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Identification of Time Varying Civil Engineering
Structures using Multivariate Recursive
Time Domain Models

P.H. Kirkegaard, P.S. Skjerbzk & P. Andersen
Aalborg University
Department of Building Technology and Structural Engineering
Sohngaardsholmsvej 57, DK-9000 Denmark

ABSTRACT

This paper presents system identification results of an RC-structure using multivariate auto-
regressive moving-average vector models (ARMAV) on a running window, recursive ARMAV models
(RARMAYV) and Kalman filtering of a simple spring-mass-dashpot system. The identification techniques
are used on simulated data generated by the non-linear finite element program SARCOF modelling a
6-storey 2-bay concrete structure subjected to amplitude modulated Gaussian white noise filtered through
a Kanai-Tajimi filter. The estimated natural frequencies and mode shapes of the two first modes are
compared with the smoothed quanties which have been obtained from SARCOF. The results show the
usefulness of the techniques for identification of a time varying civil engineering structure. It is found
that all the techniques give reliable estimates of the frequencies of the two lowest modes and the first
mode shape. Only the Kalman filtering gives reliable estimates of the second mode shape.

1. INTRODUCTION

During severe dynamic excitation such as major earthquakes the response of reinforced concrete
structures is influenced by non-elastic stress-strain behaviour (hysteresis). Any plastic cyclic deformation
implies that the structure suffers local or global damages, ranging from harmless cracking of hitherto
uncracked cross-sections to bond deterioration at the interface between reinforcement bars and concrete,
crushing of the concrete in compression zones, rupture of reinforcement bars and stirrups etc. It has
become common practice to instrument important buildings which may be exposed to excessive dynamic
excitations in order to control the damage accumulation as measured by the sequential stiffness and
strength deterioration. These damages are displayed in the dynamic response of the structure in terms of
e.g. increased eigenperiods. The so-called Maximum Softening damage indicator is based on this
principle, relating the global damage state of the structure to the relative decrease of the fundamental
eigenfrequency, Di Pasquale et al. [1] and Nielsen et al. [2]. Alternatively, the global damage can also
be detected using other damage indicators such as Park & Ang’s index, maximum deformation,
normalized cumulative dissipated energy, ductility ratios, a low cycle fatique model formulated by
Stephens, Roufaiel & Meyers global damage index, slope ratio and flexural damage ratio, see Stephens
[3]. Local damage can be estimated using the above mentioned indices and furthermore interstorey drifts
and a relatively new local maximum softening damage index, see Skjarbak et al. [4]. This local
maximum softening index is estimated from time-varying eigenperiods and eventually mode shapes, if
available. However, in order to use this local maximum softening damage index robust estimates of the
time-varying eigenperiods and mode shapes of the equivalent linear structure are required. Among many



techniques proposed for system identification application adaptive techniques such as the recursive
prediction error methods (RPEM) and Kalman filtering seem to be available tools to identify
time-varying civil engineering structures.

The aim of this paper is to evaluate system identification techniques based on windowed
multivariate Auto-Regressive Moving-Average (ARMAV) time domain models, recursive ARMAV
(RARMAYV) and Kalman filtering for on-line estimation of natural frequencies and mode shapes of an
RC-structures subjected to an earthquake. ARMAV models have primarily been developed by control
engineers and applied mathematicans, see e.g. Ljung [5] and Soderstrom et al. [6]. However, in recent
years the application in civil engineering of ARMAYV to the description of structural systems subjected
to stationary ambient excitation has become more common, see €.g. Gersch et al. [7], Pandit et al. [8],
Kozin et al. [9], Hamamonton et al. [10], Li et al. [11], Hoen [12] , Prevosto et al. [13], Kirkegaard et
al. [14] and Andersen et al. [15]. All these references are related to identification of linear time-invariant
structures. However, in order to deal with time-varying systems a recursive implementation of a
multivariate ARMAYV model can be used, see e.g. Ljung [5], Soderstrom et al. [6], Kirkegaard et al.
[16]. In this paper two different recursive implementations of multivariate ARMAV models used for
identification of a time-variant civil engineering structure. The two implementations of 1) recursive
pseudolinear regression (RPL/RARMAYV) and 2) the recursive least square (RLS/RARV) method, that
both can be considered as the special forms of the RPEM method for particular forms of the ARMAV
model. The different between the RPL and the RLS technique is that the RPL estimates the moving
average parameters in the ARMAV model while the RLS does not. The frequencies and mode shapes
estimated using RPL and RLS are compared with estimates obtained by Kalman filtering using a simple
spring-mass-dashpot system. The identification techniques are used on simulated data generated by the
non-linear finite element program SARCOF modelling a 6-storey 2-bay concrete structure subjected to
amplitude modulated Gaussian white noise filtered through a Kanai-Tajimi filter, Merk [1 7]. SARCOF,
has been verified to be able to predict accurately the response of deteriorating RC-structures with
well-defined structural parameters (bending stiffness of cracked and uncracked of all beam-elements must
be specified) when the structure is exposed to different levels of peak ground excitation.The program
estimates the two lowest eigenfrequencies and mode shapes of the equivalent linear structure at each
time step. The results show the usefulness of the techniques for identification of a time varying civil
engineering structure. Especially, the results using an ARMAYV model used on a running window seems
to give the most robust estimate of the fundamental eigenfrequency.

2. BASIC EQUATIONS FOR ARMAV

This section describes the relationship between an Auto-Regressive Moving-Average Vector
model (ARMAYV) and the governing differential equation for a linear n-degree of freedom elastic system.
Further, it is explained how the ARMAYV model can be calibrated to output time series using recursive
techniques.

e | Continuous Time Model

In the continuous time domain an n-degree linear elastic viscous damped vibrating system is
described to be a system of linear differential equations of second order with a constant coefficient given
by a mass matrix M (n x n),a damping matrix C (n x n), a stiffness matrix K (n x n), an input matrix S
(n x r ) and a force vector f{t) (r x 1). Then the equations of motion for a linear multivariate system may
in the time domain be expressed as

M@ + CE@) + Kx() = Sf(r) (1)



where x(?) is the displacement vector. The state space model corresponding to the dynamic equation (1)
is

: 0 I 0
i) = Ax() + B , A =|_ap g B | gpag (2)

where z(?) is the state vector. It is assumed that the system matrix 4 is asymptotically stable and can
be eigenvector-eigenvalue decomposed as

u,o. u,,

w = diag [n] , i=12,...2n 3
Rohy oo Byl

A=UpU1, U=

U is the matrix which columns contain the scaled mode shapes w; of the ith mode. p is the continuous
time diagonal eigenvalue matrix which contains the poles of the system from which the natural frequency
w; and the damping ratio {; of the ith mode can be obtained for under damped systems from a complex
conjugate pair of eigenvalues as

pa) = 0L+ Q1= “4)

2.2 Discrete Time ARMAYV Model

For multivariate time series, described by an m-dimensional vector y(#), an ARMAV(p,q)
model can be written with p AR-matrices and ¢ MA-matrices

¥ + Y Ap(t-i) = Y Be(t)) + e(r) (5)
i=1 i=1

where the discrete-time system response is y(¥) = [y; (1).y:(1) ... y,,()]". 4 is an m x m matrix of auto-
regressive coefficients and B; is an m x m matrix containing the moving-average coefficients. e(?) is the
model residual vector, an m-dimensional white noise vector function of time. Theoretically, an ARMAV
model is equivalent to an ARV model with infinite order.The ARV is often preferred because of the
linear procedure of the involved parameter estimation. The parameter estimation of the ARMAV model
is a non-linear least squares procedure and requires some skill as well as large computation effort. A
discrete state-space equation for equation (6) obtained by uniformly sampling the structural responses
at time 7 is given by, e.g. Pandit et al. [8]

z,-Fz, + W, ©)

with the state vector Z, and the system matrix F, respectively, are given by
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W, includes the MA terms of the ARMAV model. It is assumed that F can be decomposed as

-1 =1 =l
[ A A S
LE™ a2 |, EE
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The discrete state space model can now be used to identification of modal parameters and scaled mode
shapes as follows, see Andersen et al. [15]. First, the discrete system matrix F is estimated by minimizing
a quadratic error criterion /(€) using a damped Gauss-Newton optimization algorithm and analytically
gradients,

l(e) = %ETA'IE 5 €t,0) = y(©) - F-1) 9)

A and € are the weighting matrix and the prediction errors, respectively. By solving this optimization
problem the matrices in (5) are estimated implying that F can be established, see Andersen et al. [15].

Next, the discrete eigenvalues of F are estimated by solving the eigen-problem det(F-AI) =0
which gives the pm discrete eigenvalues A;. The continuous eigenvalues can now be obtained by X =
e*2 which implies that the modal parameters can be estimated using (4). The scaled mode shapes are
determined directly from the columns of the bottom m x pm submatrix of L. The number of discrete
eigenvalues in general are larger or different from the number of continuous eigenvalues. Therefore, only
a subset of the discrete eigenvalues will be structural eigenvalues. This means that the user has to separate
the physical modes from the computational modes. The computational modes are related to the unknown
excitation and the measurement noise processes. The separation can often be done by studying the
stability of e.g. frequencies, damping ratios and mode shapes, respectively, for increasing AR model
order. Often, it is also possible to separate the modes by selecting physical modes as the modes with
corresponding damping ratios below a reasonable limit for the modal damping ratios. However,
satisfactory results obtained using ARMAV models for system identification require that appropriate
models are selected and validated. A throughout description of the problem of model selection and
validation is given in e.g. Ljung [5].

2.3 Discrete Time Recursive Model
In order to estimate a time-variant system using an ARMAYV model the parameters of the model
have to be estimated on-line by using a method for parameter estimation known as the Recursive

Prediction Error Method (RPEM). Such an approach has two main advantages: 1) it requires much less
memory in the computer since the calculations are done sequentially using only the latest segment of
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data, and 2) it can detect time varying characteristics at each time step. The RPEM algorithm for a
multivariate ARMAYV model can be formulated as, see e.g. Ljung [5]

&t = Ke-1) + L€t At-1))
L) = PE-DYPOIANA, + g Pe-1)n]! (10)

P() = [P(t-1) - LOYP(HPE-1)I/AD)

The parameter vector O is given as

0 = col({4,...,A,.B,,...B }) (11)

where col(X) means stacking of all columns of a matrix X on top of each other. Y(#) is the gradient of the
prediction y(t|¢-1) with respect to 0 . A, is a matrix that weighs together the relative importance of the
components of €. A(#) is a forgetting factor, a number somewhat less than 1. This means that one can
assign less weight to older data that are no longer representative for the system. The choice of the
forgetting factor is often very important. Theoretically, one must have A(z) = 1 to get convergence. On
the other hand, if A(z) <1 the algorithm becomes more sensitive and the parameter estimates can change
quickly. For this reason it is often an advantage to allow the forgetting factor to vary with the time. A
typical choice is to let A(#) tend exponentially to 1, see e.g. Stderstrom et al. [6].

In order to start the recursion initial values of the parameters need to be specified. It can be shown that
for stable systems the effect of initial values diminishes very rapidly with time, thus they can be assumed
zero. Further, one also has to specify initial values for the covariance matrix P(z ).

If this matrix is initialized with small values the parameter estimates will not change too much from the
initial estimates of the parameters. On the other hand, if P(¢ ) is initialized with large values, the
parameter estimates will quickly jump away from the initial values of the parameter vector.

The intermediate steps of the derivation of (10) are given in e.g. Ljung [5] where it also is shown that the
RPEM represents a general family of recursive system identification methods.There are several other
methods, such as e.g. the recursive pseudolinear regression (RPL), maximum likelihood estimation (ML),
and the recursive least square (RLS) method that all can be considered as the special forms of the RPEM
method for particular forms of the ARMAV model. The RPL (RARMAYV) technique is obtained by
replacing the gradient y() in (12) by the multivariate regression matrix ¢’(#) of dimension m x (prq)m’
defined as

¢ = o' WeI,
(12)

e'® = {-y -1,y Ttple T, ... e [(t-q)}

where I, is an m x m identity matrix, and ® is the Kronecker product. By using ¢7(¢) the one step-ahead
predictor y(£j¢-1) of the ARMAYV model (6) is given by

Je-1) = §(n0 (13)



The RLS (RARV) technique is obtained by replacing the gradient y(?) in (12) by the multivariate
regression matrix ¢p’(f) of dimension m x (p+q)m’ defined as

¢ = o'(Wel,
(14)

o' = {-y -1,y TP}

3. BASIC EQUATIONS FOR KALMAN FILTERING

The following section describes the basic equations for Kalman filtering, see e.g. Juang [18].
To apply Kalman filtering for system identification, the state vector is augmented to include the
parameters to be identified. Then this new state vector consists then of two parts as follows

2

where the subscript s denotes the system state vector component and p denotes the parameters to be
identified. In short notation the differential equations of the system to be identified are written:

Z,(1) = g(Z,(1).0) (16)

where the observation equation takes the following form

y=HZ +v a7

where H is the observation matrix and v represents the measurement noise which is assumed to be
zero-mean Gaussian white noise with a covariance matrix E/v(k)v(j)] = R 8(k - j) at any discrete time
k. 8(k - j) =1 when k = j else zero.

The uncertain initial conditions are modelled as Gaussian Random variables with a mean vector Z,(0),
and an error covariance matrix of D(0), i.e.

Z,(0)~-N(Z (0),D(0)) (18)

Thus the a priori information needed for the identification process is Z;(0), D(0) and R(0). In the used
Kalman Filter the information collected in the measurment vector (17) is used to update the state-vector
Z,. The updating is done in two steps, i.e. a prediction phase and a update phase, respectively.



3.1 Prediction Phase

Based upon the uncertain initial conditions the state of the system can be estimated which
include estimates of a new mean and new error-covariance At time step & the prediction of the state and
error-covariance at time step &+1, Z(k +1| k) and D(k +1| k), respectively, can be be estimated by solving
the following differential equations, Juang [18].

Z(t) = gZ,(kk)1) + W), k<t <k+]

. (19)
D) = F(Z,(Ko.nHD() + DOF (Z,(klk).0), k <t <k+1
where F(X(k |k ) is the gradient of the system dynamics as follows
: 0g(Z  (klk),r)
FZ b0 = ————| ;4 - 20 20)

oZ (1)

w(t) represents the modelling error which is assumed to be zero-mean Gaussian white noise with a
covariance matrix Efw(k) w(j}] = O 8(k -j) . It is assumed that the two processess v(k) and w(k) are
stationary and independent, i.e. E[v(k)w(k)] =0 for all k and /.

3.2 Update Phase

The observation that becomes available at & +1 is then used to update the state vector and error
covariance matrix, Juang [18]

Z (k+1k+1) = Z,(k+1]k) + K(Ic+1)[Y(k+l) - Hz“(k+1|k)]
21)

D(k+1k+1) = [I-K(k+DHE+1DIDE 1T -K(k+10)HE+1)] +K(k+1)RK "(k+1) + Q

where K(k+1) is the so-called Kalman Gain matrix calculated as

K(k+1) = Dk+1|0H T(k+1)[H(k+1) -D(k+1|)H(k+1) + R] (22)

and R is the covariance matrix of the measurement noise.

In order to treat the parameters as time varying parameters, it is necessary to add noise in Q at the
positions corresponding to the covariance of these parameters to prevent the gain from tending towards
zero. The equations are then repeatingly used until the end of the time series is reached and a series of
time-varying stiffnesses is obtained. The mode shapes ® of the identified system are then determined by
solving the eigenvalue problem det(k(r) - w}()M)®,(n) = 0 of the system where K(t) and_M are the
stiffness and mass matrix, respectively.




4, EXAMPLE

In this example the system identification techniques described in section 2 and 3, respectively,
will be investigated in a simulation study. The investigations will be based on time series simulated by
a non-linear finite element program SARCOF, Merk [17], which has been verified to be able to predict
accurately the response of deteriorating RC-structures with well-defined structural parameters (bending
stiffnesses of cracked and uncracked of all beam-elements must be specified).

4.1 Test Structure

The computer model, which is a 1:5 model of a laboratory test model consists of two 6-storey,
2-bay frames working in parallel with storey weights, uniformly distributed, attached in between. The total
height of the structure is 3.3 m and all storey heights are uniformly distributed. The columns and beams
in the structure are 0.06 m wide, 0.05 m deep for the columns and beams, respectively. Furthermore, all
columns and beams are symmetrically reinforced. The following values are used for the density p =2500
kg/m?, the stiffness £ =3.5 - 10 N/m and the damping ratio { = 0.05 . The stiffness and strength
deterioration are modelled using a Roufaiel-Meyer hysteretic model. The first and second natural
eigenfrequencies of the undamaged structure are 1.93 Hz and 6.13 Hz, respectively.

The acceleration process at the ground surface is determined as the response process of an
intensity modulated Gaussian white noise filtered through a Kanai-Tajimi filter, see Tajimi [19] implying
that the negative part of the ground surface acceleration is estimated. The damping ratio in the
Kanai-Tajimi filter is chosen as 0.3 and the circular frequency is chosen as 10.0.s™'. The excitation has
maximum acceleration after 3 sec. and the duration of the excitaion is 15 sec. The integrated dynamic
system is in SARCOF solved by a 4th order Runge-Kutta Scheme. The time step is selected as 0.002 sec.,
where it has been proved that no drift occurs in the simulated signal. It is assumed that measurements are
performed at all storeys. During the simulations SARCOF gives the instantaneous frequencies and mode
shapes of the lowest two modes of the structure. These estimates will vary rapidly as the structure enters
and leaves the plastic regime. Therefore, it is necessary to perform a smoothing of the measured
eigenperiod which corresponds to time-averaging the structural degradation. A time-averaging method
of the instantaneous period has been proposed by Rodriquez-Gomez [22] and is based on the principle
of a moving averaging window in the following way. The smoothed value of the ith frequency <f,(¢)>
at the time #is evaluated as

P L

1
<f()> = ) ft _ T; f(ndt (23)

where 7, is the length of the averaging window, which should be sufficiently large, so that the local peaks
are removed. On the other hand, T, should not be selected so large that intervals of increased plastic
deformation are not displayed in <f,(¥)>. The value I =24 [ isrecommended as a reasonable
compromise, Rodriquez-Gomez [22], where 7}, is the 1st eigenperiod of the equivalent linear structure.
The mode shapes show the same fluctuating behaviour as the frequencies, and are therefore smoothed
as the frequencies.

4.2 Kalman Filter Implementation

In this study it is assumed that the dynamics of the 6-storey RC-frame can be described by a
6 degree-of-freedom oscillator as illustrated in figure 1.
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Figure 1 Dynamic model for the frame

Only the spring stiffness are assumed to vary with time. The masses and dampings are assumed to be
known and constants during the motions and it has been assumed that all storeys have identical masses
m and damping c. The initial stiffness of the springs is assumed to be known from static analysis.The first
order differential equations used for Kalman Filtering of the system illustrated in figure 2 are
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where x =—-—- _i=7.8,..,12 are the additional state variables.
S’ 2 59y

In order to"lrse the Kalman filter, the following intial quantities are specified

» Initial values of the parameters to be identified.
» The initial error covariance matrix D(0).

« The measurement noise covariance matrix R

* The modelling error covariance matrix Q.



In the case of the 6-storey RC-frame the initial stiffness/mass ratio were estimated from FEM-analysis
to be as shown in table 1, where also the assumed damping/mass ratios are listed.

Storey No. |1 2 3 4 5 6
ki,/m 3950 | 3950 | 2250 2200 1950 1400
c;/m 1.0 1.0 1.0 1.0 1.0 1.0

Table 1: Initial parameteres of the 6 - Dof system

In all the considered cases, the measurement noise covariance matrix R are modelled as a diagonal
matrix with a noise variance of 10 in the diagonal corresponding to a noise-signal ratio ~== equal to
approximately 5 %.

signal

The modelling error matrix Q are also modelled as a diagonal matrix where the variances of the
displacements and velocities in all cases are set to 0.001 and the variances of the parameters to be
estimated are set to g, so

diag(@) = [0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 ¢ ¢ ¢ ¢ ¢ gl  (25)

The initially error covariance matrix D(0) are set to be a diagonal matrix as well, also with initial
variances of 0.001 for errors in displacement and velocities and the initial error covariance of the
parameters to be estimated were set to p, so

diag(D(0)) = [0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 p p p p p pl (26)

From introductory investigations it was found that the final results are quite insensitive to the choice of
variance of displacement and velocities in both @ and D(0) as well as the noise, so these can be chosen
quite arbitrary. However, the choise of p and ¢ is found to effect the results quite much. In the
following p = 0.2 and g = 0.0001.

4.2 Results

Table 2 shows the estimated frequencies of the lowest two modes while figure 2 shows
corresponding mode shapes for the time steps 4, 8 and 12 sec, respectively. By using different model
selection criteria such as the Akaike’s information criterion and pole plots etc., see e.g. Ljung [5], an
RARMAV(6,5) and an RARV(6), respectively, were chosen. The parameters in the RARMAYV and
RARYV models were estimated by using exponentially decaying weighting factors A(f), Ljung [5]

Al = AA@E-1) + 1 - A 27)

The forgetting factor parameters A(0), ?uo were both selected to have the value 0.95 and 0.99,
respectively. Further, the initial values of the parameter estimates 6 (0) and covariance matrix P(0) were
selected as random variables and as a unity matrix, respectively. Further, an ARMAYV model was used
on a window with a length of 2.4 7, This approach is called ARMAV+W.
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The estimated natural frequencies estimated by the techniques are shown in table 2 for the time steps 4
sec., 8 sec. and 12 sec., respectively. It is seen that KF, RARMAYV and ARMAW +W give results for the
first frequency corresponding to the SARCOF result. For the second frequency only the ARMAV+ W
technique seems to give usable resluts.

The estimated first and second mode shape for the same time steps as the first two frequencies are shown
in figure 2. Here, it is seen again that the KF, RARMAV and ARMAW +W techniques give usable results
for the first mode while the second mode is only estimated well by the KF technique.

Mode SARCOF KF RARMAV RARV ARMAV+W
time (sec) 4 8 12 4 8 12 |4 8 12 |4 8 12 |4 8 12
1 98 | 85 73 1.5 |90 |71 |we |85 |80 |18 |102 |94 | 144 [81 |78
2 347 | 321 | 205 |[332 |285 |234 [272 | 234 | 227 | 237 | 229 | 216 | 338 | 287 | 284

Table 2: Frequencies of the lowest two modes for the time steps 4, 8 and 12 sec.

1stnode 2rdnode
6 - ¥ 6 :
A
4 P .
4 sec 2 :'/’:;f’: e 2
0= 0
0 05 1 -2 1
6 - 6
A
4 - K 4
8 sec P //X/
) ;:/,a/ 2
v
' 0
0 05 1 2 1
6 - , {' 6 ¢
4 g 4
12 sec - /,:—/
2l o 2
Nl 0
0 05 1 2 1

Figure 2: Mode shapes of the lowest two modes for the time steps 4, § and 12 sec.
[-*-*.] : SARCOF, [ - — - | : RARMAV, [~ — — ] : RARV, [——] : KF, [- - - - - 1: ARMAV+W
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5.

CONCLUSION

This paper presents system identification results of an RC-structure using multivariate

auto-regressive moving-average vector models (ARMAV) on a running window, recursive
ARMAYV models (RARMAYV) and Kalman filtering of a simple spring-mass-dashpot system. The
resluts show that that the KF, RARMAYV and ARMAW +W techniques give results for the first
frequency and mode shape corresponding to the SARCOF result. For the second mode only the
ARMAV+W and the KF techniques seem to give usable results for the second frequency and the
mode shape, repsectively.
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