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POINTWISE ESTIMATES OF PSEUDO-DIFFERENTIAL OPERATORS
JON JOHNSEN

ABSTRACT. As a new technique it is shown how general pseudo-diffaknperators can be
estimated at arbitrary points in Euclidean space when gatimfunctionsu with compact spec-
tra. The estimate is a factorisation inequality, in whictke dactor is the Peetre—Fefferman—Stein
maximal function ofu, whilst the other is a symbol factor carrying the whole imfi@ation on the
symbol. The symbol factor is estimated in terms of the spécadius ofu, so that the framework
is well suited for Littlewood—Paley analysis. It is also aimohow it gives easy access to results
on polynomial bounds and estimated.ig, including a new result for type, 1-operators that they
are always bounded dr,-functions with compact spectra.

1. INTRODUCTION

The aim of this note is to show how one can estimate a pseudtiatitial operator at an
arbitrary pointx € R" —and to explore the convenient consequences.

The central theme is to show for a general symbot, ), with the associated operator
a(x,D)u(x) = (2m) " [&*Na(x,n)u(n)dn, that foru ¢ .Z ~1&'(R),

la(x,D)u(x)| < c-u*(x) forevery xeR" (1.1)
Hereu* denotes the Peetre-Fefferman-Stein maximal function
" ) u(x—y)| u(y)|
u*(X) = U (N,R X) = sup————=— = sup ) (1.2)
09 = wINRX) = S Ry ~ %P+ Rx—y1)"
whereN > 0, R> 0 are parameter® so large thak € suppﬁ implies|x| <R.
One obvious advantage of proving (1.1) in terms of (1.2) éditimediate ly-estimate
/|a(x, D)u(x)|Pdx < cp/ U (X)[Pdx < CPCpulB, 1< p< oo, (1.3)
where the last step is to invoke theaximal inequality
\u*(x)|pdx§Cp/ lu(x)|Pdx, uclpnZ ¢ (1.4)
RN RN

This estimate of the non-linear map— u* has forN p> n been known since 1975 from a work
of Peetre [Pee75], who estimateat{x) by the Hardy-Littlewood maximal function in order to
invoke thel p-boundedness of the latter. A significantly simpler proddiieen below.

2000Mathematics Subject ClassificatioB5S05,47G30.
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2 JON JOHNSEN

It is remarkable that little attention has been paid overdideades to pointwise estimates like
(1.1) —in comparison Peetre’s proof of (1.4) quickly got atcal role in the theory of function
spaces; cf [Tri83, 1.4.1]. However, to the author's knowledthere has only been a similar
attempt by Marschall, who in his thesis [Mar85] suggestedstimatea(x,D)u(x) in terms of
Mu; this was followed up in a series of papers, eg [Mar91, Mak®&r96], where the technique
was used to derive boundedness under weak assumptionsciesspased oh (functions and
symbols subject to Besov and Lizorkin—Triebel conditions)

In the present paper the point of view is quite differentstaf all because™ is rather easier
to treat and work with thaMu. Secondly, the aim is to explain how pointwise estimatestims
of u* will simplify well-known topics such a4 p-estimates and Littlewood—Paley analysis of
a(x,D).

So as a main result here, (1.1) is also shown to be straigidforto obtain; cf Theorem 4.1—
4.5 below. Indeed, the constanin (1.1) is just an upper bound for tteymbol factor K(x),
which is a continuous, bounded function carrying the entifermation of the symbol in the
factorisationinequality

la(x,D)u(X)| < Fa(X)u*(x),  ue.Z &' (R"). (1.5)

As F4(x) only depends vaguely am(cf Section 4), this gives a somewhat surprising decoupling

The inequality is well suited for Littlewood—Paley analysia(x,D) as described in Section 5.
The set-up there has recently been exploited by the autiebid()] in proofs of fundamental
results for pseudo-differential operators of typd this is briefly reviewed in Section 6, where
also (1.3) is given as a new theorem for typé-bperators.

2. THE PEETRE-FEFFERMAN-STEIN MAXIMAL FUNCTION

This section explores the definition of(x) in (1.2), in lack of a reference, and gives a straight-
forward proof of the maximal inequality (1.4).

For the reader’s sake a few easy facts are recalled first. Gw 8fatu* (x) is a ‘slowly’ varying
function, note that

ux=2)| _ |uly—(z+y=x)| (1+Rz+y-x)" e
A+RHYN  (1+Rz+y-x)V  (1+ RPN 7
so the inequality % |x+y| < 14 [x| 4 |y| +[X||y| = (1 +[x])(1+]y|) gives
U*(%) < u*(y) (14 Rix—y))". (2.2)
Thereforeu*(x) is finite at everyx € R" if it is so at one pointy. So eitheru*(x) = c« on the
entireR", or (2.2) implies that*(x) is continuous oR", ie u* € C(R").
Finiteness is for larg®& implied by the (often imposed) assumption thiat .’ (R") should
have its spectrum in the closed bBl0, R) of radiusR, ie
suppZu C B(O,R). (2.3)
Indeed, thenu(x)| < cr(1+ R|x|)™ by the Paley—Wiener—Schwartz theorem, wheis the order
of . SON > mgivesu*(N,R;0) < cr, henceu*(N,R;x) < c for all x € R".
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In any case it is clear that— u* is subadditive, igu+v)* < u* +v*, whence
U (N,RiX) — V¥ (N, RX)| < (U= V)" (N, R;). (2.4)

Henceu — u* is Lipschitz continuous oh.,(R") with constant 1, as it is a shrinking map there,
ie |Ju|le < |Jul|e. With respect to the Blder seminorm

|Ulo :zs;lp\U(X>—U(y)l/IX—y!", 0<o<l, (2.5)
XY
it is also a shrinking map, for (2.4) gives that
lu(x+h+-) —u(x+-)|
(1+R-DN
Therefore|u*|s < |u|g as claimed. In particular one has

U (x+h) —u*(x)| < sup < |u[g[h]?. (2.6)
Rn

Proposition 2.1. The map u— u* is for all N,R > 0 a shrinking map on the &lder space
C9(R"), 0< o < 1, defined by finiteness of the nota; = sup|u|+ |u|g.

A main case is whem is in Lp(R"), 1 < p < . For p <  one hasu* = « for u equal to
e times the characteristic function pf. B(key, e~ (¢*12P) Such growth is impossible on the
subspace of functions fulfilling the spectral conditior8{2so this is imposed henceforth.

As an a priori analysis of this case, the Nikolslklancherel-Polya inequality implies that
u€ LpNle, for it states that i € L, and (2.3) holds, then

n n
Jullr <cRP T|ullp for p<r <. (2.7)
For its proof one can take an auxiliary functighe .(R") so that.Z (&) =0 for || > 2
and Z (&) =1 aroundB(0,1), for thenu= R"Y(R) xu, and (2.7) follows from this identity
at once by the Hausdorff-Young inequality gl|r < [|f[|p/lgllq, where + & = 1+ +; hereby
c= |||, that only depends op, r andn.

To complete the picture, (2.7) extends as it stands to thger&< p < r < oo, providedu

is given inL,N.#’(R") with suppZu € B(0,R); cf [Tri83, 1.4.1(ii)]. The direct treatment in
1. 1

[JS07] shows that one can take= ||¢||& " for 0< p< 1. (For 0< p < 1, the setLpN.7”
itself consists of the: € L'°°N.7” fulfilling [n |u|Pdx< =, thatper serequires stricter smallness
thanL; for |x| — o but gives a global condition on the singularities in the gagson-compact
region whergu(x)| > 1.)

By (2.7), pointwise estimates of (x) hold for Lp-functions with compact spectra:

Lemma 2.2. For every ue LpN.'(R"), 0 < p < =« with suppZu C B(0,R), it holds true on
R" that
lu(x)] <U*(N,RX) < |Julje < oo forevery N>O. (2.8)

Proof. With r = w0 in (2.7) it follows that||u||« is finite; and it dominates*(x) as stated, by the
definition of u* in (1.2). Takingy = O there yieldgu(x)| < u*(X). O

Note thatZ L, C ' for the least integek > 53— % if p> 2, so the Paley—Wiener-—Schwartz
theorem would give the poor conditidh> [5 — %] + 1 for finiteness olr*.
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Example 2.3. As is well known,u* is useful (when finite) for pointwise control of convolut®n
since eg the assumptiogse ., u € .Z ~1&’ clearly give

|¢*u(x)!§/(1+R|y|)N|¢( )|(|1USLR| l))|

Example 2.4. Converselyu*(x) may be controlled by convolvin@| with

dy < cu*(N,R;x). (2.9)

fn(@=(1+2)™; (2.10)
and cases wittN > n are particularly simple as one has
u*(N,R;x) < CNRM N (R) * |u[(X). (2.11)

Indeed, wheru € Lp, 1< p < e with suppZu C B(0,R) the compact spectrum af can be
exploited by takingp as after (2.7) above, which gives= R'¢/(R-) xu. Thence

.~

(2.12)
RYu(2)]
< —zZPN N PR bk o’
< [+ Ry—2)MWRY ~2) oy g
by using(1+Rx—y|)(1+Rly—2) > (1+Rx—12) in the denominator. This gives
R"u(z)
<Cn / (1+Rjx— z| N4z (2.13)

whereCy := sup(1+ |v)N|@(v)| < o becausap € .. This shows the claim in (2.11).

As an addendum to Example 2.4, a basic estimate gives in)(@atforp <1
lu™[[p < CNIIRM N (R) #[ul[lp < C /(1+ 12) "N dz-[|ullp. (2.14)

So forN > n this short remark proves a special case of the maximal ingyg(a.4).

However,N > n is far from an optimal assumption for (1.4). But a few change® the
improvementN > n/p; and also every €]0,«| can be treated using the NikolskiPlancherel—
Polya inequality (2.7).

The idea is to utilise the powerful pointwise estimate irl{3, where eg both sides can be
integrated oveR" (unlike (2.8)). But first it is generalised thus:

Proposition 2.5. If u € ., suppZu C B(0,R) and N p €]0, [ are arbitrary, then

_ p 1 1
0 (N.RX) < Canp( [ R“%} 42 = Conp(RUE(R) +[uP)) P (2.15)

for a constant G p depending only on n, N and p.

Proof. As aboveu(x) = R"¢/(R) xu= (u, R"Y(R(x—-)) ), which can be written as an integral
since (1+ |y|)u(y) is in Ly(R") for a largek; therefore (2.12) holds. Suppose now that the
right-hand side of (2.15) is finite.

For 1< p < « one can simply use #lder’s inequality forp+ p' = p'p in the passage from
(2.12) to (2.13); the®€nn.p = (f (1+ |2)NP|w(2)|P d2)V/P gives (2.15).
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If 0 < p<1thelLi-norm with respecttain (2.12) can be estimated by thg-norm, accord-
ing to (2.7), for the Fourier transform af— y(R(y—2z))u(z) is supported bya(0,3R). Invoking
the specific constant in (2.7) and proceeding as beforegives

(5-Dp . (D-mp
o 3R) P FCAR|u(z)|P R|u(x— 2)|P
O SN 17 p / |
) (X) - /ysglﬁge (1—|— R’X—y’)Np<1—|_ R’y_ZDNp dz CnN Nl (1—|— R‘ZDNp d27 (2 16)
whereCy is as in (2.13) and nonn.p = Cn3"Pl|w)| S PP, 0

These elementary considerations give a short proof, in tyle sf (2.14), of the following
important theorem on thiep-boundedness of the maximal operator u*.

Theorem 2.6. When0 < p <« and N> n/p, then there is a constanlgggvp > 0 such that the
maximal function &N, R;x) in (1.2)fulfils

[u"(N,R; ) [lp < Conpllullp (2.17)

for every ue Lp(R")N.~’(R") in the closed subspace wistippZ u C B(0,R). On this subspace
there is Lipschitz continuity

Ju(N,R; ) =V (N,R; ) [[p < i pllu— V[ p. (2.18)

Proof. Lemma 2.2 yields thai* is finite and consequently continuous as noted after (2e2icé
measurable. The cage= « then follows at once from the lemma. For<0p < c one can
integrate both sides of (2.15), which by Fubini’s theoremids

P lu(x—2z/R)|P _ p/ b
/\u )[Pdx<C an/ AT dzdx=CP [ |Ju(x)|Pdx (2.19)
for CP —CpN pf(1+ ) "NPdz SinceN p> n this givesu* € L and (2.17). Now the Lipschitz
property follows by integration on both sides of (2.4). O

Among the further properties there is a Bernstein inequédit u*, which states that the max-
imal function ofu controls that of the derivativegu.
Proposition 2.7. If suppZu C B(0,R) one has(@%u)*(N,R:x) < CVRalu*(N,R; ).

While this is known (cf [Tri83, 1.3.1] foR = 1), it is natural to give the short proof here.
Writing u(x —y)(1+ Rly|)~N in terms of the convolutiorR"y/(R') * u, cf Example 2.4, it is
straightforward to see by applyingf' that forN’ > 0,

R™u(2)]
N1+ Rx—y—z)N

ForN'=N+n+1a S|mple estimate of the denominator, cf Example 2.4, nawstProposi-
tion 2.7 with the constar@\?) = sug(1+|- [)N"199y| [(1+|2) " 1dz

dz  (2.20)

a, \x - N ga
(07" (N.Ro) < UL+ -0 lsup [ o
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Remark2.8. The maximal functioru® was introduced by Peetre [Pee75], inspired by the non-
tangential maximal function used by Fefferman and Steimeykears earlier [FS72]. It has been
widely used in the theory of Besov and Lizorkin—Triebel sgmaf [Tri83, Tri92, RS96], where
the boundedness in Theorem 2.6 has been a main tool sinc@70&s;1cf [Tri83, 1.4.1]. Usually

its proof has been based on an estimate in terms of the Haitthgwiood maximal function,
Mru(x) = sup,(p™" [y, [U(x+Y)|"dy)*/", ie for supp#Fu C B(O,R),

u*(N,R; x) < cMyu(x), N >n/r. (2.21)

WhenN > n/r this results from Proposition 2.5 by splitting the integipl= r) in regions with
2K < |zl < 21, (For N = n/r it was shown by Triebel, cf [Tri83, 1.3.1 ff], by combining an
inequality foru*, (d;u)* andMu, due to Peetre [Pee75], with the Bernstein inequalityufgr
cf Proposition 2.7.) This allowed the inequaliti¥u||p < c|jul|p to be invoked forp >r. The
present proofs of Proposition 2.5 and Theorem 2.6 are ratheler.

3. PREPARATIONS

Notation and notions from distribution theory are the sam@adormander’s book [r85],
unless otherwise mentioned. Hiy denotes the largest integkr<t for t € R. The Fourier

transformationZu(&) = [ e~ ¢ u(x) dxis occasionally written asfy_,gU(Xy) whenu depends
on further variabley.

As mentioned in the introduction the paper deals with opesagiven by
a(x,D)u = OP(@)u(x) = (2m) " / &ax,n)Zu(n)dn, ue.Z([®RY.  (3.1)

Hereby the symbo&(x, ) is C* on R" x R" and is taken to fulfil the Brmander condition of
orderd € R, ie for all multiindicesa, B € Nj there is a constar@, g > 0 such that

IDADEa(x,1)| < Cqp(1+|n|)d-Plal+olBl. (3.2)

The space of such symbols is denoted®y(R" x R") or S 5; andS * := NS 5.

The parameterp, & € [0, 1] are assumed to fulfid < p so thata(x D) by duallty has a contin-
uous extensioa(x,D): ./ (R") — ./(R"). (Type 11-operators, i&®d = 1= p, are considered
in Section 6 below.) If desired the reader may specialisbe(rtassical case=1,0=0.

Together witha(x, D) one has the distribution kernkl(x,y) = .7, % a(x, n)‘z:x—y’ that in the

usual way is seen to &~ for x # y also fora %1- It fulfils
(a(x,D)u, ¢) =(K,p®u) forall u,¢ec.”. (3.3)

As preparations, two special cases are considered=if+V is any splitting ofu with ve .
andVv € .Z~1£" then

a(x,D)u=a(x,D)v+OP@a(1® X))V, (3.4)
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wherebya(1® x)(x,n) = a(x,n)x(n) and x € CJ(R") is chosen so thay = 1 holds in a
neighbourhood of sup@V, or just on a neighbourhood of the smaller set

L suppa(x,-).ZV(.). (3.5)
XeRN

Indeed, by linearity on the left-hand side of (3.4) the idgmesults, for the terna(x, D)V equals
OP(a(l® x))V if vV € Z-ICJ(RM) that extends to/ € .# ~1&” by mollification of #V since
a(lex)es™.

Moreover, for every auxiliary functiony € C5(R") equal to 1 in a neighbourhood of the
origin, continuity of the adjoint operatiom— € PxPngyields

a(x,.D)u= lim OP((2 ™D )a(x, n)w(2 "n))u. (36)

4. POINTWISE ESTIMATES

This section develops a flexible framework for discussiorpgéudo-differential operators.
These are only for convenience restricted to the classedl@éddn Section 3.

4.1. Thefactorisation inequality. In the derivation of (1.5), hence (1.1), the simple resuk be
low introducesu®(X) as a fundamental tool and is therefore given as a theorem.
Formally the idea is to proceed as in Example 2.3, cf (2.9) departing from

a(x,D)u /K (X, X—y)u(x—y)dy. (4.1)

This leads to théactorisation inequality4.2) below, where the dependencea®, n) is taken
out in the symbol factoF,, also called thed-factor”. This is essentially a weightdd -norm of
the distribution kernel. (The estimate shows that the cas@ operator is not much worse than
that of ¢ xu in Example 2.3.)

Theorem 4.1. Let ac S} 5(R" x R") for 0< & < p < 1. When ue .#/(R"), suppti C B(O,R),
then one has the foIIowmg pointwise estimate for afl R":

la(x,D)u(x)| < Fa(N,R;x) - u" (N, R; x). 4.2)
Hereby u is as in(1.2) while F, is bounded and continuous forexR" and is given in terms of
an auxiliary functiony € C5(R") equal tol on a neighbourhood oefuppAJ as

FalN.R) = [ (1+RYDMI# alx )x()]ay: 43)

The inequality(4.2) holds for N> 0, and remains true iy = 1 on Jycpn SUppa(x, )0( ).
Proof. Using formula (3.4) with/ = u, and (3.5) for the last statement,
a(x, D)u(x) = OP@(1® x))u = (U, Fn—y(Gzmalx.n)x(n))) (4.4)

for the last rewriting is evident from (3.1) if € .# ~1C5’ and follows for generali € .# ~1&” by
mollification of %#u, sincea(1® x) isin S™.
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Now a(x,n)x(n) is in Cg (R") for fixed x, soy — ,ﬂ’,ﬁy(a(legx))(x,x— y) decays rapidly

while u(y) grows polynomially by the Paley—Wiener—-Schwartz theoréherefore the above
scalar product on”’ x .# is an integral, so by the change of variabjes: x -y,

a(x D)u)| = | [ u(x—y)F5 (a1 X)) (xy) dy
u(x—2)| / N -1 (4.5)
< sup XD [ L pyNLZ 1 y)|d :
< SUp RN (1+RIYD)™[Fp Sy(@al®@ X)) (%, y) | dy
= U (X)Fa(x),
according to the definition af*(x) in (1.2) and that of4(x) in (4.3).
That x — Fa(x) is bounded follows by insertion of £ (1+ |y|)N'(1+ |y[2)~N for N’ >

(N+n)/2 sinceﬁ,;iy((l—An)N' [a(x,n)x(n)]) is bounded with respect tx, y) because of the
compact suppport of. These estimates also yield continuity of the symbol faEdx). O

Disregarding the spectral radii&sandN, (4.2) may be written concisely as
(X D)U(X)| < Fa(x)- U (x). (4.6)

It is noteworthy that the entire influence of the symbol lieghea-factor Fy(x), while u itself is
mainly felt in u*(x). It is only in a vague way, ie througN andR, thatu contributes toF;(x),
so the factorisation inequality is rather convenient.

The theorem is also valid more generally; eg Section 6 givesxéension to symbols of type
1,1 (extensions to other general symbols can undoubtedly lbeagd@ut when needed). To give
a version for functions without compact spectrufiiy (R") will as usual stand for the space of
slowly increasing functions, ie thee C*(R") satisfying the estimates

IDYf(X)| < Cq (14 |x|)Ne. (4.7)

Analogously to the argument after (2.3);(N,R;-) is finite forN > N o), anyR> 0. There
is a factorisation inequality for such functions, at the@exge of a sum over its derivatives:

Theorem 4.2. When &x,n) is in S;j),a(Rn xRM),1<6 < p <1, and ue Opm(R") while N >
(d+n)/2 is a non-negative integer, then one has for N> R that

la(x, D)u(x)| < cRa(N,R;X) z (D%U)*(N,R;x), (4.8)
la|<2N/

where F is defined by4.3)for x(n) = (1+|n|?)~\ and again is in GR") N L« (R").
Proof. ThatF; is in C(R") NL«(R") can be seen as above, &ix,n)x(n) € 57';7‘(52'\" is integrable
with respect tay. Whenae S andu € .7,

N, N/ . ix.
a(x,D)u(x) = ) [ (1-D) u(y) Fn_y(Ssalx,n)x(n)) dy. (4.9)
J;)( J )/ n—y\(2m
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By continuity this extends to all € .”, in particular tou € O ; and then to ala € Sg 5 since
(1+y)"N(1—A)lu(y) isin Ly for alargeN”. As each term is a function of,

x| < FaNRR S (1 ) (2800 (NR. (4.10)

Since(1—-A)lu= ¥ |a|<2j Ca,jD?u, subadditivity of the maximal operator gives the rest. [

As a first consequence of the factorisation inequalitieserin € &y then a(x,D)u is of
polynomial growth by (4.8), and continuous by (4.9), féx(x) is bounded and®?u € Oy so
(D%u)*(x) has such growth foN sufficiently large; cf (2.2). This applies to the commutator

[DB,a(x,D)], in eg OF{S‘”'B‘ so alsoDPa(x, D)u has polynomial growth; which proves
Corollary 4.3. a(x,D) is a mapOw(R") — Om(R") when ac S 5,

While this is known forp =1, = 0 from eg [SR91, Cor. 3.8], the above version &k p
is rather more direct.
Secondly, one may now obtain thg-estimate mentioned in the introduction.

0<d<p<Ll

Corollary 4.4. For each ac S’ sR"xRM, 0<6 < p <1, and pe]0,] there is to every
R>1, N> n/p a constant (CN R) such that

[a(x; D)ullp < C(N, R)[|ul[p (4.11)
whenever & Ly(R") (.7 (R"), fulfils suppl  B(O,R).

Proof. By taking Lp-norms on both sides of the factorisation inequality, (4.Ekults at once
with C(N,R) = Cnn,psup [Fa(N; R;x)|; this is finite according to Theorem 4.1. O

Since the spectral condition animplies u € C, it is hardly surprising that thé y-result
above is valid for arbitrary orderd € R. In fact it may, say for k p < o, (p,d) = (1,0), be
proved simply by observing thai(x,D) has the same action anas someb(x,D) € OP(S™®)
so that boundedness bfx,D) on L gives the rest.

It is noteworthy, however, that the existing proofslgf-boundedness use fundamental parts
of real analysis, eg Marcinkiewicz interpolation and thedeéabn—Zygmund lemma. In contrast
to this, pointwise estimates lead straightforwardly to Qlarg 4.4. This evident efficacy is also
clear from the easy extension to the full range @ < c and to type 11-operators in Section 6.

4.2. Estimates of the symbol factor. To utilise Theorem 4.1 it is of course vital to contiigy.
This leads directly to integrals conditions ansimilarly to the Mihlin—-Hbrmander theorem.

Theorem 4.5. Assume &, n) isin S}g’é(R” xR"),0<d < p<1,andlet R(N,R;x) be given by

(4.3)for parameters RN > 0, with the auxiliary function taken ag = @(R™1.) for ¢ € Co(R™)
equallingl in (the closure of) an open set. Then

0<Fa) <o 3 ([ ROD§apmP Y2 @12
dfzk Reuppy R

for all x € R", when k is the least integer satisfying-kKN +n/2.
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First it is convenient to recall that, fae R" andk € N, an expansion yields

(142 < i('.‘)<|z1|+m+|zn|>i= S Ce
&\

lal<k

(4.13)

Proof. The idea is to pass to the-norm in (4.3) using Cauchy—Schwarz’ inequality and that
(fR(1+|Ry))"¢dy)Y/2 < w0 for € > 0. Thus, ife is so small thak > N + (n+¢)/2,

Fa(N,R x) < iR / (1+ [Ry) .7 Ly falx, Y w(R )] 2 dy) 2. (4.14)

Applying (4.13) toz = Ry and intertwining the resulting polynomial®y)? with the inverse
Fourier transformation, it is seen that for fixgd R",

Fa) < R ™2 S Ceal [ 174,10y a1 W(R )] (x.y) Pdy)*?

o=k (4.15)
<aR™2 Y ceap([  (RO*PDga0cn)|[DP(@(R*m)))2dn) 2,
ja-+Bl<k Rsuppy
SinceDP(Y(R 1)) = R IBI(DPY)(R1.) is bounded, the result follows. O

Remark4.6. As an alternative to the estimafi&x, D)u(x)| < Fa(x)u*(x), it deserves to be men-
tioned that other useful properties can be obtained in dairfashion: by defining aa-factor
in terms of anL,-norm, ie

Fa(N,Rix)? = /(1+|R>’|)2N|Jnﬁy( (%)X ()2 dy, (4.16)

the Cauchy—Schwarz inequality gives

- u(x—y)? - §
[a(x,D)u(x)| < Fa(N,R; X)(/Rn %dyﬂ/z < cFa(N,R X)u* (g, R;X) (4.17)
wherec = ([(1+ |Ry|)~2N-¢) dy)1/2 < 0 wheneveN > n/2+ ¢ for somee > 0.

For one thingF2 € C*(R"), with bounded derivatives of any order. Secondly, this gige
version of Theorem 4.5 where only estimates witth < [n/2] + 1 is required, as in the Mihlin—
Hormander theorem. But it would not be feasible in generaédaceu” (N, R; x) by u*(g,R; x)
for small € as above, s&,(x) is only mentioned in this remark.

Although it is a well-known exercise to control (4.12) inres of symbol seminorms, it is

important to control the behaviour with respec&and to verify that it improves whea(x, -)U(-)
is supported in a corona. Therefore the special case in#dléw is included:

Corollary 4.7. Assume & ﬁé(R“ xR"), 0<d <1, and let N, R andy have the same
meaning as in Theorem 4.5. Wher>RL and k> N+n/2, k € N, then there is a seminorm p
on 3,1 and some g> 0 independent of R such that

0 < Fa(X) < cp(@)R™ 4K forall xeR". (4.18)
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Moreover, ifsuppy is contained in a corona

{n16<In| <60}, (4.19)
and(n) = 1 holds for6; < [n| < ©1, whereby0 # 6 < 61 < ©1 < O, then
0<Fa(x) <cR%p(a) forall xeR" (4.20)

with & = cumax(1,85%, 83).

Remark4.8. For generalp €]0,1], the corresponding asymptotics Bf(x) for R — oo will be
O (RmaX{d+(1-p)kk)) gand ¢ (RA+(1-P)K)  respectively. Details are left out for simplicity’s sake.

Proof. Settingp, 5(a) = sup(1+ m|)‘d+|a|‘5‘/3||D5D?,a(x,n)| and continuing from the proof
of Theorem 4.5, the change of variables= R{ gives

Fa) <¢ 3 pao(a)( / W!(lﬂRzr)d“'R“Fdo%gca,kRma‘d’k) Y Pao(@). (4.21)

la]<k sup lal<k

In factd > k> |a| givesR? (1+R|Z|)4 19 < RA(1+|Z|)4 19l sinceR > 1; whilst if d < k the
crude estimat®?l(1+ R|¢|)4-19! < R¢ applies eg fola| = k. This shows (4.18).
In casey is supported in a corona as describéd; || < 0 and{ € suppy entail

(1+|RZ])4-1oIRIA < (REp)4-19IR4T < max(8g % 68)RY. (4.22)
This yields an improvement of (4.21) for terms with| > d; thence (4.20). O

As desired Corollary 4.7 shows that thdactor F;(x) has its norm irL. bounded by a symbol
seminorm. This applies of coursefia(x, D)u(x)| < Fa(X)u*(X). Hereby one could takR equal
to the spectral radius af, or if possibleR so large that the corongn | iR < |n| < ©1R} isa

neighbourhood of supgiXx, -)G(-) for all x; cf (4.18) and (4.20).

A good choice oiN is more delicate: e§jl > order(.# u) was seen to imply that* (N, R; x) is
finite everywhere; this was relaxed completelyNo> 0 foruec LpN Z~1&" in Lemma 2.2. For
generalu € Lp, 1< p <2, the order of#u is 0, sou” is finite regardless o > 0.

Especially for functionss in Sobolev spacebi® the functionu* is always finite forN > 0.
Therefore it is harmless that the estimates in Corollary £@ethd onN, for only seminorms
Pa,o(a) with |a| < 1+[n/2+ N] enters there, and by taking<ON < 1/2 in both odd and even
dimensions estimates @afx,D)u(x) with u € [JH® only requires the well-known estimates of
Dpa(x,n) for [a| < [n/2] +1.

However, going back th.,-bounds ofu*(x), one is often forced to takd > n/p in the L,-
estimates o&(x,D)u; cf Theorem 2.6.

In addition to high frequencies removed by the spectralatufunction x in Theorem 4.1,
the symbols dependence ammay be frequency modulated by means of a Fourier multiplier
¢ (Q'Dy), which depends on a second spectral quaity 0. For the modified symbol

aq(x,n) = $(Q *Dy)a(x,n) (4.23)
and the corresponding symbol factor one can as shown belavit$iasymptotics foQ — . In
Littlewood—Paley theory, this is a frequently asked questor Fa:
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Corollary 4.9. When ac S ;(R"xR"), 0< 1< & and ¢ € C5(R") with ¢ = 0 in a neigh-
bourhood ofé = 0, then there is a seminorm p or‘j Sand constantsg, depending only on M,
n, N,y and ¢, such thatfor R>1, M > 0, Q > 0,

0 < Fao (N, R X) < ey p()Q MRMATOM IN+n/2+1), (4.24)

Here d+ 6M can replace the maximum when the auxiliary functipmn F,, fulfils the corona
condition in Corollary 4.7.

Proof. Becauseag(x,n) = fQ”%(Qz)a(x— z,n)dz where¢ has vanishing moments of every
order, Taylor’s formula with remainder gives for aW/ € N

ag(x,n) = ﬁgM%/(—Z)BQ”(f(QZ) /01(1— )M-19Pa(x—1z,n)drdz (4.25)

Letting 28 absorbQM before substitution of by z/Q, one finds

QYFag (N,R X) < /// DML 1+12)M9 (2)|(1+ |RY)N

|m u’ (4.26)

x |7y L (0fa(x—12/Q,n)y(n/R))|dTdzdy
Integrating first with respect tg it follows by applying Corollary 4.7 t(ﬁf ac $;5M that, with
p(a) = ¥ pa,s(@), where|a| < [N+n/2] +1 and|B| =
Fao(N,R X) < cup(@)RTOMQ™, (4.27)
when  satisfies the corona condition. Otherwise the stated irgguesults. O

Remark4.1Q For generalp €]0,1] the asymptotics oF,(X) is here ¢ (RMXd+M+(1-p)kk))
and ¢ (RAI+OM+(1-p)k) "respectively, fok = [N+n/2] +1.

Remark4.11 As an alternative to the techniques in this section, Mar$shaequality gives a
pointwise estimate for symbotg(x, 17) in Ly joc(R?") N.&"(R2") with support inR" x B(0, 2¥)
and suppZu c B(0,24), k € N:

[b(x, D)V(X)| < cf|b(x,2)||gneMeu(x),  0<t<1. (4.28)
1t
This goes back to [Mar85, p.37] and was exploited in eg [MaMar95, Mar96]. In the above

form it was proved in [Joh05] under the natural conditiort tha right-hand side is ity joc(R").

While Mu is as in Remark 2.8, the norm of the homogeneous Besov ﬂﬂécen the symbol
is defined analogously to that Bf,’q in (5.14) below in terms of a partition of unity, though here

with 1= 3% (6(27'n)—¢(2171n)), n # 0 so that (5.14) should be read with over Z.
This yields the well-known dyadic scaling property that

[I0(x,2) | g = 24| b(x, Wor- (4.29)

While this can be useful, and indeed fits well into the framéwadithe next section, cf [Mar91,
Mar95, Mar96], it is often simpler to invoke the factorisatiinequality withR, andu* etc.
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5. LITTLEWOOD—PALEY ANALYSIS

In order to obtain_p-estimates, it is convenient to depart from the limit in {3 As usual the
test functiony there gives rise to a Littlewood—Paley decompositica @/(n) + 2]?0:1 ¢(271n)
by setting$ = ¢ — Y(2-). Note here that iip = 1 for |n| <r while ¢ =0 for |n| > R, one can
fix an integeth > 2 so that R < r2".

Inserting twice into (3.6) thaty(2="n) = ¢(n) + ¢(271n) +---+ $(2=™n), the so-called
paradifferential splitting from the 1980’s is recoveredchema(x, n) is in S‘;.é, 0<d<p<1,
andu € .&'(R"), ’

ay(x,D)u= a{,,l) (x,D)u+ a&? (x,D)u+ a$) (x,D)u, (5.1)
whereby the expressions are given by the three series béiey ¢onverge in?”),
(1) < o k-h
ay’ (x,D)u= aj(x,D)ug =Y a" "(x,D)u (5.2)
v kZhj§Z—h J kZh
aly (X, D)u="Y (B ns1(% D)Uc+ -+ &1(% D)uc+ a(x D)y
k=0
+ 8 (X, D)uk_1+ -+ + a(X, D)Uk_n1) (5.3)
(3) _ < _ _ <. j—h
ay’ (x,D)u= aj(x,D)uc="H aj(x,D)u’™". (5.4)
J;k<1—h J'Zh

Hereu, = ¢ (27¥D)u while ax(x,n) = ¢ (27*Dy)a(x, n); by conventiong is replaced byy for
k=0 andugx = 0= a for k < 0. In addition superscripts are used for the convenientthods
U~ andak~"(x,D); eg the latter is given by ;_na;j(x,D) = OP(y(2"kDy)a(x,n)). Using
this, there is a brief version of (5.3),
aly (x.D)u= 3 ((@~a")(x.D)uk-+a(x D) (U} —u ™). (5.5)
K=0
The main property behind (5.1) is the following inclusions the spectra of the summands in
(5.2), (5.4) and (5.5), witlR, = 5 —R2~M:

supp7 (8 "(x,D)ux) C { & | Ra2“ < |&] < T2}, (5.6)
suppZ (ac(x, D)U M) c { & | Ry2* < || < SR2* ), (5.7)
SUppZ (ak(x, D) (Ut — UM 4 (- M (x,D)u) € { € | |§] <2R2}.  (5.8)

Details are omitted here since these spectral corona ahgroplerties have been known since
the 1980’s. Note that although they were verified then forlsgiwia(x, ) that were elementary

in the sense of Coifman and Meyer [CM78], this is now a redundssttiction because of the

general spectral support rule farc .Z~1£"(R"),

suppZ (a(x,D)u) C {E+n | (§,n) € suppF_.¢a, N € suppZu}, (5.9)

(A short proof of this can be found in [Joh10, App. B]. Cf [Joh@5h08, Joh10] for the full
version.) (5.6)—(5.8) follow easily from (5.9), as showr{doh05, Joh10].
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The novelty in relation to pointwise estimates is that theswands in the decomposition (5.2)—

(5.4) can be controlled thus: f(al{ﬁ) (x,D)u the fact thatkk > h > 2 allows the corona condition
of Corollary 4.7 to be fulfilled for® = r/2 and®; = R (ie the auxiliary function there is 1 on

suppﬁ), so (5.2) and the factorisation inequality simply give tingt estimate:
12 N(x, D)uk(X)| < Faen(N, R2x)Ui (N, R25; x) < cp(a) (R2¥)9ujs(x). (5.10)

Herebyp(a“ ") < |.Z~1y||1p(a) is a convolution estimate that only changes the constant.

In aEﬁ) (x,D)u the terms may be treated similarly: in (5.5) it is clear tfat—a“")(x, D)u for
k > 1 only requires the constant to haiye” —*(¢ — @(2".))||1 as a factor instead dfZ ¢y,
while for k = 0 it may just be increased by a fixed power Rfusing the full generality of
Corollary 4.7. The remainders in (5.5) hake> 0 and can be written as in (5.3). Hence the
second estimate,

(2= @) (x, D)uk(x) +a&(x, D)[u "t — U (x)|

h—1
< Fae_gen(N, R X) U (N, R2K; x) z N, R xyut_ (N, R2% ! x)

gcmvaWdzz”%LmMRﬁ”m)(5uJ

Here the sum overis harmless, because the number of terms is independént of
The improved asymptotics of Corollary 4.9 come into play asfeecements for the series for

af,,s) (x,D)u. Indeed, forQ = 21 the first part of (5.4) gives, foM > 0, the third estimate
, j—h j
3 (D)) < 5 [a (D)) < S Fay (N, R2GX) Ui (N, R2;x)
k=0 ,- k=0 (5.12)
<cyp@2 ™M § (R OMU (N, R x).
K=0

Though the number of terms on the right-hand side depends, ¢his sum turns out to be
manageable due to ', which (as is known) serves as a summation factor.

Anyhow, the easy estimates (5.10), (5.11), (5.12) implyrfatmaness in several scales. This
is perhaps most transparent for the Besov sp&esR"). These generalise both the Sobolev
spaceHs(R") and the Hblder space€3(R") (with 0 < s< 1, cf Proposition 2.1),

HS=B5, ~ C°=BSL. (5.13)

The space8;, ; are forse€ R, p,q €]0, «] defined by means of the Littlewood—Paley decompo-
sition as theu € ./ for which the following (quasi-)norm is finite,

lullgs,, = (Z)Zqul\¢(2‘jD>U\\g)l/q; (5.14)
o2
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hereby the norm iy should be read as the supremum oyéor g = . (Often a specific choice

of the functiony is stipulated, but this is immaterial as they all lead to egl@int norms on the
spaces). Fop,q € [1,«] the spaceBj, , is a Banach space. Note that the first part of (5.13) is an
easy consequence of (5.14); cdeD?] for the second.

Theorem 5.1. When &x,n) belongs to %5 R"xR") and0 < d < 1, then

a(x,D): HSTI(RM) — HS(R") (5.15)
a(x,D): By'(R") — B} ,(R") (5.16)

is continuous foreverys R, 0 < p< o, 0< q< oo.

Proof. Taking norms ofL, and/q on both sides of (5.10), Theorem 2.6 gives ffor- n/p,

(S 259 "(x,D)ug[ )" < cp(a) Z A (T R (5.17)
k=0

<dp(a Z S+d)quukH?))l/q:C/p(a)HuHB%ﬁ]d' (5.18)

Because of the dyadic corona property (5.6), the above atinmplies thatafpl) (x,D)u =

5 a“"(x,D)uy converges to an element B 4, the norm of which is estimated by the right-
hand side (this is well known, cf [Yam86],[RS96, 2.3.2] asljd0]). So form= 1,
o™ (%, D)ullgs,, < " p(a)||ullgg:c- (5.19)

p.a —

The contributiona(3)(x, D) in (5.1) is treated similarly, except for the sum over This is
handled with a small lemma, namefy’ 25195} _, Iby[)9 < c 3% 2519|b;|9, valid for all b € C
and 0< q < o provideds < 0; cf [Yam86]. So withM > sin (5.12),

0o 00 j
' j—h)|d —M)] kyd+3M ||, k.
_;ZS"*Haj(x, D)ul "7 < 2)2“ “%kzoc’M p(a) (R2) M |u(N, R2Y; )| )
1= 1= o< (5.20)
q (std=(1-9M)ja || 4: |9 = q
<cpla)’ 3 2 u [ = (@)l gseg-a-am-

Increasing tdM > 0 if necessary, this implies (5.19) fan= 3.

Fora® (x,D)uthe estimate is a little simpler, for in (5.11) one only netedspply the norms of
Lp and/q with respect toc andk, respectively, and use the (quasi-)triangle inequality(A8) is
only a dyadic ball property, the resulting estimate gived9pwith m= 2 for s> max(0, % —n).
Then this shows (5.16), hence (5.15), via (5.1).

However, one can reduce to sushy writing a(x,D) = A'(A~ta(x,D)) with t = 2|s| + 1 (or
t=2ls/+1+ 5 —nif 0 < p< 1), for A' = OP((1+|n|?)"/?) is of ordert in the B} ;-scale. O

The theorem is well established, of course. E@{8b, Thm. 18.1.13] or [SR91, Thm. 3.6]
gives theHS-part with a classical reduction to Schur’'s lemma. The almeef should be inter-
esting because it combines the factorisation inequalaywh Littlewood—Paley theory.
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The flexibility of the present proof is apparent from the ftt it extendst onceto the Bf,’q
with arbitrary parameterp, q € |0, c]. This result first appeared in [Yam86], where the proof is
cumbersome due to the use of elementary symbols and meitrgkults.

6. THE CASE OF TYPEL,1-OPERATORS

The above results carry over to typelioperators with just a few necessary changes. The
methods were in fact developed for such operators, whichhesipes the efficacy of pointwise
estimates. Some brief remarks on the outcome are given here.

The reader may consult [Joh08, Joh10] for a reviewmdratorsof type 1 1 and a systematic
treatment. Here it suffices to recall that farc ﬁl(R” x R™) the identity (3.6) is used as the
definition: when the limit exists iz’ (R") and is independent af, thenu € D(a(x,D)) and the
action ofa(x,D) on u is taken to equal the limit.

Secondly, foru in .7 +.7~1&" the limit in (3.6) exists and equals the right-hand side of)3
Since this does not depend ¢n one has¥ + .7 ~1&”  D(a(x,D)). Cf [Joh08, Cor. 4.7].

Therefore the proof of Theorem 4.1, that departs from (Zagpliesverbatimto type 11-
operators. Hence the factorisation inequality (4.6) isdvedr them. Corollary 4.3 also holds in
this case, but the proof needs to be changed to obtain theivkeaddition thaty C D(a(x, D)),
which was verified in [Joh10]. However, the proof of Corolldry gives without changes

Theorem 6.1. For a€ §;, p€]0,»], R> 1and N> n/p one has
[a(x D)ullp < C(N, R)[|ul[p (6.1)
whenever & Ly(R") .7 (R"), fulfils suppl  B(O,R).

This result is a novelty in the type, 1-context. It is noteworthy because some operators
in OP(S) ;) are unbounded ohy, even forp = 2, by a construction of Ching [Chi72]—and
therefore pointwise estimates seem indispensable fottthizrem.

The basic estimates &% (x) in Theorem 4.5 also carry over &= 1 = p with no change at
all. The introduction of symbol seminorms in Corollaries 4r®l 4.9 can also be used verbatim,
so here too the corona condition gives the asymptotics

oR),  o@Q MR (6.2)

Moreover, the paradifferential decomposition in Sectias Gnchanged, although for type 1t
operators it has to be made for arbitrapybecause of their definition.

As a difference it holds in this context that the seriesd®?(x,D)u converges if and only if
ue D(a(x,D)). Those fora (x,D)u anda® (x,D)u converge for allu € ./(R"), which was
proved in [Joh10] by duality as well as explicitly via the ptwise estimates above.

In addition the proof of boundedness in Theorem 5.1 carnes  type 11-operators, butin
general only fors > max(O,% —n). For by Ching’s counter-example [Chi72], left-composition
with the lift operator/A! does not leave the full operator class invariant.

However, under rmander’s fundamental condition th@,_. sa(x,n) be suitably small along
the twisted diagonaf = —n, cf [HOr88, Hor89, Hor97], several results on boundedness for the
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Besov s.caIer,q and the Lizorkin—Triebel scalES ., that forg= 2 and 1< p < o restricts to

: p.a
Hg, were derived using pointwise estimates.
It would be outside the topic here to give the full statemgsighe reader is referred to [Joh10]
for more details on these results for operators of type 1

7. FINAL REMARKS

As mentioned the pointwise techniques were developed giting author’s work on type,1-
operators [Joh10], but used there with only brief explanati A detailed presentation has been
postponed to the present paper, because the techniqudd bleoaf interest in their own right.
This is illustrated by the proofs of Corollary 4.3, Theorerhh &nd Theorem 6.1, for example.
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