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BAYESIAN NETWORKS AS A DECISION TOOL  

FOR O&M OF OFFSHORE WIND TURBINES 
 

J. J. Nielsen, Aalborg University, DK 

J. D. Sørensen, Aalborg University, DK 

 

ABSTRACT 

 
Costs to operation and maintenance (O&M) of offshore wind turbines are large. This paper presents how 

influence diagrams can be used to assist in rational decision making for O&M. An influence diagram is a 

graphical representation of a decision tree based on Bayesian Networks. Bayesian Networks offer 

efficient Bayesian updating of a damage model when imperfect information from inspections/monitoring 

is available. The extension to an influence diagram offers the calculation of expected utilities for decision 

alternatives, and can be used to find the optimal strategy among different alternatives. The method is 

demonstrated through application examples. 

 

NOMENCLATURE 

 

O&M:  Operation and maintenance 

LIMID:  Limited memory influence diagram 

SPU:  Single policy updating 

MTBF:  Mean time between failures 

 

1. INTRODUCTION 

 

Optimal planning of operation and maintenance 

(O&M) has the potential of reducing the cost of 

energy from offshore wind turbines. The costs to 

O&M are large, up to 25-30% of the cost of 

energy, because a large number of failures of 

different components lead to costs to corrective 

maintenance and lost production. Some 

component failures can be avoided by using 

preventive maintenance strategies. Presently much 

focus is on condition based maintenance, where 

decisions on repairs are made based on the actual 

health of the system, see e.g. [1], [2], and [3]. 

Information on the condition of the components 

can be gained using inspections and online 

condition monitoring systems. Many monitoring 

methods are available, and these are subject to 

different levels of reliability. The large 

uncertainties connected to these methods introduce 

a risk of making non-optimal decisions, if the 

uncertainties are not dealt with. 

 

Rational planning of O&M could be based on risk-

based pre-posterior decision theory, where the 

decisions with minimal expected costs are made, 

see the wind turbine framework [4] and the basic 

theory in [5]. The optimal decisions can be found 

using a decision tree, if relevant utilities and 

probabilities are available. Application of risk-

based methods requires a probabilistic damage 

model, and the inspection/monitoring results can 

be used for Bayesian updating of the model. This 

can efficiently be done using Bayesian networks, 

see the framework for deterioration modelling in 

[6]. Bayesian networks can be extended with 

utility and decision nodes to form an influence 

diagram which is a graphical model of a decision 

tree. Such an approach has been used by [7] for 

inspection planning for fatigue cracks in offshore 

jacket structures. This paper focus on the 

application of influence diagrams for risk-based 

decision making in the context of repair of 

deteriorating wind turbine components. 

 

3. BAYESIAN NETWORKS 

 

This section gives a short introduction to Bayesian 

networks. Elaboration can be found in e.g. [8] and 

[9]. Bayesian networks were developed in 

computer science for modelling of artificial 

intelligence. This requires the ability of a 

computer to reason under uncertainty and to make 

rational decisions, while including new 

information in a consistent way. The name 

Bayesian network refers to Bayes rule for 

calculation of a posterior estimate P(A|B): 

 

𝑃 𝐴 𝐵 =
1

𝑃 𝐵 
𝑃 𝐵 𝐴 𝑃(𝐴) (1)  

 



where P(A) is the prior estimate, P(B|A) is the 

likelihood of A given B, and P(B) is the marginal 

probability of B. 

 

A Bayesian network is a graphical model that 

consists of nodes, representing variables, and 

directed links between them representing causal 

relationships. The relationships between variables 

are described using familiar terms, so if X causes 

Y, X is a parent of Y, and Y is a child of X. The 

probabilities are given as conditional probability 

distributions for each node, conditioned on the 

parents. The joint probability distribution of a 

network with n nodes can be found using the chain 

rule: 

 

𝑃(V) =  𝑃(A𝑖|𝑝𝑎(A𝑖))

𝑛

𝑖=1

 (2)  

 

where Ai is the i‟th variable and pa(Ai) means the 

parents of Ai. A node in a Bayesian network is 

independent of all other nodes, if the parents, 

children and parents of children are given. This set 

is called the Markov blanket. 

 

When evidence is received for a node, the joint 

distribution can be updated using Bayes rule, and 

posterior marginal distributions can be found. This 

task is called inference, and for a network where 

all nodes are discrete exact inference can be 

performed. Different efficient algorithms are 

developed, e.g. the junction tree algorithm. For 

nodes with continuous distributions it is in general 

not possible to perform exact inference, and 

approximate methods must be used, e.g. Markov 

chain Monte Carlo methods. 

 

2.1 DETERIORATION MODEL 

 

For modelling of deterioration it is necessary that 

the Bayesian network allows development of the 

damage size over time. For a Markovian process 

the state of a variable is independent of the past 

given the state at the previous time step. In general 

deterioration is not a Markovian process, but if 

time independent variables are introduced, the 

Markovian assumption holds for the damage size 

given these variables, see [6]. 

 

This gives the possibility of modelling a 

deterioration process using a dynamic Bayesian 

network consisting of equal time slices that each 

are connected only to the neighbouring time slices. 

The network then has the property that a time slice 

is independent of all earlier time slices given the 

previous slice. The Bayesian network is fully 

defined when the conditional probability 

distribution is given for each node conditioned on 

the parents. Each node has a finite number of 

mutually exclusive states, and the states are equal 

for the same node in different time slices. 

 

The Bayesian network modelling framework is 

usable for damages models, where the damage 

size at one time step can be calculated based on 

the damage size at the previous time step and 

some time-invariant and/or time-variant 

parameters, as shown in Figure 1. This is the case 

for e.g. damage models based on fracture 

mechanics and SN-curves. In is only necessary to 

include variables that should be modelled 

stochastic as nodes. Deterministic parameters can 

be included when calculating the conditional 

probability distributions. 

 

When no observations are included, the model can 

be used to find a prior estimate on the damage size 

at any time step, based on the prior distributions. 

When observations results are available they can 

be inserted as evidence, and a posterior estimate is 

found for parameters and damage size. For a 

perfect observation procedure the evidence can be 

inserted directly in the damage node. But for 

imperfect observations based on e.g. inspection 

and monitoring an observation node can with 

advantage be included. This is described in the 

section with application examples. 

 

 
 

3. O&M PLANNING 

 

A life cycle decision problem for O&M of 

offshore wind turbines includes decisions on the 
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Figure 1. Section of Bayesian network for deterioration 

modelling. After [6]. 
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initial design, inspections/monitoring, and repairs. 

Inspection/monitoring results give indication of 

the state of the components, and provide a better 

basis for making decisions on repairs. Rational 

planning implies making decisions that maximize 

the expected utility over the life time, including all 

available information at the time of decision.  

 

The utilities relevant for the analysis is the cost of 

initial design, cost of inspection/monitoring, and 

cost of repairs, both corrective and preventive. The 

utility of corrective repairs can alternatively be 

named the utility of component failure. In most 

structural analyses the probability of failure is very 

small, and the consequences are very high. But for 

wind turbines there are many component failures 

with limited consequences, and the components 

are repaired or replaced after failure. In addition 

component failures lead to costs due to lost 

production, which can be included in the costs to 

corrective repairs. 

 

The decision problem can be illustrated with the 

decision tree shown in Figure 2. But the size 

grows exponentially with the number of time steps, 

and the probabilities are hard to assess, see e.g. 

[10]. 

 

3.1 INFLUENCE DIAGRAM 

An influence diagram is a Bayesian network 

extended with utility and decision nodes shown as 

diamonds and rectangular boxes, respectively. 

Like the Bayesian network it provides efficient 

updating of a deterioration model, when indirect 

information is available, and in addition it includes 

the possibility to find expected utilities for 

 

  

 

 

decision alternatives. A simplified influence 

diagram for O&M planning is shown in Figure 3. 

 

In general decisions on actions can only change 

the state of variables in the direction of the links in 

the network, whereas evidence can propagate both 

ways, see [9]. A decision on an inspection does 

not change anything apart from the cost used for it, 

but the inspection result can change the belief 

about the state of the unobserved variables. A 

decision on repair will change the state of the 

component in the future, but the action will not 

change the past. 

 

For a diagram as the one shown in Figure 3 there 

are many decisions. In a traditional influence 

diagram there is an assumption of no-forgetting, 

meaning that the entire past is known at the time 

of the decision. When solving an influence 
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Figure 2. Decision tree for O&M planning [4]. 

Figure 3. Section of simplified influence diagram for O&M 

planning with nodes: F: utility of failure, D: damage size, 

Ins: inspection result, Rep: decision on repair, R: utility of 

preventive repair. 



diagram the optimal decision policy is found for 

each decision node, dependent on all earlier nodes, 

both decision and probability nodes. For an 

influence diagram with only one decision there is 

no problem, because all previous information is 

available at the time of the decision.  For a 

network with multiple decisions the same is the 

case, when the last decision is made. But when the 

other decisions are made is it necessary to know 

the policies for future decisions, in order to 

calculate the expected utilities used for finding 

optimal policies for the current decision. Thus the 

domain of a decision node increases exponentially 

with the number of previous nodes, and for a large 

network the problem becomes intractable, and it is 

necessary to use an approximation [11].  

 

 3.2 LIMITED MEMORY 

 

Approximations can be utilized in different ways. 

A no-forgetting influence diagram can be 

constructed in such a way that the present is 

blocked from the past, and only the previous time 

step has influence on the decision.  But for a 

decision problem as shown in Figure 3, which can 

be seen as a special case of a partially observed 

Markov decision process, this requires that the 

calculation of the damage size is not based on the 

previous damage size, and this is clearly not 

preferable. 

 

An alternative is to use a limited information 

influence diagram (LIMID) that was first 

presented in [12]. The LIMID relaxes the 

assumption of no-forgetting, and it is necessary to 

specify exactly what is known at the time of 

decision. This means that the optimal decision 

policy is calculated dependent on the parents, so 

the decision maker knows what decision to make 

for each possible outcome of the parents. However, 

it is still possible to enter evidence into the 

Bayesian network, when it becomes available, and 

this is taken into account in the calculations. But 

for future decisions it is assumed that the decision 

maker only has the evidence from the parents as 

basis, even though there will be more information 

available. For a decision on making an inspection, 

it is not taken into account, that the inspection will 

give valuable information for a later repair 

decision, unless the repair node has the given 

inspection node as parent.   

After defining the LIMID and all conditional 

probability distributions it is compiled into a 

junction tree. After this procedure evidence can be 

inserted, and the optimal strategy can be found 

using the single policy updating (SPU) algorithm, 

see [12]. The SPU algorithm finds a local 

maximum, by updating one decision at a time. 

When convergence is reached a decision with 

higher expected utility cannot be found by 

changing only one decision. However, there is no 

guarantee that the found strategy is also a global 

maximum. It might be possible to find a better 

strategy if two or more decisions are changed 

simultaneously.  

 

4. APPLICATION EXAMPLE 

 

This example shows how an influence diagram 

can be used for planning of preventive repairs for 

components exposed to deterioration processes. 

The model is generic and other damage and 

inspections models than the chosen ones can easily 

be adopted. It is assumed that inspections are 

performed every year in connection with service 

visits. Based on the inspection results a decision is 

made on whether a repair should be performed. 

 

4.1 DAMAGE MODEL 

 

The component is assumed to have a mean time 

between failures (MTBF) of 8 years, and the 

damage size, D, is measured on a relative scale, 

where a damage size larger than 1 is in the failure 

domain. An exponential damage model based on 

Paris‟ law for crack propagation is used, where the 

increase in damage size per stress cycle dD/dN is 

found using: 

 
𝑑𝐷

𝑑𝑁
= 𝐶 Δ𝐾𝑚  (3)  

 

where C and m are model parameters and ΔK is 

the stress intensity factor range. The stress ranges 

are assumed to follow a Weibull distribution with 

scale and shape parameters A and B, and the 

differential equation can be solved to give the 

following, see [7]: 

 

𝐷𝑖 =  𝐷
𝑖−1

2−𝑚
2

  
+ Δ𝐾 𝑀𝑈𝐴𝑡

𝑚 

2
2−𝑚

 (4)  



where MU is models the time invariant 

uncertainties, and the stress intensity factor range 

is found using: 

 

Δ𝐾 = 𝐶 𝑁 Γ  1 +
𝑚

𝐵
 𝑌𝑚𝜋

𝑚
2

  1 −
𝑚

2
  (5)  

 

where N is the number of stress cycles per year, 

and Y is a geometry constant. The model is 

calibrated using Crude Monte Carlo simulations to 

give a MTBF of 8 years, when a time step of one 

year is used. The values and distributions for the 

parameters are given in Table 1. It is assumed that 

the damage growth follows the above model from 

the beginning, where the initial damage size is D0, 

i.e. a damage initiation time is not considered. 

 

Table 1. Damage parameters and distributions. 

Variable Distribution Mean CoV 

m Deterministic 3 - 

C Deterministic 6E-12 - 

B Deterministic 0.66 - 

Y Deterministic 1 - 

N Deterministic 1E6/year - 

D0 Exponential 0.02 100% 

Ai Normal 5.35 MPa 18% 

MU Normal 1 18% 

 

4.2 INSPECTION MODEL 

 

It is important that the inspections are modelled as 

realistic as possible, and takes the present 

uncertainties into account. In this example two 

types of uncertainty are considered; the probability 

of detection of a damage and the measurement 

accuracy.   

 

The probability of detection (PoD) is dependent on 

the inspection procedure, as a more expensive and 

throughout inspection gives a higher probability 

that a present damage is found. For a chosen 

inspection procedure it is in general more probable 

to detect a large damage than a small, and the PoD 

is given as function of the damage size (D). For 

this example an exponential PoD model is chosen, 

with parameters P0 = 1 and λ = 0.4:  

 

𝑃𝑜𝐷 𝐷 = 𝑃0(1 − exp −𝐷 𝜆  ) (6)  

The accuracy of the measurement of the damage 

size is modelled by an additive model, where the 

correct damage size equals the measured damage  

size, Dm, plus a normal distributed error term, ε, 

with mean zero and standard deviation 0.05: 

 

𝐷 = 𝐷𝑚 + 𝜀 (7)  

 

4.3 LIMID FOR DETERIORAITON 

 

The LIMID for making optimal repair decisions 

for deteriorating components are shown in Figure 

4, and is described in the following. 

 

The LIMID is modelled in the program Hugin [13], 

and all nodes have to be discrete. Thus the 

continuous variables MUi, Ai, and Di have to be 

discretized. Different discretization schemes have 

been tried out and compared to the results 

obtained by Crude Monte Carlo simulation. In the 

final scheme the nodes Ai and MUi have 10 states 

each, and Di has 30 states. 

 

Both Ai and MUi are discretized with intervals of 

equal sizes, except for the end intervals that are 

lumped. The interval boundaries are given as  

 

−∞,−3𝜎:
6𝜎

8
: 3𝜎,∞ (8)  

 

where σ is the standard deviation. 

For the damage size, Di, an exponential increasing 

interval size is used, because the damage model is 

exponential, as proposed in [6]. The interval 

boundaries between 0 and infinity are given as the 

following, and are shown in Figure 5: 

D0 D1 

FC1 

Ins1 

R1 

RC1 

D2 

FC2 

Ins2 

R2 

RC2 

F1 F2 

A1 A2 

MU MU1 MU2 

Figure 4. Section of LIMID for calculating optimal repair 

decisions. F: failure, R: repair, Ins: inspection. 

 



exp  ln 10−4 ∶
ln 1 − ln 10−4 

28
: ln 1   (9)  

 

 
Figure 5. Upper interval boundaries for the node Di. 

 

The last interval of Di corresponds to failure, but a 

binary node, Fi, with states 0 and 1 meaning no 

failure and failure respectively are also included. 

This node is necessary for entering the evidence 

that failure has not occurred as hard evidence. A 

utility node, Fci, is connected to failure node, and 

the utility of failure corresponds to the cost of a 

corrective repair and the associated downtime. The 

utility of failure is set to -50 k€.  

 

Inspections are modelled by a node, Insi, with the 

same states as Di plus the state no detection. Based 

on the inspection results it is decided whether a 

repair should be carried out. The cost is modelled 

by the utility node, RCi, and the utility of a 

preventive repair is set to -10 k€. A decision node 

on repair has, besides the current inspection result, 

also the previous repair decision as parents. This 

has been done to avoid that the SPU algorithm is 

stuck at a local maximum, where a higher utility 

can be found by moving a repair one time step 

backwards or forwards.  

 

Both corrective and preventive repairs at time step 

i-1 affect the damage size at time step i, and has to 

be taken into account when the conditional 

probability distribution for Di is calculated. If a 

repair of either type is performed, Di is calculated 

using (4) with the distribution of D0 instead of Di-1. 

 

The discrete probability tables for the nodes 

without parents, MU, Ai, and D0, are found exact 

by truncation of the continuous distributions. MU 

is a time invariant variable, and therefore MUi is 

the identity matrix. The conditional probability 

tables for Di and Insi are found using Monte Carlo 

simulation.  

 

4.5 RESULTS 

 

In order to demonstrate the capabilities of the 

LIMID, three different cases are examined. Case 

A is a simple case, where all inspections result in 

no detection. Cases B and C are more realistic 

cases, as the inspection results are chosen as 

realizations from the prior distributions. The 

observations for nine years are shown for all cases 

in Table 2. 

 

Table 2. Observations for three cases, N means 

no detection, F means failure, and a number 

refers to the interval number. 

Year 1 2 3 4 5 6 7 8 9 

Case A N N N N N N N N N 

Case B N N N 19 21 24 27 F F 

Case C N 18 21 23 N 26 28 28 F 

 

Evidence is entered in the LIMID for one year at a 

time, and the expected utility of each decision is 

found. Both the inspection result and the fact that 

no failure has occurred yet are entered as evidence. 

The LIMID in Figure 4 is extended to i=20, 

corresponding to a design life of 20 years. It is 

necessary to include the entire life time in the 

model, in order to get the correct expected utilities. 

 

Figure 6 shows the probability of failure for each 

time step, calculated based on the information 

available in the previous time step, and Figure 7 

shows the expected utility for decisions on repair.  

 

In case A all inspections results in no detection. 

This implies that the failure probability is almost 

constant after the 6
th

 year, because it is unlikely to 

have a large damage, when none of the inspections 

indicate so. The utility of repairing remains lower 

that the utility of not repairing, so no repair should 

be performed. 

In case B the first three inspections also results in 

no detection, and the curves here are equal to the 

ones in case A. But a damage is detected in the 4
th

 

year, and this gives a drop in the failure 

probability because the damage size it is now 

known with less uncertainty that before the 
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detection. After the inspection in year 7, the 

probability of failure in year 8 is around 50%, and 

thus the utility of repair exceeds the utility of no 

repair – implying that a repair should be 

performed. 

 

In case C the damage is detected in year 2, and the 

probability of failure drops as in case B. The 

inspections year 3 and 4 results in detection of a 

larger damage, so the probability of failure 

increases. In year 5 the damage is not detected, but 

even so it is known from the earlier inspections 

that damage is present, and the updated probability 

of failure in year 6 is around 12%. This gives a 

risk of failure of 0.12 ⋅ 50 = 6  k€, which is 

actually smaller than the repair cost of 10 k€. But 

because the repair cannot be avoided but only 

postponed a year or two, the expected utility of 

repair here exceeds the utility of no repair. 

 

6. CONCLUSIONS 

 

The paper presents how LIMIDs can be used for 

risk-based planning of O&M for offshore wind 

turbines. Bayesian graphical models are well 

suited for the job because they allow efficient 

Bayesian updating of the damage model, when 

information becomes available. Traditional no-

forgetting influence diagrams are in general not 

possible to solve in practical applications because 

of computational difficulties, but a LIMID where 

the no-forgetting assumption is relaxed can be 

used instead. However, this results in an 

approximate model, and it is necessary to check 

that the model does in fact find the optimal 

solution. 

 

An application example illustrated how a LIMID 

can be used for risk based planning of repairs. It 

can be used for real time decision making, as the 

optimal decision is updated, when new 

information is entered. Specific damage and 

inspection models were chosen, but the model is in 

principle generic and can easily be changed to 

model another case. 

 
Figure 6. Probability of failure based on evidence until the 

previous time step for case A, B, and C. 

 

 

 

 
Figure 7. Expected utilities for decisions on repairs for each 

time step for the three cases.  
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A: No repair

A: Repair
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B: No repair

B: Repair
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C: No repair

C: Repair
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