name. For
example, if we run the classical iterative refinement clustering
algorithm, K-means, in TDCS3 with displacement smoothing oper-
ator, then we could denote it as TDCS3 _K-means_DS.

In this paper, we intend to run K-means and MeanShift (MS)
algorithms in TDCS3 with the displacement and the kernel
smoothing operator. We thus got four algorithms: TDCS3_K-means
_DS, TDCS3_K-means_KS, TDCS3_ MS_DS, and TDCS3_MS_KS
respectively. We then compare these four algorithms with three
kinds of pure iterative clustering algorithms, i.e. K-means, MS
and K-means++ on 3 synthetic data sets and 10 real world data
sets. K-means++ was downloaded from http://www.jihe.net/re-
search/ijcnn04, but it was rewritten in Matlab. The popular classi-
cal K-means and its general version- MeanShift clustering
algorithms, are downloaded from the MathWork website. TDCS3
algorithm is implemented in Matlab 7.0 too. The settings of param-
eters for K-means, K-means++, and MeanShift are similar to those
in Refs. [13,1,24], respectively. For TDCS3, only the smoothing fac-
tor needs to be set. The chosen smoothing factor for DS and KS are
tabulated in Table 1.

In general, the quality of our clustering algorithm heavily relies
on the number of smoothed search spaces, which is calculated by
(a � aorg)/k. The bigger number of smoothed space will lead to
the better quality of clusters but the improvement of the clustering
quality becoming less and less when the number of smoothed
space increases. In experiments, we intend to choose a small value
of k and a large value of a. On the other hand, however, the bigger
number of smoothed space will substantially increase the time cost
of the proposed iterative refinement. Thus there is a contradiction
between clustering quality and time cost, and in order to make a
trade-off between them we need to choose the appropriate param-
eters that indicated in Table 1.

In TDCS3, a hierarchy structure of smoothed search spaces is
reconstructed by running a smoothing operator with different
value of smoothing factor. The change of smoothing factor value

Table 1
The smoothing factor parameters setting.

Smoothing operator a aorg k

DS 10 1 1
KS 1 0.25 0.25

Y. Zong et al. / Knowledge-Based Systems 23 (2010) 389–396 393
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decides the layout of hierarchy structure. For any smoothing factor,
it changes (a � aorg)/k times and running a smoothing operator
with one smoothing factor value lead to a smoothed search space.
As discussed in Section 2.2.1, reconstructing a smoothed search
space needs O(N2) time cost, so the time cost of reconstructing
(a � aorg)/k smoothed search spaces is ((a � aorg)/k)*O(N2). On each
smoothed search space, an existing clustering algorithm is addi-
tionally run to get the clustering result. So the total time cost of
TDCS3 is ((a � aorg)/k)*(O(N2) + O(�)), where O(�) the time cost of
any existing iterative refinement clustering algorithms.

Since the objective of clustering is to find out groups embedded
in data set so that intra-group similarities are maximized and in-
ter-group similarities are minimized at the same time. So we
adopted two measures i.e. cluster compactness (Cmp) and the clus-
ter separation (Sep) indices [11,12] to assess the goodness of the
clustering results.

Definition 4. Given a data set D = {x1,x2, . . . ,xN} � Rd, the deviation
of D is given by

devðDÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

kxi � Dk

vuut ð6Þ

Where N is the number of members in D, and D ¼ 1=N
PN

i¼1xi is
the mean of data set D.

The cluster compactness measure is based on the generalized
definition of deviation, which is shown as Definition 4. The cluster
compactness for the output clusters C = {C1,C2, . . . ,CK} is generated
by Definition 5.

Definition 5. Given the output clustering result C = {C1,C2, . . . ,CK},
the cluster compactness is described as:

Cmp ¼ 1
K

XK

k¼1

devðCkÞ
devðDÞ ð7Þ

Where K is the number of clusters and dev(Ck) is the deviation of
clusterCk.

Definition 6 gives the definition of cluster separation of the out-
put cluster results.

Definition 6. Given the cluster centers m = {m1,m2, . . . ,mK} of the
output clusters C = {C1,C2, . . . ,CK}, cluster separation is described
as:

Sep ¼ 1
KðK � 1Þ

XK

i¼1

XK

j¼1;j–i

exp �kmi �mjk
2r2

� �
ð8Þ

Where r is a Gaussian constant.

4.2. Synthetic data sets

In order to comprehensively compare the output clustering re-
sults with existing iterative refinement clustering algorithm, we
use a random generator downloaded from http://www.jihe.net/re-
search/ijcnn04, to produce three two dimensional synthetic data
sets approximately in mixture of Gaussian distribution. Based on
15 predesigned cluster centers, 150,000 data points were gener-
ated for each data set using varying variances v = 0.05:0.05:0.15
and noise rates r = 0:0.2:0.4, where v = 0.05:0.05:0.15 describes
the change of variance from 0.05 to 0.15 with step length of 0.05,
and the same meanings of r = 0:0.2:0.4.

Table 2 gives the experiment results of seven algorithms on
three synthetic data sets. In Table 2, K-means and MS are the ori-
ginal iterative refinement clustering algorithm without smoothing
search space, while TDCS3_K-means_DS, TDCS3_K-means_KS,

TDCS3_MS_DS, TDCS3_MS_KS are four enhanced clustering algo-
rithms by combining K-means and MS algorithm with smoothing
search space using DS and KS smoothing operator respectively.

From Table 2, we can find that the Cmp and Sep score of each
algorithm on DB1 are smaller than those on DB2 and DB3. This
phenomenon implies that seven clustering algorithms are sensitive
to noise. The last four algorithms are modified based on smoothing
search space method. By running the smoothing operator, a lot of
minimum ‘traps’ embedded in the rugged search space of K-means
and MeanShift are smoothed, so the influence of minimum ‘traps’
is reduced. The Cmp score and Sep score of these four algorithms
are less than the scores of K-means and MeanShift on DB1. This
phenomena show that the qualities of clustering results generated
by our algorithms are better than other three algorithms. These
four algorithms do not change the original essential of K-means
and MeanShift, so they would not change their characteristic of
sensitive to noise. The Cmp and Sep scores of the last four algo-
rithms on each data set are lower than the scores of K-means, K-
menas++, and MeanShift. The error range of Cmp and Sep scores
are also both reduced significantly for the latter four algorithms.
The reason for these phenomena is that the search space of K-
means and MeanShift clustering algorithm has been reconstructed.
Initialization from the clustering results of former smoothed
search space can lead the iterative refinement clustering algorithm
to converge to more better minimum point.

From the experiment results on three synthetic data sets, we
can find that the existing iterative refinement clustering algo-
rithms have the capability to become more robust to produce high
quality cluster results via TDCS3.

4.3. Real world data sets

Ten data sets from the UCI machine learning repository [4] are
used, all of which contains only numerical attributes except the
class attributes. For the image segmentation, a constant attribute
has been removed, just as done in Ref. [25]. The information about
the data sets is tabulated in Table 3. Note that the class attributes
of the data sets have not been used in the clustering algorithms.

Table 2
The experiment results of seven clustering algorithms on three synthetic data sets.
Cluster compactness (Cmp) and cluster separation (Sep) with Gaussian constant
r = 0.5 are compared.

Algorithm Cmp Sep

DB1: v = 0.05;r = 0.0;K = 15
K-means 0.1574 ± 0.0155 0.6891 ± 0.0375
K-means++ 0.1565 ± 0.0103 0.6328 ± 0.0131
MeanShift 0.1572 ± 0.0115 0.6294 ± 0.0295
TDCS3_MS_DS 0.1455 ± 0.0099 0.6094 ± 0.0121
TDCS3_MS_KS 0.1460 ± 0.0089 0.6062 ± 0.0110
TDCS3_K-means_DS 0.1495 ± 0.0097 0.6071 ± 0.0112
TDCS3_K-means_KS 0.1465 ± 0.0090 0.6001 ± 0.0096

DB2: v = 0.1;r = 0.2;K = 15
K-means 0.2372 ± 0.0047 0.6490 ± 0.0275
K-means++ 0.2375 ± 0.0057 0.6328 ± 0.0280
MeanShift 0.2388 ± 0.0039 0.6294 ± 0.0250
TDCS3_MS_DS 0.2054 ± 0.0015 0.6004 ± 0.0090
TDCS3_MS_KS 0.2102 ± 0.0012 0.6062 ± 0.0089
TDCS3_K-means_DS 0.2020 ± 0.0009 0.6060 ± 0.0070
TDCS3_K-means_KS 0.2089 ± 0.0015 0.6095 ± 0.0089

DB3: v = 0.15; r = 0.4; K = 15
K-means 0.2591 ± 0.0029 0.6050 ± 0.0032
K-means++ 0.2593 ± 0.0023 0.6019 ± 0.0034
MeanShift 0.2592 ± 0.0019 0.6045 ± 0.0034
TDCS3_MS_DS 0.2160 ± 0.0009 0.5730 ± 0.0027
TDCS3_MS_KS 0.2219 ± 0.0008 0.5608 ± 0.0030
TDCS3_K-means_DS 0.2111 ± 0.0012 0.5780 ± 0.0029
TDCS3_K-means_KS 0.2301 ± 0.0011 0.5602 ± 0.0024
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Although the concept of cluster compactness and clustering
separation is heterogeneous in essence, but the quantity property
defined in Definitions 5 and 6 are homogenous, that is, they have
the same changing trend. So it is reasonable to use the linear com-
bination of Cmp and Sep metrics to define the overall index of clus-
tering quality(C) = Cmp + b*Sep and to show how good the output
clustering results are, where b > 0 is the combination parameter.
According to the analysis in Ref. [5], we set parameter b equal to
1. Fig. 5 shows the experiment results of seven algorithms on 10
real world data sets.

Even if the dimension and the data size of Iris data set are smal-
ler than liver disorder (LD) data set, the quality(C) values of Iris data
set are higher than LD one. The reason for this phenomenon is that
the three clusters embedded in Iris data set belong to different sub-
space of attributes, that is, the attributes of Iris data set have non-
linear relationship. Classical iterative refinement clustering algo-
rithm cannot separate them distinctly. Because the Kernel smooth-
ing operator can deal with the non-linear clustering problem, the
quality(C) values of TDCS3_K-means_ KS and TDCS3_MS_KS are
lower than the values of other algorithms.

The dimension of page block (PB) data set is smaller than Wine
data set, but the quality(C) value of PB is higher than that of Wine,
for the data size of PB data set is higher than Wine data set. Vehicle
and image segmentation (IS) data sets have the same dimension,
but the data size of IS data set is higher than vehicle data set, so
the quality(C) values of IS data set are higher than vehicle data
set. The quality(C) values of the last four data sets have an increas-
ing tendency with the increasing dimensions of them.

Experimental results on 10 data sets show that the iterative
refinement clustering algorithms are sensitive to the data size
and the data dimension. But from the Fig. 5, we can find the mod-
ified algorithm, TDCS3_MS_DS, TDCS3 _MS_KS,TDCS3_K-
means_DS, and TDCS3_K-means_ KS have better quality(C) values

than K-means, K-means++, and MeanShift on 10 data sets. The real
reason for these phenomena is that the smoothing operator
changes the search space of K-means and MeanShift, and reduces
the probability of them to coverage to minimum points, leading
to the qualities of cluster results increased.

5. Conclusion

Most of the initialization methods have some merits for reduc-
ing the influence initialization sensitivity of iterative refinement
clustering algorithm. The real reason of an iterative refinement
clustering algorithm always sensitive to the initialization is the
rugged terrain surface. In this paper, two smoothing operators,
which can deal with linear and non-linear data sets, is designed
based on distance metric. A series of smoothed search spaces with
different numbers of minimum ‘traps’ are reconstructed into a
hierarchical structure. Based on the hierarchical structure of
smoothed search space, a top–down clustering algorithm, TDCS3,
is proposed. In TDCS3, any existing iterative refinement algorithm
can be run to get better cluster results. Experiment results on syn-
thetic and real world data set have shown that our algorithm could
reduce the influence of initialization sensitivity and can get a bet-
ter, robust cluster results.
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