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SUMMARY

Three different vibration based damage assessment techniques have been compared. One of the techniques
uses the ratios between changes in experimentally and theoretically estimated natural frequencies, respectively,
to locate a damage. The second technique relies on updating of an FEM based on experimentally estimated
natural frequencies where the stiffness matrix is given as a function of damage size and location. The last
technique is based on neural networks trained with the relative changes in natural frequencies. It has been
found that all techinques seem to be useful. Especially, the neural networks based technique seems to be very
promising.

RESUME

Trois différentes techniques de détection de dommage basées sur les vibrations ont été comparées pour lo-
caliser les dommages. Une des techniques utilise le rapport entre les fréquences propres estimées mesurées
expérimentalement et estimées par la théorie. La seconde technique repose sur une mise 4 jour d'un MEF
basé sur des fréquences propres estimées expérimentalement, ot la matrice de raideur est donnée comme une
fonction de la taille du dommage et de sa location. La derniére technique est basée sur des reseau neural
entrainés par les changements relatifs dans les fréquences propres. L’article montre que les trois techniques
fonctionnent. Et particulier, la technique basée sur les reseaux neural semble trés prometteuse.

ZUSAMMENFASSUNG

Drei verschiedene schwingungsbasierte Techniken der Schadenschitzung werden vergleicht. Eine der Tech-
niken verwendet die Verhiltnis zwischen experimentellen und theoretischen Anderungen in den geschitzten
Eigenfrequenzen um die Lokalisierung der Schaden zu estimieren. Eine andere Technik ist auf der FEM
Aufdatierung und den experimentellen geschitzten Eigenfrequenzen basiert, da die Steifheitsmatrize eine
Funktion der Grosse und der Stellung des Schaden ist. Die letzte Technik ist auf einem neuralen Netzwerk
basiert, das mittels der relativen Anderungen in Eigenfrequenzen trainiert wird. Die Artikel zeigt dass alle
drei Techniken funktionieren. Ins Besondere zeigt es sich, dass die Technik, die auf einem neuralen Netzwerk
basiert ist, sehr verheissungsvoll ist.
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1. INTRODUCTION

Determination of location and size of damages in civil engineering structures, damage assess-
ment, using vibration measurements is a problem which has received much attention, recently,
see e.g. Rytter [1]. Such vibration based inspection techniques are particular needed for deal-
ing with large structures, such as civil engineering structures and large space structures, since
they do not need assess to the structures for the investigator, such as those techniques based
on e.g. visual inspection, ultrasonic testing, eddy currents and acoustic emission. Further, re-
search in vibration based damage assessment techniques has been initiated by a considerable
demand for a more accurate non-destructive damage assessment technique.

One of the consequences of a structural damage, such as a crack, is a change in local stiffness
which in turn results in a decrease in some or in all the modal quantities, e.g. natural
frequencies. The most commonly applied vibration based damage assessment techniques
are based on changes of natural frequencies only. By comparing changes of experimentally
measured modal quantities in structures with patterns of changes predicted theoretical implies
that the location and/or size of the damage can be obtained. However, this requires knowledge
of the theoretical changes of the modal quantities in the structure due to different locations
and sizes of the damage. Therefore, the damage assessment results are depending on how
well the mathematical model describes the dynamic behaviour of the damaged as well as
the undamaged structure. The problem of establishing such models has been considered in
e.g. Gudmundson [2], Ostachowicz et al. [3] and Okamura[4]. Based on such models one can
estimated the changes in the dynamic behaviour due to a crack. However, damage assessment
from measured changes in dynamic behaviour is the inverse problem, i.e. how can information
be obtained about location and size of a damage given some experimentally measured modal
quantities. Many techniques have been proposed to solve this inverse problem. A review of
such techniques can be found in e.g. Rytter [1].

The aim of this paper is to investigate three different damage assessment techniques proposed
to solve the inverse problem. These three different techniques are chosen since they represents
three different damage assessment principles. One of the techniques uses the ratio of changes
in experimentally and theoretically estimated natural frequencies, respectively, to locate a
damage, see Cawley et al. [6]. The second technique relies on updating of an FEM where the
stiffness matrix is given as a function of damage size and location, i.e. both location and size
of the damage are estimated, see Shen et al. [7] and Rytter et al. [11]. The last technique is
based on neural networks trained with the theoretically relative changes in natural frequencies
as input and size and location of a crack as output, see Kirkegaard et al. [8].

Section 2 gives a description of the three different vibration based damage assessment tech-
niques is given. In section 3 the described techniques are compared in an example with a
straight hollow section steel cantilever beam. At last in section 4 conclusions are given.

2. DAMAGE ASSESSMENT TECHNIQUES

The following chapter presents the three different damage assessment techniques compared
in this paper.

2.1 Cawley & Adams’ Damage Detection Technique

In this section a damage assessment technique relying on the measurement of small changes
in natural frequencies and upon adequate theoretical predictions of these frequency changes is
presented. This technique can be used to give an estimate of the damage location. However,
the technique does not give any indication of the quantity of the damage. The technique
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(briefly the CA-technique) is based on that fact that for small frequency changes the ratio
of frequency changes in two modes is a function of the location of the damage only, see
Cawley et al. [6]. Using an FEM to model a damage in a structure, theoretical values of
the ratio of frequency changes in two modes can be obtained for various damage scenarios
and modes. Observing the structure, both at virgin state and after a damage has been
estasblihed the actual ratio of the frequency changes. Although some allowance must be made
for inadequacy of the damage model used to estimate the theoretical frequency changes, the
ratio of experimentally obtained frequency changes in two modes and the ratio of analytically
obtained frequency changes in two modes, respectively, should have a close relation for the
same damage scenarios and modes. In Cawley et al. [6] it is proposed to handle this matching
problem by using an error e,;; quantity given by

Aw? Al m
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where Aw?; and Aw™ are analytically and experimentally obtained changes of the ith natural
frequencies at location r, respectively.

Thus the total error e, assuming the damage located at position r may be calculated as

Ny Ny

f= ¥ ) B 3)
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Ny is the number of measured modes. Normalising the total error e, with respect to the
minimum total error e,,;, implies a normalized error E, given by

_100esp;n
=

E, (4)

By this definition, the normalized error E, will always be 100 for the position r which gives
the smallest error er;;.

One major disadvantage of the CA-technique is that the technique will locate a damage even
if the natural frequencies have changed slightly, due to e.g. the temperature effects or the
measurement noise.

2.2 Damage Assessment by Calibrating a FEM

In recent studies the damage assessment problem has been solved by a model updating
procedure (briefly the UP-technique). A very used approach is to estimate the elements in
the stiffness matrix for all the potential damage locations, see e.g. Smith et al. [9] and
Richardson et al. [10]. The largest reduction in e.g. stiffness, compared with the stiffness
of the undamaged structure, is giving the most likely damage location. These techniques
belong to a general category of system identification techniques where parameters of an
apriori analytical structural model such as its mass, stiffness, and damping are adjusted
to minimize the difference between the analytically predicted and experimentally measured
dynamic characteristics. If the stiffness matrix is given as a function of damage size and
location it is also possible to estimate the magnitude of the damage, see e.g. Shen et al. [7]
and Rytter et al. [11].
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This implies that the following optimization problem can be formulated, see Rytter et al. [19]

Ny @
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where w;! and w;"? are analytically and experimentally obtained values for the damaged

structure (periodical measurement), of the ith natural frequency, respectively. w?? and w™v
are analytically and experimentally obtained values, for the undamaged structure (virgin state
measurement ), of the ith natural frequency, respectively. W; and f3; are weighting parameters
established from the accuracy of the estimates of the natural frequencies. In Rytter [1] it is
shown that the formulation of the optimization problem (6) is important in order to avoid or

reduce the problem of local minima.

2.3 Damage Assessment by using Neural Networks

Above it is explained how the damage assessment problem can be solved using optimization.
Such a procedure based on minimization of a measure of the difference between measured data
and the corresponding predictions obtained from a mathematical model implies a comprehen-
sive search which is computationally expensive and nearly impossible for complex structures.
Therefore, a pattern recognition scheme could be needed to decipher the complex pattern of
dynamic behaviour changes that occurs due to a damage. However, recently, artificial neural
networks are proving to be an effective tool for pattern recognition in a variety of applications,
see e.g. Hertz et al. [12] and among these also for damage assessment. In Kirkegaard et al.
[8] a neural network (briefly the NN-technique) has been trained with the relative changes in
natural frequencies obtained by an FEM. The network is then used to estimate location and
size of a crack in a beam from measured natural frequencies.

2.3.1 Neural Networks

Many different types of neural networks have been proposed by changing the network topol-
ogy. Examples of those are e.g. the Hopfield network, Hopfield [13], the Kohonen network,
Kohonen [14] and the so-called multilayered perceptron (MLP) network. The MLP trained
by the back-propagation algorithm is currently given the greatest attention by application de-
velopers, see e.g. Hertz [12]. The MLP network belongs to the class of layered feed-forward
nets with supervised learning. A multilayered neural network is made up of one or more
hidden layers placed between the input and output layers, see fig. 1.

Each layer consists of a number of nodes connected in the structure of a layered network.
The typical architecture is fully interconnected, i.e. each node in a lower level is connected
to every node in the higher level. Qutput units cannot receive signals directly from the input
layer. During the training phase activation flows are only allowed in one direction, a feed-
forward process, from the input layer to the output layer through the hidden layers. The
input vector feeds each of the first layer nodes, the outputs of this layer feed into each of the
second layer nodes and so on. Associated with each connection between node i and node 7 in
the preceding layer [ — 1 and following layer [ is a numerical value wy;; which is the strength
or the weight of the connection.
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Fig. 1: Principle of a multilayer perceptron neural network.

At the start of the training process these weights are initialised by random values. Signal
pass through the network and the jth node in layer ! computes its output according to

Ny,
zi; = f(O) wiizioy,i + 015) (7)
i=1

fory =1,..,Nyand ! = 1,.., k, where x;; is the output of the jth node in the lth layer. 6;; is a
bias term or a threshold of the jth neuron in the Ith layer. The kth layer is the output layer
and the input layer must be labelled as layer zero. Thus Ny and N refer to the numbers
of network inputs and outputs, respectively. The function f(-) is called the node activation
function and is assumed to be differentiable and to have a strictly positive first derivative.
For the nodes in the hidden layers, the activation function is often chosen to be a so-called

sigmoidal function
1
B =1-—=5 (8)

The activation function for the nodes in the input and output layers is often chosen as linear.

The first stage of creating an artificial neural network to model an input-output system is to
establish the appropriate values of the connection weights w;;; and thresholds ;;by using a
learning algorithm. A learning algorithm is a systematic procedure for adjusting the weights
in the network to achieve a desired input/output relationship, i.e. supervised learning. The
most popular and successful learning algorithm used to train multilayer neural networks is
currently the Back-propagation routine, see Rumelhart [15]. The so-called Back-propagation
algorithm employs a gradient descent search technique for minimizing an error normally
defined as the mean square difference between desired and actual outputs from the network.

During the training phase, representative examples of input-output patterns are presented to
the network. Each presentation is followed by small adjustments of weights and thresholds
if the computed output is not correct. If there is any systematical relationship between
input and output and the training examples are representative of this, and if the network
topology is properly chosen, then the trained network will often be able to generalise beyond
learned examples. Generalisation is a measure of how well the network performs on the actual
problem once training is complete. It is usually tested by evaluating the performance of the
network on new data outside the training set. Generalisation is most heavily influenced by
three parameters: the number of data samples, the complexity of the underlying problem and
the network architecture. Currently, there are no reliable rules for determining the capacity
of a feed-forward multilayer neural network. Generally, the capacity of a neural network
is a function of the number of hidden layers, the number of processing units in each layer,
and the pattern of connectivity between layers. However, it is shown in Cybenko [16] and
Funahshi [17] that one hidden layer is sufficient to approximate all continuous functions. The
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process of computing the gradient and adjusting the weights and thresholds is repeated until
a minimum of the error is found. However, it is generally true that the convergence of the
Back-propagation algorithm is fairly slow. Attempts to speed learning include variations on

simple gradient search, line search techniques and second order techniques, see e.g. Hertz
[12] and Billings [18].

2.3.2 Use of Neural Networks for Damage Assessment

When an artificial neural network is used for damage assessment the basic idea is to train the
neural network in order to recognise the behaviour of the damaged as well as the undamaged
structure. Subjecting this trained neural network to information from vibration tests should
imply information about damage state and location. The network is trained with patterns of
the changes in quantities describing the dynamic behaviour that occur due to a damage. This
implies that each pattern represents the computed changes of e.g. the response spectrum,
natural frequencies, mode shapes etc. due to a damage of a particular size at a particular
location. The patterns of the quantities describing the dynamic behaviour are used as inputs
and the damage location and size as outputs to train the neural network. Then the trained
network subjected to measured patterns of the quantities describing the dynamic behaviour
can be used to determine the location, size and of a damage. The training of a neural
network with appropriate data containing the information about the cause and effect is a
key requirement of a neural based damage assessment technique. This means that the first
step is to establish the training sets which can be used to train a network in a way that
the network can recognise the behaviour of the damaged as well as the undamaged structure
from measured quantities. Therefore, ideally, the training sets should contain data of the
undamaged as well as the damaged structure in various damage states. These data can
be obtained by measurements, model tests or through numerical simulation, or through a
combination of all three types of data. This possibility of using all obtained information, or
only a part, in a neural network based damage assessment technique is a capability which is
not available in traditional damage assessment techniques.

3. EXAMPLE

In this example the three different damage assessment techniques are applied to a hollow
section steel cantilever, see fig 2.

g i
o -
80
JT 3
E
A—4A 3
Measurements in mm
- £
o s
.y °

Fig. 2: Test structure.



3.1 Analytical and Experimental Results

The experimental data used in this example are estimates of the lowest three bending natural
frequencies. Real line cracks were obtained in the test beams by attaching a sinus-varying
load to the beams by means of a shaker. The frequency of the sinus was either the actual
first or second bending natural frequency. The cracks lengths were measured by means of a
microscope mounted on an electrical measurement rail. Two different crack locations were
considered. In one beam a crack was initiated at z=1.0 m and in an other beam at z=0.1 m.
The cracks were initiated as small narrow laser cuts (width &~ 0.15 mm). The experimental
determination of the bending natural frequencies was obtained from free decays. The free
decays were introduced by removing a well-defined static load from the beam momentary.
The accelerations were measured at z=0.5 m, z = 1.4 and z=2.0 m. The natural frequencies
were estimated by a minimization of the least square error between the response obtained by
an analytical expression of a linear and viscously damped system and the measured response.
A more throughout description of the experimental procedure and the experimental results

can be found in Rytter et al. [1].

The analytical estimated changes of the natural frequencies are estimated by an FEM of the
beam. The development of a crack at a certain location of a beam corresponds to a sudden
reduction of its bending stiffness at the same location. The crack divides the original non-
cracked beam into two shorter beams, connected, at the crack location, by a very infinitesimal
portion of beam with different characteristics. The characteristics in bending modes can be
modelled by a torsion spring. The spring stiffness is estimated by using a fracture mechanical
model, see e.g. Okamura[4] and Gomes et al. [5]. The FEM was calibrated by using experi-
mental data from the non-cracked beam. This calibration was performed to secure that the
FEM describes the beam in the best possible way. The quality of the predictions from any
technique of damage assessment is critically dependent on the accuracy of the damage model,
see e.g. Rytter [1].

3.2 Results

In the following it is explained how the three different damage assessment techniques were
implemented in order to detect and locate the cracks in the beams.

3.2.1 The CA-Technique

In order to use the CA-technique the errors given by (4) were calculated using analytical
and experimental values of the three lowest natural frequencies. The analytical values were
estimated due to a crack of 0.06m placed in intervals of 0.025 m between z = 0.0m and
z = 2.0m. The crack locations estimated using the CA-technique are shown in fig. 3 with a
dotted line.

3.2.2 The UP-Technique

The applicability of the UP-technique was tested by solving the optimization problem for-
mulated in (5)-(6). Again the three lowest natural frequencies were used. This means that
the optimization variables were size a and location z of the crack. The initial value of a and
z were taken as Om and 1.5 m, respectively. The crack locations and sizes estimated using
the UP-technique are shown in figure 3 and 4, respectively with a dashed line.

3.3.3 The NN-Technique

The neural network results were obtained using a hierarchical, two step approach. This
implies that the relative changes of the bending natural frequencies of the 3 lowest modes
and the location of the crack are used as input and output, respectively, in one network. In an
other network the crack location and the relative change of the bending natural frequencies



8

of the 3 lowest modes are used as inputs and the size of the crack as output. A hierarchical
approach was used since it was found in Kirkegaard et al. [8] that better results could be
obtained instead of using only one big network. The training sets were generated for cracks
located in intervals of 0.025 m between z = 0 m and z = 2.0 m, respectively. The cracks depths
were in intervals of 0.004 m between 0.02 m and 0.140 m. By a trial-and-error approach it
was found for the first network that a 4 layers neural network with 3 input nodes, 8 nodes in
each of the two hidden layers and 1 output node gave the network with the smallest output
error. For the second network it was found that a 4 layers neural network with 4 input nodes,
8 nodes in each of the two hidden layers and 1 output node gave the smallest output error.
Results from the networks trained with analytical data and subjected to experimental data
are shown with a dashed-dotted line in figure 3 and 4, respectively.

1.2
) e S SR LTS
= W e ek
g 08f _
8
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06
8 CA-technique
E UP-technique
£ 04t ' —
% ' NN-technique
i
0.2} _
% 0.02 004 0.06 0.08 01 012 014

Measured Crack Size [m]

Fig. 3: Estimated crack location.

It is seen from figure 3 an 4 that the estimated location and size of the two cracks obtained
by the three techniques are reasonably correct for all crack sizes. Especially, the estimates
obtained by the NN-technique are interesting. By using the NN-technique the location and
size of the crack can be estimated on-line. Figure 3 also shows that the influence from errors
on the measured natural frequencies becomes smaller for increasing crack length.

4. CONCLUSIONS

Results from an example with a hollow section steel cantilever demonstrate the capability of
three different vibration based damage assessment techniques. The techniques rely on the
measurements of small changes in natural frequencies and upon adequate theoretical predic-
tion of these frequency changes. It is explained how the damage assessment problem can be
solved using optimization. It is found that the size and location of cracks can be predicted
using the three techniques. Especially, the estimates obtained by a neural network based
technique seems to be encouraging. By using the neural network based damage assessment
technique an on-line technique is established. In the following work the neural based tech-
nique for detecting and locating damages in civil engineering structures based on vibration
measurements has to be investigated.
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