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TYPE 1,1-OPERATORS ON SPACES OF TEMPERATE DISTRIBUTIONS
JON JOHNSEN

ABSTRACT. This paper is a follow-up on the author's general definitidrpseudo-differential
operators of type 11, in Hormander's sense. It is shown that such operators are aldefirsed

on the smooth functions that are temperate; and moreoveiedireed and continuous on the space
of temperate distributions, whenever they fulfil the twistiagonal condition of Hrmander, or
more generally when they belong to the self-adjoint sulscl&ontinuity inL,-Sobolev spaces
and Hblder—Zygmund spaces, and more generally in Besov and Kiizefriebel spaces, is for
positive smoothness also proved on the basis of the definifidfiese continuity results are ex-
tended to arbitrary real smoothness indices for operakasfulfil the twisted diagonal condition
or belong to the self-adjoint subclass. With systematitievitood—Paley analysis the well-known
paradifferential decomposition is also derived for typé-bperators. The proofs are based on a
spectral support rule for pseudo-differential operatarsambination with pointwise estimates in
terms of maximal functions.

1. INTRODUCTION

1.1. Background. Pseudo-differential operators of typellhave almost from the outset been
shown to have rather special properties, due to initial stigations in 1972 in the thesis of
Ching [Chi72] and unpublished lecture notes of Stein (cf [Stg%nd again in 1978 by Parenti
and Rodino [PR78].

A more substantial understanding of their theory and appbas was obtained in the fol-
lowing decade through works of Meyer [Mey81a, Mey81b], B¢Bpn81], Bourdaud [Bou82,
Bou83, Bou88b, Bou88a], stmander [Hbr88, Hor89]; cf also the exposition in [6¥97, Ch. 9].

In recent years progress in the subject has been made byttiar,anith [Joh04, Joh05] devoted
to theL p-theory and the fact that Lizorkin—Triebel spaé€y, are optimal for certain borderlines.

However, the first formal definition of general typeltoperators was given by the author
in [Joh08b] as the basis for a discussion of unclosabilijypdellipticity, non-preservation of
wavefront sets and spectral support rules. The present papgnues the work in [Joh08b] with
a much deeper study of typeIl-operators on”’(R") and its subspaces.

By definition, the symbo&(x, n) of a type 11-operator of orded € R fulfils
IDADEa(x,n)| < Cqp(1+|n)d19HEl for x,neR" (1.1)

2000Mathematics Subject ClassificatioB5S05,47G30.
Key words and phrasedxotic pseudo-differential operators, typel] twisted diagonal condition, paradiffer-
ential decomposition, spectral support rule, factorgsatnequality, corona conditions.
Supported by the Danish Council for Independent Researaturbl Sciences (Grant No. 09-065927).
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2 JON JOHNSEN

The corresponding operatoragx, D)u= (2rm) " [ e~ *Na(x,n)U(n) dn if uis a Schwartz func-
tion, ieuc . (R"). Butforue .\ .7 itis a question to settle whethatelongs to the domain
or not; for this purpose a general definition was presentédah08b], cf (1.8) below.

The pathologies of type, 1-operators are without doubt reflecting the fact that, nrastest-
ingly, this operator class has important applications to-tiwear problems.

This was first described around 1980 by Meyer [Mey81la, Mey8dho discovered that a
composition operatou — F ou = F(u) with F € C*, F(0) = 0, can be decomposed when
acting onu € Us..n/p Hp(R") by means of a specifie-dependent symbal, (x,n) € %1 as

F(u(x)) = au(x,D)u(x). (1.2)
He also showed thay(x,D) is bounded orH! for t > 0, so the fact that the non-linear map
F(u) sendst, into itself results at once from (1.2) for= s andr = p—indeed, this celebrated
proof is particularly elegant for non-integer> n/p.

Secondly, it became clear at the same time that tydeadperators enter the paradifferential
calculus of Bony [Bon81] and the microlocal inversion fonfinear partial differential equations
of the form

G(x, (DQU(X))|0|§m> =0. (1.3)
This was explicated eg bydimander, who devoted Chapter 10 ofgfi97] to this subject. The
resulting framework was used eg byytdu [Her02] in a study of hypoellipticity of (1.3).

Thirdly, type 1 1-operators were recently used by the author in the anabfssemi-linear
boundary problems [Joh08a]. Because of the novelty, thiisnaiv be sketched through a typ-
ical example: in a bounde@”-regionQ C R" (with normal derivatives/ju = (fi- O)!u at the
boundarydQ, A = 0)(21 +t dxzn), let u(x) solve the perturbed-harmonic Dirichét problem

(=D u+u?=f in Q, yju=¢; on 9Q,j=0,... 0-1 (1.4)
For such problems the parametrix construction of [JohO&d{lg the solution formula
u=PRM (R f+Kopo+---+Ki 16, 1)+ (RiL)Vu, (1.5)
where the parametriRﬁN) is the linear map
RN =1+ RiLy+--+ (RiLy)N (1.6)

in which the exact paralinearisatidn, of u? is a main ingredient, with the sign convention
—Ly(u) = 2. (Ry, Ko,... K,_1 resolve the linear problem, cf the casg= 0 in (1.5).)

Formula (1.5) shows directly that the regularity wiwill be uninfluenced by the non-linear
term u?: the parametrixPlSN) is of order O for everyN, while the remainde(R,L,)Nu will be
in CK(Q) for every fixedk if N is taken large enough (in both cases becaRdg will have
negative order if the givem has a certain weak a priori regularity). These inferenceg bea
justified using parameter domains as in [Joh08a].

Moreover, in subregions € Q, extra regularity properties of carry over tou (eg, if f|= is
C” soisu|=). This also follows from (1.5), becausg factors through a type,1-operatorA;
ie whenrg and/q denote restriction to and a linear extension fr@m

Lu=roAulq, Ay € Op(ﬁl)- (1.7)



TYPE 1,1-OPERATORS ON SPACES OF TEMPERATE DISTRIBUTIONS 3

Hence, by inserting cut-off functions supporteddnnto (1.5) in a well-known way, cf [Joh08a,
Thm. 7.8], thepseudo-locaproperty ofA, in (1.7) leads to improved regularity of locally in
=, to the extent permitted by the data

However, the pseudo-local property of general type-@perators was first proved recently by
the author in [Joh08b]. It was anticipated more than thremdes ago by Parenti and Rodino
[PR78], who gave an inspiring but incomplete indicationtheesy did not assign a specific mean-
ing toa(x,D)u for ue "\ Cg.

A rigorous definition of type 11 operators was first given in [Joh08b], taking into account
that in some cases they can only be defined on proper subsBaceg”(R"). Indeed, it was
proposed in [Joh08b] to stipulate that D(a(x,D)) and to set

a(x,D)u:= lim OP(W(2 ™Dy)a(x.n)y(2 ™n))u (18)

whenever this limit exists i’ (R") for all the ¢y € C3(R") with ¢y = 1 in a neighbourhood of
the origin and does not depend on sugh

This unconventional definition, byanishing frequency modulatipoould be seen as a rewrit-
ing of the usual one, which is suitable for the present gdisgrabols. (Clearly (1.8) gives back
the integral after (1.1) i€ .; in casea % this identification extends to € ./ by duality.)
Formally it is reminiscent of oscillatory integrals, nowttvithe proviso thati € D(a(x,D)) when
the regularisation yields a limit independent of the ingtigm factor.

Of course the frequencies af-,n) are not modified using an integration factor in the strict
sense here, but rather with the Fourier multiplig2-™Dx). This difference is emphasized
because the use gf(2-"Dy) gives easy access to Littlewood—Paley analysa(rfD).

The definition was also investigated in [Joh08b] from seh@tzer perspectives. Some of these
will be recalled further below, but briefly mentioned, (1v8s proved to be maximal among the
definitions of A = a(x,D) that is both compatible with QB ) and stable under the limit in
(1.8); egA is always defined on# ~1£”, it is pseudo-local but does change wavefront sets in
certain cases; andél transports supports via the distribution kernel, ie sépE suppK o suppu

whenu € D(A) has compact support, with a similapectralsupport rule for supf) recalled
Appendix B below (including general versions without comipass assumptions); cf (1.18).

For the Weyl calculus, Brmander [Hbr88] noted that type ,-operators do not fit well, as
Ching’s operator can have discontinuous Weyl-symbol. Bloaitkair [Bou95, Bou99] showed
thatinsertion of(x,n) in § , into the Weyl operatoyf &*~¥Ta(*3¥, n)u(y)dydn /(2" may
give peculiar properties. Eg, already for Ching’s symbolhwit= 0, the real or imaginary part
gives a Weyl operator that is unboundedtéhfor every sc R.

For more remarks on the historic development of the subljectdader may refer to Section 2.2

below. A more thorough presentation was given in the intobidn of [Joh08b].

1.2. Review of present results.The purpose of this paper is to continue the general study in
[Joh08b] and support the definition in (1.8) with further sequences.

First of all this means to address the hitherto untreatedtgure under which conditions is a
given type 11-operatora(x,D) an everywhere defined and continuous map

a(x,D): ' (R" — .7 (R") ? (1.9)
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For this it is shown here to be sufficient thatx, n) fulfils Hormander's twisted diagonal

condition, that is, the partially Fourier transformed syshé(&, n) = X_,(fa(x n) should vanish
in a conical neighbourhood of a non-compact part of the &distiagonal given b +n =0 in
R" x R"; or more precisely, for somB > 1

a(&,n)=0 when B(|E+n|+1)<|nl. (1.10)

It should perhaps be noted thAia(tE, n) is a natural object to consider, as it is related (cf [Joh08b,
Prop. 4.2]) both to the kern&l of a(x, D) and to the kernel?” of .7 ~a(x,D).#

H (&) = (2m)"a(E —n,n) = (21" Fxy e KX —Y)- (1.11)

More generally than (1.10), (1.9) is proved for the, n) in S"il that just satisfy Brmander’s
twisted diagonal condition of order for all o € R. This means that for son®, o,

d
sup R'“'d(/ DS ay (X, I7)|2—IZ)1/2 < Cao€? 2710l for 0<e<1 (1.12)
xeRN, R>0 R<|n|<2R R

In this asymptotic formuléx,g denotes a specific Iocalisationé(b(, n) to the conical neighbour-
hood|& +n|+1< 2¢|n| of the twisted diagonal. The details behind this are givé®aation 2.2,
where also the consequences of (1.10), (1.12) for Soboksvespontinuity is recalled.

These two sufficient conditions for (1.9) should be compyetew in the sense that the ques-
tion has, seemingly, been neither raised nor treated hefore

It is also shown that everg(x,D) of type 11 is defined on the maximal space of smooth
functionsC* .. More precisely, it restricts to a map

a(x,D): C*(RM )" (R") — C*(R"). (1.13)

This relies on and improves an extension of Bourdaud [Boli#88tne space’y (R") of slowly
increasing smooth functions. Since the map in (1.13) le@jgsnvariant, it also completes the
earlier resulta(x,D): .7 +.% ~1&" — O\ of the author [Joh05, Joh08b].

The usefulness of the definition (1.8) is more substantiah this, for it furthermore allows
Littlewood—Paley analysis via the well-known paradifigial splitting with dyadic coronas (as
used by Bony [Bon81], details are given in Section 5),

a(x,D) = a&}) (x,D) + aff) (x,D) + agﬁ) (x,D). (1.14)
This decomposition follows directly from the bilinearityittv respect tay in definition (1.8), as
was briefly mentioned in [Joh08b, Sect. 9]. But as accourteldre, all terms on the right-hand
side are also in O(Fb"il) whena(x, D) fulfils (1.10) or (1.12) for allo € R.

Since the 1980’s splittings like (1.14) have been used ineroos proofs of continuity in
Sobolev spacelsls and Holder-Zygmund spaces?, or Besov and Lizorkin—Triebel scal
and FS For type 11 operators such techniques have been used by the authohtM{,lJohOS
Joh08b] and earlier by Bourdaud [Bou82, Bou83, Bou88a],ddaall [Mar91], Runst [Run85].

These works are followed up here with the first full proof (@a&on (1.8)) that every type
1,1-operatora(x, D) is bounded foralk > 0, 1< p <

a(x,D): Hyt(R") — Hy(R"),  a(x,D): CS4(R") — C3(R"); (1.15)
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and itis proved that this extends to every R when the twisted diagonal condition of ordeiin
(1.12) holds for allo € R. This gives a generalisation to thg-setting of a result of Ermander
[HOr88, Hor89], who showed the extendability $o< O for p = 2 under the conditions (1.10) or
(1.12) forallo.

The results in (1.15) are actually shown here as corollasfesmilar results for the general
BS and FS scales, including the extension $o< 0 when (1.12) holds for alo. TheseL -
results epr0|t both (1.14) and the discussions6f-continuity after (1.9) in a natural way (large
parts of the proofs are the same), hence should be well niediva this article.

However, the decomposition (1.14) is also interesting beeat is a main source of operators
with the property (1.9). Indeed, boﬂﬁ}) (x,D) andaff) (x,D) always satisfy the twisted diagonal
condition in (1.10), hence are harmless in the sense thattteedefined for all € . by (1.9).

Therefore it is the 'symmetric’ termfﬁ) (x,D) which may cause(x,D)u to be undefined, as
was previously known eg fan € [ JsHS; cf [Joh05]. More precisely, the infinite series defining

aff) (x,D)u need not converge for all € ., but it is shown here to do so whenewix, )
fulfils the twisted diagonal condition of order for everyo € R.

In comparison convergence of the seriesdﬁ? (x,D)u and aEP (x,D)u is verified below for
allue ., ae S¢;. Thereby both the splitting (1.14) itself and the conveniefinite series
expressions have been carried over to the framework of typeoperators.

Although the convergence results are hardly surprisirgy tely on two techniques introduced
recently in works of the author. One igaintwiseestimate

la(x,D)u(x)| < cu*(x), xeR", (1.16)
cf Section 3, in terms of the Peetre—Fefferman—-Stein maxmnation
. u(x—y)| A
u =———- when suppcB(0,R). 1.17

The other ingredient is apectral support rulethat controls supg (a(x,D)u) in terms of the
supports ofl and of.# (&,n); (1.11). Eg in case sup?pis compact,

suppZ (a(x,D)u) C supp# osuppli= { & +n | (§,n) € suppa, n € supp}.  (1.18)

This was proved in [Joh04, Joh05] with a more general versiojdoh08b]. The purpose is
to avoid elementary symbols, that were introduced by Coifraad Meyer [CM78] because
supp# (a(x,D)u) is easy to control for these. Indeed, they are symbols givethé form
a(x,n) =3y m;(x)®j(n) for a sequence¢m;) in L, and a Littlewood—Paley partition of unity
1=73 ®;, whenceZa(x,D)u = (2n)*“ernj * (CDJ-G) is a finite sum for which the support rule
for convolutions yields a proof of (1.18) in this case. A ewiof (1.18) is given in Appendix B,
including an equally easy proof for arbitragayc $

However, elementary symbols are not just technically reidmbecause of (1.18), they would
also be particularly cumbersome to use in the context of tydesymbols, as (1.8) would lead
to a double-limit procedure. So in the proof of (1.14) andltetheory based on it, (1.18) yields
a significant simplification.
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Remarkl.1l The spectral support rule (1.18) shows clearly that the obkbe twisted diagonal
condition (1.10) is to ensure thafx,D) cannot change (large) frequencies in sugip 0. In
fact, (1.10) means tha cannot be close te-n when (&,n) € suppél, which by (1.18) means
thatn € suprﬁ will be changed to the frequendy+n # 0.

Notation is settled in Section 2 along with basics on opesatd type 11. In Section 3
the pointwise estimates are recalled from [Joh10a], andnebdd to a version for frequency
modulated operators. Section 4 gives a precise analysheddlf-adjoint part oSf 1» relying
on the results and methods frondtinander’s lecture notes p97, Ch. 9]; with cohsequences
derived from the present operator definition. Littlewoodtdy analysis of type,ll-operators is
treated systematically in Section 5. In Section 6 the opesaesulting from the paradifferential
splitting (1.14) is further analysed, especially for thentinuity on.”’(R"). Estimates in spaces
over L, are discussed in Section 7, including Sobolev aridder—Zygmund spaces as special
cases of Besov and Lizorkin—Triebel spaces. Section 8 ptesefew open problems.

2. PRELIMINARIES ON TYPE 1,1-OPERATORS

Notation and notions from distribution theory, such as thacesCy, ./, C* of smooth
functions and their dual¢’, ./, &’ of distributions, and the Fourier transformatich, will
be as in Hhrmander’s book [8r85], unless otherwise is mentioned. Hg ¢ ) denotes the value
of a distributionu on a test functionp. The space/y(R") consists of the slowly increasing
f € C*(R"), ie the f that for each multiindexr and someN > 0 fulfils |D? f (x)| < c(1+ [x|)N.

As usualt, = max0,t) is the positive part anft] denotes the greatest integét. In general,
¢ will denote a real constant specific to the place of occueenc

2.1. The general definition of type 1, 1-operators. The reader may consult [Joh08b] for an
overview of results on type,1-operators and a systematic treatment. The present spairtiy
a continuation of [Joh04, Joh05, Joh08b], but it sufficestall a few facts.

The operators are defined, as usual, on the Schwartz sgéé€) by

a(x,D)u = OP(@)u(x) = (2rm) " / d¥ax,n)Zu(n)dn, uec.Z(®RY.  (2.1)

Hereby the symbah(x, ) is required to be if©*(R" x R"), of orderd € R and type 11; ie for
all multiindicesa, B € Nj it fulfils (1.1), or more precisely has finite seminorms

Pap(@) = sup (1+|n|)~ ") DIDIa(x, n)| < o. (2.2)
X,neRN
The Féchet space of such symbols is denote(ﬂ;y(R“ xR"), orjustsl{l. Along with a(x,D)
one has the distribution kern&l(x,y) = ﬂ,{iza(x,n)\zzx_y, that isC® for x # y as usual; cf
[Joh08b, Lem. 4.3]. It fulfilga(x,D)u, ¢ ) = (K, ¢ ®u) forall u, ¢ € .7.
For arbitraryu € .’ \ .7 it is a delicate question whether or ragfix, D)u is defined. To recall
from [Joh08b] how type J11-operators can be defined in general, note that the modifiat @l

b(x,n) = Y(2-"Dx)a(x,n) is given by
b(£.1) = F_eb(x,n) = Y(2 ™E)AE. ). (2.3)
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Definition 2.1. For a symbola(x,n) in ql(R“ x R") and arbitrary cut-off functiongy €
Co(R™) equal to 1 in a neighbourhood of the origin, let

ay(x D)u:= lim OR(W(2 ™Dy)a(x, M)Y(2"™))u (2.4)
If for each suchy the limit ay(x,D)u exists inZ’(R") and moreover is independent ¢f then
u belongs to the domaib(a(x,D)) by definition and
a(x,D)u=ay(x,D)u. (2.5)
Thusa(x,D) is a map’(R") — 2'(R") with dense domain.

Since the removal of high frequencies xnand n, that is achieved fromy(2-™Dy) and
@(2~"n), disappears fom — o, this was called definition byanishing frequency modula-
tion in [Joh08b]. (Obviously the action amis well defined for eaclm in (2.4) as the modified
symbol is inS®.) Occasionally the functioy will be referred to as anodulation function.

While the calculus of type,1-operators is delicate in general, cfGkE88, Hor89, Hor97], the
following result is straightforward from the definition:

Proposition 2.2. When &x,n) is in ﬁ}l(R” x R") and h(n) belongs to $O(R” x R"), then
c(x,n) :=a(x,n)b(n) isin ﬁ}fdz(R” x R") and

c(x,D)u=a(x,D)b(D)u, (2.6)
where Oc(x,D)) = D(a(x,D)b(D)); that is, the two sides are simultaneously defined.

Proof. Thatc(x,n) is in ﬁ}de can be verified in the usual way from symbolic estimates. Ror a
arbitrary modulation functiony it is obvious from (2.1) that for every € .7,

OP(y(2"™Dy)a(x,n)y(2""n))b(D)u= OP(Y (2 "Dy)a(x,ny(2 "n)b(n)u.  (2.7)

This extends to alli € .#" since the symbols are 8 or szo. Moreover, form — oo the limit
exists on both or none of the two sides for eaich.”’, so in the notation of (2.4),

ay(x,D)(b(D)u) = cy(x,D)u. (2.8)
Now u € D(c(x,D)) if and only if the right-hand side is independentpfie if the left-hand side
is so, which is equivalent tb(D)u € D(a(x,D)), ie tou € D(a(x,D)b(D)). O

Example 2.3. A standard example of a symbol of typgllresults by taking an auxiliary function
A€ Cy(R"), say with supp C {n | § <|n| <3}, and6 € R" fixed:

ag(x,1) = ijide-‘”*eA@—im. (2.9)
J:

Clearlyag € Sil since the terms are disjointly supported.

Such symbols were used by Ching [Chi72] and Bourdaud [Bou&8al £ 0, |8| = 1 to show
L,-unboundedness. Refining thispkhander [Hr88] linked continuity fromH® with s > —r to
the property thab is a zero ofy of orderr € Ng. Extension tad € R was given in [Joh08Db].
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The non-preservation of wavefront sets discovered by Raaed Rodino [PR78] was also
based orag(x,n). Their ideas were in [Joh08b, Sect. 3.2] extended tmall1 and refined by
applyingag(x,D) to a productv(x) f (x- 8), wherev € .# ~1CJ is an analytic function that con-
trols the spectrum, and the highly oscillatirigis Weierstrass’ nowhere differentiable function
for ordersd €10, 1], in acomplexversion with its wavefront set along a half-line. (Nowheik d
ferentiability was shown with a small microlocalisatioament, further explored in [Joh10b].)

Moreover, it was shown in [Joh08b, Lem. 3.2] thegt(x,D) is unclosable in#’ whenA is
taken to have support in a small neighbourhood ofl herefore Definition 2.1 cannot in general
be replaced by a closure of the graphifi x ..

2.1.1. Action on functions with compact spectrAs a general result, it was shown in [Joh08b,
Sec. 4] that the subspacé(R") + .7 ~1&’(R") always is contained in the domainafx, D) and
that this is a map

a(x,D): .Z(R") +.7 1&'(R") — Om(R"). (2.10)
In fact, if u=v+V is an arbitrary splitting ofi with v e .7 andV € .#~1&£”, it was shown that
a(x,D)u=a(x,D)v+OP(a(1® X))V, (2.11)

wherebya(1l® x)(x,n) = a(x,n)x(n) and x € C3(R") is chosen so thag = 1 holds in a
neighbourhood of sup@#V, but otherwise arbitrarily. Hera(x,n)x(n) isin S = ﬂ%l SO
that ORa(1® x)) is defined on”; and consequentlg(x,D)(.Z ~1&") C Ow(R").

Remark?2.4. Occasionally it is useful that one can taken (2.11) as a cut-off functiory fulfill-
ing thaty = 1 only on a neighbourhood of the smaller set

LJ suppa(x,-).ZV(:). (2.12)

XeRN

Indeed, sinca(1® x) € S itis clear from (2.1) that OR(1® X))V equals OPa(1® X))V
atleast if’ € .# ~1CJ(R"), but this extends t& € .7 ~1&" by mollification of # V.

Itis a virtue of (2.10) tha(x, D) is compatible with, say OF). (Compatibility is dicussed
in general in [Joh08b].) Therefore some well-known factee# to type 11-operators:

Example 2.5. Eacha(x,D) of type 11 is defined on all polynomials and
a(x, D) ; CaX¥) = ; caDg(€*Ma(x,m) |, _o- (2.13)
|a|<m |a|<m

In fact, sincef (n)=(2m)"y cq(—Dp)?&(n) has suppor{0} it is seen forv= 0 in (2.10) that
a(x,D)f(x) = (?, (2m "™ Ja(x,-)x(-)) wherex = 1 around 0; thence (2.13).
Example 2.6. Also whenA is of type 11, one can recover its symbol from the formula

a(x, &) = e X Ad*?). (2.14)
Here Z€(-%) = (2m)"d: (n) has compact support, so again it follows from (2.10) thaa @i
suitable cut-off function) one ha&(e(¢)) = (&, X Ja(x,-)) = &*¢a(x,§).
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2.1.2. Extension to general smooth functionf extenda(x, D) to more general sets of smooth
functions, it is useful to follow a remark by Bourdaud [Bow§®n singular integral operators,
which shows that every type 1 symbola(x,n) induces a ma@: Ou(R") — 2'(R").

Indeed, Bourdaud definedif for f € O (RR") as the distribution that oth € C5(R") is given
by the following, using the distribution kern&l and an auxiliary functiory € Cy(R") equal to
1 on a neighbourhood of sugp

(Af.9) = (axD)(x1). #)+ [[ Kxy)1-x()T1o(0dydx  (215)

However, one may restate this in terms of the tensor prodgef in ./(R" x R") acting on
(p2(1-x))K e Z(R"xR"), ie

(Af,¢) = (a(x,D)(xf), ¢)+(1af, (¢ ©(1-X))K), (2.16)

The advantage here is that both terms obviously makes sersegasf is smooth and temper-
ate, ie for everyf € C*(R") N/ (R").

More precisely, forp with support in the interiofs° of a compact set” ¢ R" andx = 1 on
a neighbourhood o, the right-hand side of (2.16) gives the same value for aryCg equal
to 1 around?’, for after subtraction the kernel relation implies thatx,D)((x — X)f), ¢ ) has
sign opposite to that of1® f, (¢(X — x))K). Crude estimates now show thaf yields a
distribution in 2’(¢°), and thex -independence implies that it coincidesdi(¢° (N %7;) with
the distribution defined from another compact $gt SinceR" = |J%°, the recollement de
morceauxheorem yields that a distributiohf € 2'(R") is defined by (2.16).

In relation to Definition 2.1, the above gives the point of @epre for the new result that
a(x,D) always is a map defined on theaximalset of smooth functions, ie d@*.~":

Theorem 2.7.Every dx,D) € OP(Sil(R“ x R")) restricts to a map
a(x,D): C*(R")[."(R") — C*(R"), (2.17)
which is given by2.16)and maps the subspaea, (R") into itself.

Proof. Let Am= OP(¢/(2-"Dy)a(x, n)w(2-"n)) with kernelKp, soa(x,D)u = limmAmu when
ue D(a(x,D)). With f e C*N." and¢, x as above, this is the case foe= x f € C7, and since
the support ofp ® (1— x) is disjoint from the diagonal and bounded in theirection, [Joh08b,
Prop. 6.1] asserts that in the topology.gf(R" x R")

¢ () (1= X(¥)Km(xy) ——— ¢(X)(1— X (¥))K(XY)- (2.18)
Exploiting these facts in (2.16) yields that
(Rf, ) =lm(An(x1), @) +1im /[ Kn(xy)(1- x() T(¥)(x dydx (2.19)

Here the integral equalsAn(f — x f), ¢ ) by the kernel relation, foA;,, € OP(S™*) and f may
as an element of”’ be approached fro87. So (2.19) yields

(Af, @) =lim(An(xf), ) +lim(An(f —X), $) =lim(Anf, ¢). (2.20)
ThusAnf — Af, which is independent afy. HenceA c a(x,D) as desired.
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Moreover,Af is smooth becausa(x, D)(f x) € .7 while the other contribution in (2.16) also
acts like aC*”-function: whend € C3 is chosen to be 1 around supmnd supported by, cf
the construction oAf, then the second term equals

[ 600 XK )P dx 2.21)

wherex— ( f, §(X)(1— x(-))K(x,-)) isC* as seen in the verification thg f € ./ (R" x R")
for f,g e .&”/(R"). ThereforeAf is locally smooth, sd\f € C*(R") follows.

When in additionf € Gy, then (1+ |x|)"2ND?Af is bounded for sufficiently largél, for
whenr = dist(suppg,supdl— x)) one finds in the second contribution to (2.15) that

(L+Iy)™DIK (Y| < (1+ X)) max(1, 1/r)2M(r + [x—y) M DK (x,Y)|
< o(1+|x))*" sup [ DS (280)Na(x,n)|dn,

XeRN

(2.22)

where the supremum is finite folN2> d + |a |+ n whilst (1 + ly)=2Nf(y) is in Ly for largeN.
HenceAf € Oy as claimed. O

In view of the theorem, the difficulties for type I-operators are unrelated to growth at infinity
for C®-functions. Moreover, the codomaff® in Theorem 2.7 is not contained i&’, but this
is consistent with?’ as the codomain in Definition 2.1.

Example 2.8. The spac€”(R") N~/ (R") clearly contains functions of non-slow growth, eg
f(x) = 1t Thcoggat ), (2.23)

Recall thatf € .’ becausef = iD;g for g(x) = sin(ett*n) which is in L, C .#’. But
g ¢ Owm, so already foa(x,D) = iD; the space&’y cannot contain the range in Theorem 2.7.

Remark2.9. In remarks prior to the proof of th€1-theorem, it was explained in [DJ84] that just
a few properties of the distribution kernel of a continuousprit : C3(R") — 2'(R") implies
thatT (1) is well defined modulo constants. In particular this was iggio T € OP(S] ), but in
that case their extension is equal to the above of Bourdaud¢sording to Theorem 2.7 it also
gives the same result as Definition 2.1.

2.2. Conditions along the twisted diagonal. As the first explicit condition on the symbol of a
type 1 1-operator, thrmander [Hbr88] proved that(x,D) has an extension by continuity

HStd — HS foreveryse R (2.24)

whenevera ¢ val(R” x R") fulfils the twisted diagonal conditiarfor someB > 1

a(&,n)=0 where B(1+|E+n|) <|nl. (2.25)

This means that the partially Fourier transformed syr’rﬁjéL n) .= . za(x,n) vanishesin a
conical neighbourhood of a nhon-compact part of the twisiadahal

T ={(£,n) eR"xR"| &+ =0}. (2.26)
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Localisations to conical neighbourhoods.@f was also introduced by &tmander in [Hbr88,
Hor89, Hor97]. Specifically this meant to pass fraax, i) to ay ¢(x,n) defined by

ay.e(€,n) =a(&,n)x(&+n.en), (2.27)
wherebyyx € C*(R" x R") is chosen so that
X(té,tn)=x(&,n) for t>1[n|>2 (2.28)
suppx C {(&,n) |1<|n|, |&[<[nl} (2.29)
x=1 in {(&n)|2<|n|, 2{[<[n|}. (2.30)

Using this, Hirmander analysed a milder condition than the strict vangin (2.25), namely
that for someo € R, it holds for all multiindicesa and 0< € < 1 that

d
Ny.ea(@):= sup R_d(/ IR9IDZay (%, )2 2) Y2 < cq peo 2710l (2.31)
R>0, XeR" R<|n|<2R Rn

This asymptotics foe — 0 always holds fowo = 0, as was proved in [6197, Lem. 9.3.2]:

Lemma 2.10.When a S/, (R" x R") and0 < & < 1, then g € C* and
IDfDLay.e(x,n)| < Cq g(@)e (L |n|)* 1P (2.32)
1/2 -
(/R<m|<2R|DgaX,g(x,r,)|2dn) /2 < CoRO(eR)M 210, (2.33)

The map a— ay  is continuous in $,.

The last remark on continuity has been inserted here fortaference. It is easily verified by
observing in the proof of [Er97, Lem. 9.3.2] (to which the reader is referred) that tbestant
Cq,5(a) is a continuous seminorm i ;.

For o > 0 the faster convergence to 0 in (2.31) was proved to implyndedness

a(x,D): HS*4(R") — HS(R") for s> —0O. (2.34)

The reader could consult 97, Thm. 9.3.5] for this (and [6t97, Thm. 9.3.7] for four pages
of proof of necessity 0§ > — supa, with supremum over alb for which (2.31) holds).

If Q(E,n) is so small along” that (2.31) holds for alb € R, consequently there is bounded-
nessHStd — HS for all se R. Eg this is the case when (2.25) holds, for since

suppBy.e C {(&,n) | 1+|&+n| <2¢in}, (2.35)
clearlyay = 0 for 2¢ > 1/B then.

Example 2.11.For the present paper it is interesting to use Ching’s symbd) (to show the
existence of symbols fulfilling (2.31) for a givem € N. To do so one may fix8| = 1 and take
someA(n) inCgy({n | ;31 < |n| < 3}) with a zero of ordew at 8, so that Taylor's formula gives
|A(n)| <cln — 6]° in a neighbourhood 0.
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Asa(x,n) = (2m"y*_;2195(& +216)A(271n), clearly
ag y.e(X.1) = Z)Zjde‘ix'zjex(n —2ig,en)A271n). (2.36)
j=

Becaus€R, 2R] is contained irf32/ -1, 321" U321, 321] for somej € Z, it suffices to estimate
the integral in (2.31) only foR = 3-21=2 with j > 1. Then it involves only thgth term, ie

[ laoxe(xn)Pdn = RN /RIx(n —Re.em)dn.  (237)
R<In|<2R R<In|<2R

By the choice ofy, the integrand is 0 unlegg —RO| < g|n| < 2eR and 1< €R, so for smalle,

[ Jaexe(mPdn < [x|2R [
R<[n|<2R o

Applying (RDy)? before integration(RDy ) may fall onA(n /R), which lowers the degree and
yields (at moste"/2+=V. In the factor(RD,)9Vx(n — R8,&n) the homogeneity of degree
—|a —y| applies foreR> 2 and yields a bound in terms of finite suprema dsé#, 2) x B(0, 2),
hence is@(1); elseeR < 2 so the factor is(R9Y) = ¢(elVI-12]) when non-zero, as both
entries are in norm less than 4 then. Altogether this ver{ie&l). — A lower bound of (2.37) by
ce29 "R is similar (cf [Hor97, Ex. 9.3.3] fora = 0 = d) when|A(n)| > co|n — 6|9, which
can be obtained by taking as a localisation of the right-hand side Brenc (so A € C*); and
this shows that (2.31) cannot hold for larger valuesrdbr this choice ofag(x,n).

(C|Z _ 9|0)2dz < CISZG+an+2d_ (238)

3. POINTWISE ESTIMATES

A crucial technique in this paper will be to estimgtgx, D)u(x)| at an arbitrary point of
R". The recent results on this by the author [Joh10a] are exthlére and further elaborated in
Section 3.2 with an estimate of frequency modulated opesato

3.1. The factorisation inequality. First of all, by [Joh10a, Thm. 4.1], when su?mi)s compact
in R", the action oru by a(x,D) can beseparatedrom u at the cost of an estimate, which is the
factorisation inequality
|a(x, D)u(x)| < Fa(N, R x)u”(N, R;x). (3.1)
Hereu* denotes the maximal function of Peetre—Fefferman—Stgie, tgefined as
ux=y)| _ u(y)|

u*(N,R;X) = sup sup

— 3.2
ST RN~ SR T Rx =y (32)

when sup}ﬁl C B(0,R). The parameteN may eg be chosen so thislt> orderu.
Thea-factor F, also called the symbol factor, only dependsuan a vague way, viz. through
N andR. Itis related to the distribution kernel a{x, D). More precisely

FalN.R) = | (1+RY)M 72 (a0 m)x(m))]d, (33)

wherex € Cg5 (R") should equal 1 on a neighbourhood of sﬁp(pr of Uy suppa(x, -)G(-)).



TYPE 1,1-OPERATORS ON SPACES OF TEMPERATE DISTRIBUTIONS 13

The estimate (3.1) is useful as both factors are easily clbed. Egu*(x) is polynomially
bounded, foru(y)| < c¢(1+ |y)N < c(1+Rly—x))N(1+ [x))N holds according to the Paley—

Wiener—Schwartz Theorem M > orderl, R > 1, and by (3.2) this implies

u*(N,Rx) <c(1+x)N,  xeR" (3.4)

Here it is first recalled that everye .’ has finite order as its valugu, ¢) on ¢ € . fulfils
(U, Y)l <cpn(y), (3.5)
Pu(W) = sup{ (1+|x)N D u(x)| | x € R", Ja| <N }. (3.6)

Indeed, foryy = ¢ € C an estimate of 1+ |x|)N on suppp shows thatu is of orderN. To
avoid the discussion whether the converse is true, it withtlghout be convenient to call the
least integeN fulfilling (3.5) the temperateorder ofu, written N = ordery(u).

Returning to (3.4), when the compact spectrunueésults from Fourier multiplication, then
the belowd (2N)-information on the constant will be used repeatedly in tlesent paper.

Lemma 3.1. Let ue .#/(R") be arbitrary and N> order, (U). Wheny € Cg (R") has support
in B(O,R), then w= (2-¥D)u fulfils

W (N, R2x) <C2N(a+ x)N, ke Ny, (3.7)
for a constant C independent of k.
Proof. Since (27 *D)u(x) = (U, y(27%-)é*)(2m)~"), continuity ofi: .7 — C yields
w(x)| < csup{ (1+[E)NDF (w2 &)™) | la] <N, EeR"}. (3.8)

As |(1+|E)NDYw(27KE)| < ¢2kN=laD) | Leibniz’ rule yields thatjw(x)| < ¢”2N(1 + |x|)N.
Proceeding as before the lemma, the inequality follows @it ¢’ max(1,R™N). O

The non-linear mapi — u* is also bounded with respect to thg-norm, which can be shown
in an elementary way; cf [Joh10a, Thm. 2.6].

Secondly, for thea-factor one ha$,; € C(R") NL.(R") with estimates highly reminiscent of
the Mihlin—Hormander conditions for Fourier multipliers:

Theorem 3.2. Assume the symbol>an) is in ql(]R{” x R") and let B(N,R;x) be given by
(3.3)for parameters RN > 0, with the auxiliary function taken ag = @(R™1.) for ¢ € Co (RM)
equallingl in a set with non-empty interior. Then it holds for alexR" that

dn\1/2
O<Fa(X)<cn ) (ASUpW!R|“|Dga(x,n)\2£> . (3.9)

n
al<NTg+1 R

For the elementary proof of this the reader is referred ttilda]; cf Theorem 4.1 and Sec-
tion 6 there. A further analysis of the dependenceadxn ) and R was given in [Joh10a,
Cor. 4.6]:
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Corollary 3.3. Assume & ql(R” xR") andlet N, R andp be as in Theorem 3.2. Wher>RL
there is a seminorm p or£f§ and a constant ¢ 0, depending only on n, N angl, such that

0 < Fa(x) < cp(@)R™MAN+/2+1) - for all  x € R". (3.10)

Moreover, ifsuppy is contained in a corongd n | 6o < |n| < ©p}, and Y(n) = 1 holds for
61 <|n| < O1, whereby0 # 6y < 61 < ©1 < O, then

0< Fa(X) < cop(@)Re forall xeR", (3.11)
with ¢ = cmax(1, 65 "2 gy,

The above asymptotics f@® — « is ¢(RY) for larged. This can be improved whea(x, )
has been subjected to modulation of the frequencies ixthaiable. With a second spectral
guantityQ > 0, the following was shown in [Joh10a, Cor. 4.8], cf Sectioh&ré:

Corollary 3.4. When &(x,n) = ¢(Q Dx)a(x,n) for some a Sf’l(R” xR") and¢ € C5(R")
with ¢ = 0 in a neighbourhood of = 0, then there is a seminorm p ori§and constants g,
depending only on M, n, Ny and ¢, such that

0 < Fag(N,RX) < ey p(2)Q MRMXHMINEV2IHL) - for M, Q,R> 0. (3.12)

Here d+ M can replace the maximum when the auxiliary functipnn F,, fulfils the corona
condition in Corollary 3.3.

Remark3.5. The proof in [Joh10a] shows that the seminorm in Corollary 888/ be chosen
in the same way for alll, namelyp(a) = ¥ 4|<[N+n/2+1 Pa,0(8); cf (2.2). Similarly for Corol-
lary 3.4.

3.2. Estimates of frequency modulated operators.The results in the previous section easily
give the following, which is used repeatedly later in Setsi® and 6.

Proposition 3.6. For a(x,n) in %1(]1%” xR"), u,ve . (R") and arbitrary @, ¥ € C5(R"),
for which W is constant in a neighbourhood of the origin and is suppoke®(0,R) for R> 1,
there is a c> 0 which for ke No and N> ordery (% V) gives the polynomial bound,

|OP(®(27*Dy)a(x, n)W(27*n))v(x)| < c2XM+ D+ (14 |x)N. (3.13)
Here the positive part-) . = max0,-) is redundant whe® ¢ supp¥.

Proof. For the purposes of this proof it is convenient to #tx,n) = ®(2-KDy)a(x,n) and
VK = W(2-KD)v. By the factorisation inequality (3.1), there is an estinatterms of a product

| (x, D)VK(X)| < Fa (N, R2% %) - (V) *(N, R2%; x). (3.14)
Here, forN > order,(V), Lemma 3.1 asserts that)* (N, R2K; x) < C2N(1+|x|)N for x € R".
When 0¢ supp¥, the auxiliary functiony = (-/(R2¥)) used inFy, cf Theorem 3.2, can

be so chosen that it fulfils the corona condition in Corollar8.3Since Remark 3.5 implies
p(ak) < p(a) [ |.Z ~1d(y)|dy, there is by Corollary 3.4 witl) = 2% an estimate

0 < Fx(N,R2%x) < ¢1]|.Z 1|1 p(a) 2], (3.15)
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wherec; depends om, N only. These inequalities yield the claim in this case. .
In generalvk =VW+Vi-1t+--+W +\0, wherebyv; denotes the difference — vi-l=
W(2-ID)v—W(2-I+1D)v. This gives the starting point

|ak(x, D)VK(x)| < |ak(x, D)\P |+Z «(N,R2);x)vi (N, R2); x). (3.16)

As P = W —WY(2.) does not have 0 in its support, the above shows that with the saone has
F(N,R2):x) < ¢ .7 ~1||1p(a)2) for j =1,....k. Lemma 3.1 also yields control of;, so
the sum on the right-hand side of (3.16) is estimateddféN # 0, by

k
z c1C'p(a)2/ N (14 x| )N < 1€’ p(a) (1 + |x|)N2k+DIN+d)- (3.17)

This upper bound extends tb= —N becausea € q? for € > 0, for ¢y is constant with respect
to d whilst Remark 3.5 gives that the seminorm3fi;® is < p(a) ase — 0.

The remainder in (3.16) fulfilga(x, D)V2(x)| < C]_RN/(l—f- Ix|)N for a largeN’; cf the first part
of Corollary 3.3 and Lemma 3.1. AltogethiX(x, D)v¥(x)| < c2KN+d)+ (1 4 |x|)N. O

4. ADJOINTS OF TYPEL,1-OPERATORS

4.1. The basic lemma. To show that the twisted diagonal condition (2.25) also iegptonti-
nuity a(x,D): ./ — ./, alemma on the adjoint symbols is recalled. It was provedHiir88]
and [HOr97, Lem. 9.4.1], but given here in a slightly more preciser.

Lemma 4.1. When 4x,n) isin § ;(R" x R") and for some B> 1 satisfies the twisted diagonal

condition (2.25), then the adjoint &,D)* = b(x,D) has the symbol (x,n) = €®xPna(x, n),
which is in g (R" x R") in this case and

A
b(¢,n)=0 when |&+n|>B([n[+1). (4.1)
Moreover,
[DRDLD( )| < Cap (B)B(L-+ BT 1A 1+ )=, (42)
for certain continuous seminorms,g on i‘il(R“ x R"), that do not depend on B.

In view of the lemma, ifa(x, D) fulfils the twisted diagonal condition (2.25), it obviousigs
the continuous lineaextension x,D)*: ./(R") — ./(R"). But it still has to be shown that
this coincides with the definition af(x, D) by vanishing frequency modulation:

Proposition 4.2. When &x,n) € QJGR” x RM) fulfils (2.25) then dx,D) is a continuous linear
map.’(R") — ./(R") and it equals the adjoint of(&,D): . (R") — .(R"), when kix,n)
is the adjoint symbol as in Lemma 4.1.
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Proof. Wheny € C3(R") is such thatp = 1 in a neighbourhood of the origin, a simple convo-
lution estimate (cf [Joh08b, Lem. 2.1]) gives that in thediogy of fll,

@2 "Dyax,my(2""n) —a(x,n) for m-— . (4.3)
Since the supports of the partially Fourier transformed lsgi
W(2ME) I sal&, w27 ™), meN, (4.4)

are contained in sup@,_.za(¢,n), clearly this sequence also fulfils (2.25) for the saBneAs
the passage to adjoint symbols by (4.2) is continuous framihtric subspace ciff,l fulfilling
(2.25) to Jil, one therefore has that

bm(x, 1) := €21 (P(2="D)alx, n)Y(2-™)) —— &PPra(x,n) =:b(x.n).  (4.5)

Combining this with the fact thdi(x,D) as an operator on the Schwartz space depends continu-
ously on the symbol, one has farc ./ (R"), ¢ € /(R"),

(b(x,D)"u[$) = (u] lim OP(bm(x.7))9)
= lim (OR(Y(2 ™D)alx.n)y(2 ™n))u[¢).

As the left-hand side is independent@fthe limit in (2.4) is so, hence the definition afx, D)
gives that everyi € .#/(R") is in D(a(x,D)) anda(x,D)u = b(x,D)*u as claimed. O

(4.6)

The mere extendability to#’ under the twisted diagonal condition (2.25) could have been
observed already in [6188, HOr97], but the above result seems to be the first giving a serffic
condition for a type 11-operator to belefinedon the entires”’(R").

4.2. The self-adjoint subclassé‘fl. Proposition 4.2 shows that the twisted diagonal condition
(2.25) suffices foD(a(x,D)) = ./(R"), but this condition is too strong to be necessary. A
vanishing to infinite order along” should suffice.

In this section, the purpose is to prove théx,D): . — .’ is continuous if more generally
the twisted diagonal condition of order, that is (2.31), holds for alt € R.

This will supplement Brmander’s investigation in [6188, HOr89, Hyr97], from where the
main ingredients are recalled. Using (2.27) afAg ; it follows that in.#”’(R" x R"),

a<X7 ’7) = (a(x, I']) - aX,1<X7 r’)) + io(aX,Z" (X7 rl) - aX,Z*V*J-(X? ’7)) (47)

Here the terma(x,n) —ay 1(x, n) fulfils (2.25) forB = 1, so Proposition 4.2 applies to it.
Introducinges (x,D) as in [HOr97, Sect. 9.3] as

e:(x,1) = aye(E,n) —aye/2(E,m) = (X(E+n,en)— X(E+n,en/2)axn),  (4.8)
it is useful to infer from the choice gf that

suppe: C {(£,n) | £ln| <max(1,|&+n|) <e|n|}. (4.9)
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In particular this yields thag; = 0 when 1+ |& +n| < |n|e/4, soe; fulfils (2.25) for B = 4/«.
Hence the terme,-v in (4.7) do so forB = 2V+2,

The next result characterises the ﬁ 1 for which the adjoint symbo&* is again inﬁ 1, cf
the below condition (i). Since adjoining7 is an involutionch symbols constitute the class

é‘lil = Sd'i,lﬂ (Sd'i,l)*- (4.10)
Theorem 4.3. For a symbol &x,n) in ql(R“ x R™) the following properties are equivalent:

(i) The adjoint symbol‘dx,n) is also in %l(R” x RM).
(i) Forarbitrary N> 0anda, 3 there is a constant &g \ such that

IDADEay £(x,n)| < CqpneN(L+[n)) @Bl for 0<e<1. (4.11)
(i) Forall o € R there is a constant£s such thatfor0 < e <1
n
sup Re-<( | DZay.c(x, ) ”)1/ ® < g2l (4.12)
R>0, X€R" R<|n|<2R

In the affirmative case a @1 and there is an estimate
D DEa"(x,1)| < (Cap(@) +Cq g ) (1+n)* P (4.13)

for a certain continuous seminorm,@ on S"il(R” x R") and a finite sum g;ﬁ y Of constants
fulfilling the inequalities inii).

It should be observed that (i) holds fafx, ) if and only if it holds fora*(x,n) (neither (ii)
nor (iii) make this obvious). But (ii) immediately gives tkexpected) inclusiod , ¢ &', for

d’ > d. Condition (iii) is close in spirit to the Mihlin—Brmander multiplier theorem and is useful
for estimates, as shown later in Section 6.

Remark4.4. Conditions (ii), (iii) both hold either for ally satisfying (2.31) or for none, for
(i) does not depend og. It suffices to verify (ii) or (iii) for 0< £ < & for some convenient
& €]0,1[. This is implied Lemma 2.10 since every powgris bounded on the intervao, 1].

The theorem was undoubtedly known todrhander, who stated the equivalence of (i) and (ii)
explicitly in [H6r88, Thm. 4.2] and [i@r97, Thm. 9.4.2], in the latter with brief remarks on (iii).
Equivalence with continuous extensiod§td — HS for all se R was also shown.

However, the expositions there left a considerable burderenfication to the reader, and
especially since a decisive corollary to the proof will @il further below, complete details
should be in order here:

4.2.1. Equivalence of(ii) and (iiij). That (ii) implies (iii) is seen at once by insertion, taking
B=0andN=0+5—|al.

Conversely, note first tha€ + | < €|n| in the spectrum oéy ¢(-,n). Thatis,|{| < (14¢€)|n|
so Bernstein’s inequality gives

IDEDfay ()| < (L+£)nl) P supDfay ()] (4.14)
Xe
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HenceC, g n = 2/FICq o is possible, so it suffices to prove (iii=> (ii) only for B = 0.
For the corona X |{| < 2 Sobolev’s lemma gives fof € C*(R"),

Q)] < el [ IpPi@)Pd) (4.15)
1BI<fny2)+171sIC<2
Insertion ongaX7g(x, R{) and substitutingl = n /R, wherebyR < |n| < 2R, R> 0,
Dlagexm<al Y RF D8 Pay o (x, )2 20 y1/2
| pi<frzsn  JRni<R | R
(L
< Cl( ; RZd_Z‘a‘C(ZJJFB’oEZ(G_‘—Z |a| ‘BD)J-/Z (416)
IB]<[n/2]+1

< cq ; C§+B’U)1/2£a—1—|al|:\>d—|a|.
BI<[n/2}+1

HereRA-19l < (14 |n|)d-1el for d > |a|, that leads to (ii) a& € R can be arbitrary.

For |a| > d itis first noted that by the support condition gn clearlyay ¢(x, 1) # 0 only for
2R>|n| > &1 > 1. ButR> 1/2 yieldsRi-19! < (3($ +2R))d-lol < gal=d(1+ |n|)d-lal, so
(ii) follows from the above.

4.2.2. The implication(ii) = (i) and the estimateThe condition (ii) is exploited for each term
in the decomposition (4.7). Settig (x,n) = €_,(x,n) it follows from Lemma 4.1 thab, is

in Sf,1 by the remarks after (4.9), cf (4.7) ff, and (4.2) gives
IDEDEby (X, N)| < Cq p(ey)2" 2(14 2 HAATIIHED) (14 pyd-lel Bl (4.17)

Now (i) implies thatCq g(ay o-v) < C«/;r.ﬁ 2 VN forall N > 0 (with other contant€, pN as the
seminormsC, g may contain derivatives of higher order than and|3]). HenceCq, g(€-v) <
C&B’Nzl—"’\'. It follows from this thaty b, converges to somiein § , (in the Fechet topology
of this space), so that'(x,n) =b(x,n) isin § ;.

More precisely, (4.2) and the above yields foe= 2+ (d — |a |+ |B])+

DaDRar (xn)| o v+2(1 4 p(v+2)(d-lal+[B])
(1+|n|)d-lal+IAl <2 C"’B(a_ax’lez Cap(&)270r2 k

<2NCypla—aya)+ Y 16C, 52 N-D2lv 2 A-lalB)-
0

(4.18)

< 2NCq pla—aya) +4"72C, 5\

Invoking the continuity from Lemma 2.10 in the first term, {ast statement follows.
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4.2.3. Verification of (i) = (ii). It suffices to derive another decomposition

a=A+) a, (4.19)
VZO

in which A € S~ and eacha, € %1 with a,(&,n) = 0 for 2Vt1|& 4+ n| < |€| and seminorms
Cap(ay) = 0(27VN) for eachN > 0.

Indeed, wherx (¢ +n,&en) # 0 the triangle inequality givel§ +n| < g|n| < €| +n|+¢€|&|,
whence|é +n|(1—¢€)/e < |&], so that for one thing

ay.¢(X,1) =x(5+n,en)ﬁ(x,n>+ X(E+n,en)av(xn) (4.20)

vtl>(1-¢) /¢

Secondly, for each seminor@), g in S} ; one ha<C, g(ay x,¢) < €719C, g(ay) by Lemma 2.10,
so by estimating the geometric series by its first term, thevallormula entails that

C
Cap(@y.e) <Cop(Axe) + . > Z—J;‘flzfv(m‘a‘) < Cap(Axe) +C€|a|(12T88)N+|a|-
2vtl>(1-¢) /e

(4.21)
This gives the factoeN in (i) for 0 < £ < 1/2. For 1/2 < & < 1 the series ig7(¢7191) because
27V <1<2¢/(1—¢)forall v. But 1< (2¢)N*lal for suche, so (ii) will follow for all £ €]0,1].
(Itis seen directly thatAy ¢(x,n)| < ceN(1+|n|)9 etc, for only the case|n| > 1 is non-trivial,
and thene™N < (1+|n|)N while Ac S.)

In the deduction of (4.19) one can use a Littlewood—Paletjmar of unity, say 1=y}, Py
with dilated functiongb, () = ®(27Vn) # 0 only for %—(1)2" <In| < 1—82" if v >1. Beginning
with a trivial split a* = Ag+ Az into two terms for whichAg € S™® and A; € ﬁl such that
A1(x,n) =0 for |n| < 1/2, this gives

[ee]

&'(E.n)=Ao(E.n)+ 3 ®u(E/INDALE ). (4.22)

v=0

This yields the desired, (x,n) as the adjoint symbol te#; 1 @, (&/|n ]),&1(5, n), thatis to

&—x
f]2”n\”$(\2"n|y)A1(x—y,r,)dy. Indeed, it follows directly from [8r88, Prop. 3.3] (where

the proof uses Taylor expansion and vanishing momenéim‘r v > 1) thata], belongs tosl”1
with (2NVa3), cn bounded in’ﬁ’1 forall N > 0. Therefore (4.22) gives (4.19) by inverse Fourier

transformation. Moreover, sina (&, n) for v > 1 is supported by the region
32'Inl < &1 < 32"In|, (4.23)

where a fortiori
1+[E+n|> &~ |n| > (32" - 1)n| > LInl, (4.24)
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it is clear thata;; (£, n) vanishes if 10/ +n|+1) < |n|. According to Lemma 4.1 this implies
thata, = a;" is also inS{ ; and that, because of the above boundednes$ jin

DDEay (x,1)| < Cq p(8))10(1+ 1071 HPY) (14 [ )@1a Bl < 27NV (14 ||y ¢l +IF)
(4.25)
for some constant independent wf Therefore thea, tend rapidly to 0, which completes the
proof of Theorem 4.3.

4.2.4. Consequences for the clagﬁl. One can set Theorem 4.3 in relation to the definition of
a(x,D) by vanishing frequency modulation, simply by elaboratimgloe above proof:

Corollary 4.5. On §l’71(R” x R") the adjoint operation is stable with respect to vanishing fre
guency modulation in the sense that, when @1 Y € C5(R") with ¢ = 1 aroundO, then

(w2 ™Dax,nw(2"™n))" ——a(x,n)* (4.26)
holds in the topology of {§*(R" x R").

Proof. For brevity bm(x,n) = ¢(2 - ™Dx)a(x,n)Ww(2-™n) denotes the symbol that is frequency
modulated in both variables. The proof consists in insertba(x,n) — bm(x,n) into (4.18),
where the first sum can be read as an integral with respecetodinting measure, which tends
to 0 form— oo by majorised convergence.

Note that for eachv > 0 in the first sum of (4.18) one must contl(bgﬁ(eglv) for m— o
when€ll, is given by

&L (&,n) = (X(E+n.27"n) = x(E+n.27V ') (1 - w2 ") w2 ™n))aE,n). (4.27)
To do so, note first that a convolution estimate gipgs (bm) < €3 y<q Py,g(a), Wwhence(bm)men
is bounded mﬁl Similar arguments yield thabm — a in ﬁ“ for m — oo; cf [JohO8b,
Lem. 2.1]. Moreover, for each > 0, every seminornp, g how onﬁ*l, gives

Pap(&) < Pap((@—bm) , )+ Pap((@—bm)y2v1). (4.28)
Here both terms on the right-hand side tend to Onfier: o, in view of the continuity ofa— ay ¢
on Sf*l, cf Lemma 2.10. Henc€, ﬁ(e'Z“_v) — 0 form— co.
It therefore suffices to replackby d+-1 in (4.18) and majorise. Howevex;— a, . commutes
with a+— by, as maps in’/(R" x R"), so sincea € ﬁ”, it follows from (ii) that
Pap((@—bm)x.c) < Pap(@y.e)+C Z Pyre(@xe) < (1+0)( Y Cppn)e™ <Cppne". (4.29)
y<a
Using this in the previous inequalit, g(€ll,) < C2-VN s obtained forC independent of
me N. Now it follows from (4.18) thabm(x,n)* — a(x,n)* in Sﬁl as desired. O

Thus prepared, the proof of Proposition 4.2 can now be repeadm (4.5) onwards, which
immediately gives the first main result of the paper:
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Theorem 4.6. When a symbol x,n) of typel,1 belongs to the clas§f71(R” x R"), as char-
acterised in Theorem 4.3, then

a(x,D): ' (R") — 7" (R") (4.30)

is everywhere defined and continuous, and it equals the adjb@P(e/PxPna(x, n)).

5. DyAbDIC CORONA DECOMPOSITIONS

This section describes how Littlewood—Paley techniquesige a convenient passage to aux-
iliary operators, that may be analysed with pointwise estes.

5.1. Paradifferential splitting of symbols and operators. Recalling the definition of type,1-
operators in (2.4)—(2.5), it is noted that to each modutafinction ¢, ie ¢ € CJ(R") with
¢ = 1 in a neighbourhood of 0, there exRt>r > 0 with R> 1 satisfying

wpé)=1 for |&|<r; gpé)=0 for |£|>R (5.1)

For fixed y it is convenient to take an integhr> 2 so large that R < r2".
To obtain a Littlewood—Paley decomposition fram set¢ = ¢ — ¢(2:). Then a dilation of
this function is supported in a corona,

suppp(27K) c {&|r2t < g <R}, fork>1. (5.2)
The identity 1= ¢(x) + S, ¢ (27%&) follows by lettingm — o in the telescopic sum,
WM =)+ o/ + -+ ¢(E/27). (5.3)
Using this, functionsu(x) and symbols(x, n) will be localised to frequencielg)| ~ 2! as
ui=¢2D)u,  ai(xn) =92 Dyakxn) =F L (#(278aE n).  (5.4)
Localisation to balls given byn| < R2! are written with upper indices,
W=y D,  axn) =w@'Daxn) =7 W2 Ia¢E.n). (55

In addition ug = u® and ap = a%; by convention they are all taken to equal 0 fox 0. (To
avoid having two different meanings of sub- and superssyripie dilationsy(2-1-) are written
as such, with the corresponding Fourier multiplieryg@ /D), and similarly forg). Note that
ak(x’ D) = OP(L)U<2_kDX)a(X> r’)) etc.

Inserting the relation (5.3) twice in (2.4), bilinearityvgs

m

OP(Y(2 ™Dx)a(x, My (2" ™n))u= Z aj (X, D)ug. (5.6)
ifeo

Of course the sum may be split in three groups in whichk—h, |j —k| <handk < j—h,
respectively. Fom — oo this yields the paradifferential decomposition

ay(x,D)u= afﬁ) (x,D)u+ a£ﬁ> (x,D)u+ af,jo’) (x,D)u, (5.7)
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whenevera andu fit together such that the three series below converge’{fiR"):

(1) - o _k-h
ay’ (x,D)u= aj(x,D)ug =Y a*" "(x,D)uk (5.8)

PPN 20 2,
ajy (x,D)u= > (Bk-n+1(X D)+~ + a-1(X, D)k + (X, D) U

K=0
+ (X%, D)Uk 1+ - -+ + & (X, D)Uk_hy1) (5.9)

ay’ (x,D)u= aj(x,Dyuc =Y aj(x,D)ul™". (5.10)

AT 2

Note the convenient shorthamdi"(x,D) for ¥ ;<x_na;j(x,D) = OP(y(2"*Dy)a(x,n)) etc. In
this way (5.9) also has a brief form, namely

[oe]

ajy (x.D)u=Y ((a"—a")(x,D)uc+a(x, D) ("2 — M), (5.11)
K=0
In the following the subscripty is usually dropped because this auxiliary function will be
fixed ( was left out already irm; anda!; cf (5.4)—(5.5)).

Remark5.1 It was tacitly used in (5.6) and (5.8)—(5.10) that one has

aj(x,D)u = OP(aj(x,n)$ (2 n))u. (5.12)
This is because, witly € C3 equalling 1 on supg” ug, both sides are equal to
OP(a;j(x,n)X(n))uk- (5.13)

Indeed, while this is trivial for the right-hand side of (2)1 where the symbol is i~ * and
X =1 on suppy, it is for the type 11-operator on the left-hand side a fact that follows at once
from (2.10) (as observed in [Joh08b]). Therefore the priglary extension taZ ~1£” in (2.10)
is crucial for the simple formulae in the present paper.
Analogously Definition 2.1 may be rewritten agx, D)u = lim a™(x,D)u™.

The importance of the decomposition in (5.8)—(5.10) liethm fact that the summands have
their spectra in balls and coronas:

Proposition 5.2. If a € %l(R“ x R") and ue ./(R"), and r, R are chosen as {{5.1) for each
auxiliary functiony, then every ke N such that?R < r2" gives

SUpP (@ "(x, D)u)  { & | Ryt < €] < ook

229 (5.14)

Supp% (a(x D)) € { € | Ry2* < [€] < 2], (5.15)
where R =5 —R27" > 0.

Proof. Sinceuy € .#~1&" is in the domain of the type,1-operatora—"(x,D), the last part of
Theorem B.1 and (5.2) give

suppZ (@ "(x,D)u) € {&€+n | (§,n) € supyh k@ 1)a, 2 <|n| <R} (5.16)
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So by the triangle inequality evey= & + n in the support fulfils

r2kl - RAM < (7] < RN R2K < SROK, (5.17)
ash > 2. This shows (5.14) and (5.15) follows analogously. 0J

To achieve less complicated constants one could hade@large that B < r2" instead, which
would allow R, =r/4 (and ®R/8). However, the present constants are preferred in order to
reduce the number of terms &2 (x, D)u, as has been common in the literature.

In comparison the terms ia? (x,D)u only satisfy a dyadic ball condition. This was eg ob-
served in [Joh05], as was the fact that when the twisted dalgmondition (2.25) can be shown
to hold, then the situation improves for large

Proposition 5.3. When ac sil(]R” xR"), ue ./(R"), and r, R are chosen as {5.1) for each
auxiliary functiony, then every ke N such that?R < r2" gives

suppZ (a(x, D) (Ut — U M) + (@ —a* ") (x,D)u) € { & | |&| < 2R} (5.18)
If a(x,n) satisfieq2.25)for some B> 1, the support is contained in the annulus

{¢] 2h+132k< €] < 2R} (5.19)

for all k > h+1+log,(B/r).

Proof. As in Proposition 5.2 it is seen that su@ay(x,D) (U1 — uk—") is contained in
{&+n|(&,n) e supg@D)a, r2" <|n| <RI} (5.20)

Therefore any] in the support fulfilg{| < R2X+ R2X-1 = (3R/2)2X. If (2.25) holds therB(1+
|&+n|) >|n| on supp,_,sa so that, for allk larger than the given limit,

2> &In|—12 &M —1> (s 272K > i (5.21)
The term(ak — a")(x, D)uy is analogous, but causeR2 to be replaced byR O

Remark5.4. The dyadic ball and corona properties given in Propositi®+5.3 have been a
main reason for the introduction the paradifferential tsiplg (5.7) in the 1980’s. However, the
above inclusions were then derived under the additionalmption thata(x,n) should be an

elementary symbol; cf [Bou83, Bou88a, Yam86]. With the $@upport rule recalled in
Appendix B, this is redundant. Cf also the remarks in the ohition.

5.2. Calculation of symbols and remainder terms. Although (5.8)—(5.10) yield a well-known
splitting, the operator notatioal(l)(x, D) requires justification in case of typeIl-operators.
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Departing from the right hand sides of (5.8)—(5.10) oneas(%.12) at once led to the symbols

[oe]

a¥(x,n) = EHak‘h(x,n)rlJ(Z"‘n) (5.22)
k=
a?(x,n) = ((@cna(6n)+--+ac106n) +abn))$2*n)
=0
+axn) (@2 n)+.+ 2 kD)) (5.23)
= Z((ak(X,n)—ak_h(X,n))fl’(Z_k'?)+ak(X,'7)(llf(2_(k_1)'7)—W(Z_(k_h)n)))
A (5.24)
a®(x,n) = iaj x,nw U="p). (5.25)
=

These series converge in thecEhet spac& 11 (R" x R"), for the sums are locally finite.

Actually Proposition 5.2 is closely related to the behavioua™ (x,n) anda® (x,n) at the
twisted diagonal:

Proposition 5.5. For each &x,n) in Sil(]R{” x R") and modulation functiony € C3(R") as in
(5.1)the associated symbolé,l%(x, n) and aﬁf) (x,n) fulfil the twisted diagonal conditio(2.25)
with constants B= 2“(22—25 — 1)1 > 2, respectively B= (22—';5 -1 i>1

Proof. For each term ira¥ (&, n) that is non-zero at,n) one has
E+nl=2G-R") 2 nl(zr—2") (5.26)

HenceaV(&,n) = 0 wheneveB & +n| < |n|. As B[ < r/(2R), one has (2.25) foB; > 2.
Fora®(x,n7) the corresponding calculation j§ + | > 521 — R2l > |n|('Z — 1). O

Clearly it is natural to verify that the type, 1-operators corresponding to (5.22)—(5.25) are
in fact given by the infinite series in (5.8)—(5.10), in paular that the series faall)(x, D)u
converges precisely whanbelongs to the domain of the operasdt) (x, D).

In view of the definition by vanishing frequency modulation(2.4) ff, this will necessarily
be lengthy because a second auxiliary function has to bedated.

To indicate the details foa¥(x,n), let ¢, W € C3(R") be equal to 1 around the origin,
and letW be used as the fixed auxiliary function enteria@ (x, D) = af,}) (x,D) etc; and set
® =W —-Y(2.). The numbers,R andh are then chosen in relation t8 as in (5.1). Moreover,

Y is used for the frequency modulation in (2.4). This givesftil®wing identity in Sfl where
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prime indicates a finite sum,

M+

w2 "Dy)at (x,n)p(2""n) = Eh a"(x,m)®27¥n)
k=

+ Z’w(z—mox>ak—“<x,rz)cb(z—kn)wz—mn). (5.27)

Infactif A,A > 0 are chosen so thgt(n) =1 for |n| < A while ¢ =0 for || > A, the support
of ®(27Kn) lies in one of the level sety(2-"n) = 1 or Y(2-™n) = 0 when

RK<A2™ or r2k<t> 2™ (5.28)
that is, with the exception of thiefulfilling
m+1og,(A /R) <k <m+1+log,(A/r). (5.29)

This shows that the primed sum has at mostlag, % terms, independently of the modulation
parametem; and in addition thaty(2~"n) and ¢(2-™Dy) disappear from the other terms as
stated by takingt = [log,(A /R)].

Consequently the change of variables m+1 gives foru € .#/(R") that

OP(y(2-mDx)a™ (x,m)w(2~™n))u = milak_h(xa D)uk
kf

+ S OPW( MDyw(@ Dy a(x, n) P2 ™ n)w(2 Mn))u. (5.30)
p<l<1+logy(A/r)
A similar reasoning applies ta® (x,). The main difference is that the possible inclusion of
supp®(2~!.), into the level sets whergg(2-™-) equals 1 or 0, in this case applies to the symbol

W(2-™Dy)aj(x,n) = .F; 1 (P(2"™E)D(271&)a(&,n)). Therefore one has for the sare

&—x

0P<w<2me>a<3><x,n>w<2mn>>u=m§:aj<x,o>ui“

|=
+ Y O MD)®(2"Dyalx, )W ™ n)w(2 M))u. (5.31)
pu<l<i+logy(A/r)

Treating afﬁ) (x,D) analogously, it is not difficult to see that once again thetre¢nssue is
whether sup@(27%.) is contained in the set wherg(2~™.) = 1 or = 0. So for the samg,

OP(y(2-™Dy)a® (x,n)Y(2 ™n))u= mi': (& —a“M (x, D)ug + ay(x, D) (UL — uk—M)
k=

+ Y OPW ™D (x,n)—a™ " (x,n)® ™ )2 ™n)u
p<l<l+logy(A/r)

+ 3 OPW(2 ™Dwamn (M) (W™ ) —wE ™ )y ™) (5.32)
u<l<l+logy(A/r)
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To complete the programme introduced after Propositionibdnly remains to leth — o in
(5.30)—(5.32) and to show that the remainders given by timegat sums can be safely ignored:

Proposition 5.6. When &x, ) is given in %1(]12{” xR") andy, W € C3(R") equall in neigh-
bourhoods of the origin, then it holds for evergcu?”’(R") that each term (with | fixed) in the
primed sums irf5.30)+5.31)tend to0 in ./ (R") for m— co.

This is valid for(5.32)too, if a(x, ) in addition fulfils the twisted diagonal conditidg.25)

The verification of this result is postponed until Sectiof, &vhere pointwise estimates are
used anyway.

Remark5.7. Fora@ (x,D)u the vanishing (fom — ) of the remainder terms in (5.32) is only
claimed here in case (2.25) holds. This is because one H®) hen, whereas in general only
the dyadic ball condition (5.18) is available. Later in Theza 6.7 the vanishing will also be
shown to hold under the milder condition (2.31). It is an opeablem whether the primed
sums in (5.32) will vanish for ala € §f1, ue .. (However, the split into infinite series in
(5.8)—(5.10) can of course always be used even S0.)

Remark5.8. The decomposition in (5.7)—(5.10) can be traced back to Kumgo and Na-
gase, who used a version aft (x,n) defined by an integral to smooth non-regular symbols,
cf [KgN78, Thm 1.1]. It was also important in the paradiffietiel calculus of Bony [Bon81],
and has afterwards been convenient for the continuity arsabf pseudo-differential operators,
as is evident from eg [Yam86, Mar91, Joh05, Lan06].

Remark5.9. For pointwise multiplication decompositions analogou$id) were used implic-
itly by Peetre [Pee76] and Triebel [Tri77]. Moreover, fo= a(x) Definition 2.1 reduces to the
productri(a,u) introduced formally by the author in [Joh95] as

m(a,u) = lim a™-u™. (5.33)
m—

This was extensively analysed in [Joh95], including camtinproperties deduced from (5.7),
that essentially amounts to a splitting of the generalisgdtwise productr-, ) into paraprod-
ucts. Partial associativity was obtained in [Joh08b, Thm], éhough.

6. ACTION OF TYPE1,1-OPERATORS ON TEMPERATE DISTRIBUTIONS

In this section the paradifferential decomposition (5s7analysed using the pointwise esti-
mates in Section 3, leading to fundamental Littlewood—yPadsults for type 11-operators; cf
Theorems 6.3, 6.5 and 6.7 below.

6.1. Polynomial bounds for the paradifferential splitting. In the treatment o&() (x,D)uand
a®(x,D)uin (5.8) and (5.10) one may conveniently commence by obsegnviat, according to
Proposition 5.2, the terms in these series fulfil conditiarlf in Lemma A.1 for6y = 6, = 1.

So to deduce their convergence from Lemma A.1, it remain$tain the polynomial bounds
in (A.2). This is a natural opportunity to use the efficacylté pointwise estimates in [Joh10a],
and Proposition 3.6 at once gives
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Proposition 6.1. If a(x,n) is in § ; (R" x R") and N> ordery(.#u), then

|2 N (x, D)ug(x)| < c2XN+d) (1 4 |x)N, (6.1)
lay (X, D)UKN(x)| < c2KN+d)+ (1 N, (6.2)

Proof. The last claim follows by taking the two cut-off functions Rroposition 3.6 asb and
W(2-1.), in the notation of Section 5. The first claim is seen by irftarging their roles, that is,
by usingW(2-".) respectivelyd; the latter is 0 around the origin $$+ d is obtained without
the positive part. O

The difference in the above estimates appears beaguse(6.1) has spectrum in a corona.
However, one should not confound this with spectral indaosilike (A.1) that one might obtain
after application ofi"—h(x7 D), for these are irrelevant for the pointwise estimates here.

Therefore it is clear that similar estimates hold for therterin al? (x,D)u as well. For ex-
ample, taking® — W(27".) and®, respectively, as the cut-off functions in Proposition, &i6e
finds the estimate of the first term below. Note that the paspart can be avoided forOk <h
by using a sufficiently large constant.

Proposition 6.2. If a(x,n) is in § ;(R" x R") and N> ordery(#u), the terms in g) (x,D)u
fulfil ’

(8K — a1 (%, D)u(x)| + fa(x D) (L~ kM) ()| < M D1 N (6.3)
Finally, using the full generality of Proposition 3.6 oncems, one also obtains a

Proof of Proposition 5.6.To show that each remainder term tends to Onfor c and fixed!, it
suffices to verify (A.1) and (A.2) in view of Remark A.2.

For afj) (x,D), note that by repeating the proof of Proposition 5.2 (anaigy () each re-
mainder in (5.30) hag in its spectrum only wheiRy2 )2™ < |&| < 5'TZ|R2’".

Moreover, each remainder term4sc2“N+9) (1 + |x|)N according to Proposition 3.6, for with
the cut-off functiongpW(2"!.) and®(2'.)y the latter is 0 around the origin. Hence a further
crude estimate by2N+d+) (14 |x|)N+%+ shows that (A.2) is fulfilled.

Similar arguments apply for the primed sum in (5.31), #@2" ')y is 1 around the origin;
which again results in the boura@2k(N+d+) (1 4 |x|)N+d+

The procedure also works for (5.32), for (A.1) is verified asFroposition 5.3, cf (5.19),
because the extra spectral localisations provideg@/® ™) cannot increase the spectra. For the
pointwise estimates one may now useye®(2~'.) and (W21 ') — w(2"!.))y as the cut-off
functions in the last part of (5.32). This yields the prooRwbposition 5.6.

6.2. Littlewood—Paley analysis of typel, 1-operators. In the following result on the decom-
position in (5.8)—(5.10), one should note in particular domfirmation tha@a(® (x,D) induces
no anomalies in cas&x, ) fulfils the twisted diagonal condition (2.25): one may traki(but
finitely many) terms ina® (x,D)u in the same way as faV (x, D)u and al® (x, D)u, simply
because they too fulfil the dyadic corona condition whenZptlds.
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Theorem 6.3. When &x,n) is a symbol in %l(IR{“ x R") for some de R and ¢ € Cy(R")

equalsl around the origin, then the associated tyhd-operators é,l) (x,D) and a{us) (x,D) are
everywhere defined continuous linear maps

al))(x,D), aY) (x,D): .7/ (R") — &' (R"), (6.4)
that are given by formulas.8)and (5.10), where the infinite series converge rapidly.# (R")
for every ue ./(R"). The adjoints are also imP(Sil(R“ x RM)).
If furthermore dx,n) fulfils (2.25) these conclusions are valid verbatim for the operator
afﬁ) (x,D), except that it is given by the series(;9).

Proof. As the symbol&a{? (x,n) andaff) (x,n) both belong tcSil and fulfil (2.25) by Proposi-
tion 5.5, the corresponding operators are defined and agnimon”’(R") by Proposition 4.2,
with a® (x,D)* anda® (x,D)* both of type 11.

As supp?x_mza(z) C supp%y_.¢4a, the preceding argument also appliesaf@(x, D) when
a(x,n) satisfies (2.25).

Moreover, the serie§ ¥ ,a“"(x,D)uy in (5.8) converges rapidly in”” for everyu ¢ ..
This follows from T of Lemma A.1, for the terms fulfil (A.1) and (A.2) by Propositi 5.2, cf
(5.14), and Proposition 6.1, respectively. (The latteegia bound by 'gN+d+) (14 |x|)N+d+ )

Similarly Lemma A.1 yields convergence of the series (5f0)al® (x,D)u whenu € ..
In view of Proposition 5.3 and Proposition 6.2, convergenictae series foa(? (x, D)u in (5.9)
also follows from Lemma A.1.

To identify these series with the operators it remains tdyappoposition 5.6. O

It should be emphasized that duality methods and pointvagenates contribute in two differ-
ent ways in Theorem 6.3: once the symhbd) (x, ) has been introduced, continuity o’ (R")
of the associated type 1-operatoa'l) (x,D) is obtained by duality through Proposition 4.2. But
the pointwise estimates in Section 3 yield (vanishing ofrdmainder terms, hence) the identifi-
cation ofa® (x,D)u with the series in (5.8). Furthermore, the pointwise estésalso give an
explicit proof of the fact thaa(™) (x, D) is defined on the entire”’ (R"), for the right-hand side of
(5.8) does not depend on the modulation functipnSimilar remarks apply ta® (x,D). Thus
duality methods and pointwise estimates together lead ézpat analysis of type 1-operators.

Remark6.4. Theorem 6.3 generalises a result of Coifman and Meyer [MC97 16hin three
ways. They stated Lemma A.1 féy = 6; = 1 and derived a corresponding fact for paramulti-
plication, though only with a treatment of the first and thedm.

Changing focus back to the given opera&dx, D), one can by means of (5.7) restate Theo-
rem 6.3 as follows:

Theorem 6.5.When a& Sil(R” x R") fulfils the twisted diagonal conditiof2.25) then the as-

sociated typd, 1-operator gx,D) defined by vanishing frequency modulation is an everywhere
defined continuous linear map

a(x,D): .'(R") — .'(R"), (6.5)
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with its adjoint &x,D)* also inOP(S{ ;(R" x R")). The operator fulfils

a(x,D)u= a&,l) (X, D)u-|-afﬁ) (X, D)u+afﬁ)(x, D)u (6.6)

for everyy € C§(R") equal tol in a neighbourhood of the origin, and the serieg#8), (5.9),
(5.10)converge rapidly in’(R") for every ue ./ (R").

For generala(x,D), Theorem 6.3 at least shows that) (x, D)u and a® (x, D)u are always
defined. So, by accepting that the operator notaﬂ@?(x, D)u has not yet been justified in all
cases, the theorem also gives

Corollary 6.6. For a(x,n) in %1(]1%” x R") a distribution ue .#/(R") belongs to the domain
D(a(x,D)) if and only if the series for @ (x,D)u in (5.9) converges inz’(R").

6.3. The twisted diagonal condition of arbitrary order. The above results will now be ex-
tended to the more general situation whafe ) is in %1, which by Theorem 4.3 means that
fulfils the twisted diagonal condition of arbitrary real erdo in (2.31). The estimates there en-

ter the convergence proof faf? (x, D)u directly. The full generality with8y < 64 in the corona
criterion Lemma A.1 is needed now, but does not alone sufficéhis case.

Theorem 6.7. Suppose &, ) in §f’1(R“ x R"), ie a(x,n) fulfils one of the equivalent condi-
tions in Theorem 4.3. Then the conclusions of Theorem 6.adicéfor a(x, D), and furthermore

the typel, 1-operatorOP(aff) (x,n)) is given by the infinite series fo{f&(x, D)u in (5.9).
Proof. The continuity on¥” is assured by Theorem 4.6. For the convergence of the sariks i
paradifferential splitting, it is convenient to write, ine notation of (2.31) ff,

a(X7r’) = (a(X,r]) _aX,l(X7r,>) +aX,l<X7r,>7 (67)

wherea— ay 1 satisfies (2.25) foB = 1, so that Theorem 6.5 applies to it. Ag 1 isin % like
aanda—ay 1 (the latter by Proposition 4.2), one may reduce to the casgioh

a(x,n) #0 = max1,|& +n|) <|n|. (6.8)

Continuing under this assumption, it is according to Corgll&i6 enough to show for all
u e .’ that there is convergence of the two series

[ee]

Y (@ —a")(x,D)u, i a(x, D) (UL — UMy, (6.9)
o =1

Since the distributions here are functions of polynomiavgh by Proposition 6.2, it suffices to
improve the estimates there; and to do solfer h, respectivelyk > 2.
Using Hormander’s localisation to a neighbourhood%f, cf (2.28)—(2.30), one arrives at

A x.e(€:m) = a(&,MP(2 &)X (& +n.en). (6.10)
This leaves the remaindék(x, n) = ax(X,n) — ax . (X,n), that applied to the above difference
v = Ukl geh = 212k — p(2h-k))i) gives
(X, D)Vk = 3 x.& (X, D)V + b (X, D) Vi (6.11)
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To utilise the pointwise estimates, S¥t= order,(li) and takey € Co(R") equal to 1 in a
neighbourhood of the corong2~1~" < |n| < 1 and equal to 0 outside the set wig2 2" <

In| < 2. Taking the dilated functio(n /(R2X)) as the auxiliary function in the symbol factor,
the factorisation inequality (3.1) and Theorem 3.2 give

|8k .6 (% D)Vi(X)| < Fa, . (N, R x)vie(N, R2¥; x)

N+[n/2]+1

< (%) |(R2)I"/2D 84y o o(x,n)[2dn)Y/2.

\a|:0 /rzkh2§n§R2k+l

(6.12)

Here the ratio of the limits isR/(r2="=-2) > 32, so with extension ttn| € [R2k+1-L Rk
there isL > 6 dyadic coronas. This gives an estimatedfR2¥)9LY/?N, ; 4 (a). In addition,
Minkowski’s inequality gives

. d
Ny.e.a (@) < suppl®~¢ /R 2% (2y)( Dfay.e(x—Y, n)lzp—'ZW 2dy < cNy.e.a().

p>0 p<[n|<2p
(6.13)
So it follows from the above that
lax e DV S | (NRESX) (5 caoe® MHIONLY2(RYY (6.14)

la|<NFTn/2]+1
Using Lemma 3.1 and taking= 29, say for6 = 1/2 this gives
3y 5 10 (X D)(X)| < c(1+ |x|)N2Klo-1-2d-3N)/2 (6.15)
Choosingo > 3N +2d + 1, the serie$ \(ax . (X,D)vk, ¢ ) converges rapidly fop € .7

To treaty o bk(x,D)v it is observed thaﬁk%sze (x,n) = a(x,n) holds in the set where
X(&+n,27%n) =1, thatis, when 2mag4, |€ + n|) < 27*%|n|, so by (6.8),

suppby € {(£,n) | 2717 |n| <max(1,|€ +n|) <|n|}. (6.16)

This implies by Theorem B.1 th&@t = & + n is in supp# by(x, D)v only if both
1] < |n| <R (6.17)
max(L,{]) > 2717 || > r2-0-h-2, (6.18)

Whenk fulfils 241-6) > 22 /r 5o that the last right-hand sideis1, these inequalities give
(r27"2)2x1-6) < 17| < R2X. (6.19)

This shows that the corona condition (A.1) in Lemma A.1 idilfed for 6o=1— 60 =1/2 and
61 =1, and the growth condition (A.2) is easily checked sincélagt, ¢ (x, D)vi anday(x, D)v
are estimated by*N+9+) (14 |x|)N*+d+ as can be seen from (6.15) and Proposition 3.6, respec-
tively. Hencey by (x, D)vi converges rapidly.

For the series o |((ak —a“ ") (x,D)u, ¢ )| it is not complicated to modify the above. In-
deed, the pointwise estimates of tijgare easily carried over ta;, for R2X was used as the



TYPE 1,1-OPERATORS ON SPACES OF TEMPERATE DISTRIBUTIONS 31

outer spectral radius ofi; andr2<-"-1 may also be used as the inner spectral radiugofin
addition the symbosk — ak~"" can be treated by replacing(2%&) by W(27%&) —w(2"k&) in
(6.10) ff., for the use of Minkowski's inequality will now gé the factor/ |W — ¥(2".)|dy in the
constant. The treatment bf(x, D)vx may be used verbatim for

br(x, D)uy = (& — & M) (x, D)uy — (& — & M), ¢(x, D)uy. (6.20)
Concerning the remainder terms, one can now simply carry theabove arguments to each
term in the primed sums in (5.32). Indeed, fo= m+1 the functiond(2-X¢) in (6.10) should
then be replaced by (2 ™&)d(2-™-&), whereas invi the Fourier multiplier should now be
Y2~ (p(21=m) — @(2"-1=M.)). Ignoring the localisations provided by(2-™.), these
changes only give other constants, so the contributionkbgoas to (6.10) ff. tend to O for a
large o, respectively by Remark A.2. The first primed sum in (5.32) lba similarly treated. [

The detailed analysis in Theorem 6.7 is exploited in the segtion.

7. Lp-ESTIMATES

As another application of the paradifferential splittifsg7), it would be natural to explain how
it leads to boundedness afx, D) in the scale of Sobolev spacel§ = OP((1+ |- 2)75/2)Lp

However, because of the Littlewood—Paley analysis thakt failow, it requires almost no
extra effort to cover the more general Besov spaB%c? and Lizorkin—Triebel spaceléﬁq. Itis
recalled that there are well-known identifications such as

Hp=Fs, for 1<p<oo, (7.1)
Ci=B%. for seR, (7.2)
whereC? denotes the Blder—Zygmund spaces, defined eg as idif®¥, Def. 8.6.4].
Example 7.1.In the F5,-scale, f(t) = z‘f:oZ*jdeizjt belongs locally toFS,(R); cf [Joh08b,
Rem. 3.7]. This is for 6< d < 1 a variant of Weierstrass’ nowhere differentiable funatio

Homogeneous distributions were characterised wB@y?scale in Prop. 2.8 of [Joh08a]: when
ue 2'(R") is C* on R"\ {0} and homogeneous of degrae C there (cf [Hr85, Def 3.2.2]),

then (atx = 0) u is locally in Bp+Rea(IRi”) forO<p<ow.If -n<Rea<O0andpe]— o]

%7
thenu e Bp+Rea( R"); this holds also forp = « if Rea = 0. These conclusions are optimal
with respect tos and g, unlessu is a homogenenous polynomial (the only case in which

n

C®(R")). Eg & € BJ. while a quotient of two homogeneous polynomials of the saewget,
sayP(x)/Q(x) is locally in Bj e for 0 < p < co.

To invoke theBS and ng scales is natural in the context, for it was shown in [Joh6AQ3]
that every type ;L'L operatora(x D) of orderd € R is a bounded map

a(x,D): F 1(RM) = Lp(R") for 1< p<o. (7.3)

BecauseBd 1C F"'l is a strict inclusion forp > 1, this sharpened the borderline analysis of
Bourdaud [Bou88a] (7.3) was moreover proved to be optimtliwthe B - and Fs, -scales.
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To recall the definition 0B} ; andFS, let 1= Yi—o®j(n) be aLittlewood—Paley partition of

unity with ®j = ®(271.) for ® = W — Y(2.), thoughdg = W, wherebyW € C3(R") equal to 1
around the origin is fixed; cf (5.3). Usually it has been regdithat sup@ should be contained
in the corona With% < |&| < 2; but this restriction is avoided here in order thatcan be taken
equal to an arbitrary modulation function enteriag, D). That this is possible can be seen by
adopting the approach in eg [Yam86, JS08]:

WhenW is fixed as above, then the spaces are defined R and p,q €]0, ] as follows,
when || - ||, denotes the (quasi-)norm of the Lebesgue spag®") for 0 < p < o and|| - [l
stands for that of the sequence sp&géNo),

B q(R") = {ue /(") | [|{2°1]@; (D)u() [ p} o], < 0} (7.4)
FSq(R") = {ue .7/ (R") | [[[{250;(D)u}olliy ()], < o0} (7.5)

Throughout it will be understood th@it< o when Lizorkin-Triebel spacés; , are considered.

In the definition the finite expressions are normsyog > 1 (quasi-normsijp< 1 org<1).
In generalu — ||ul|* is subadditive fol < min(1,p,q), so|f —g||* is a metric.

This implies continuous embeddings — Bs — . and. — Fs — . in the usual way,
thence completeness (cf [JSO07, Tri83]). There are smp@ehhngsl: 0.4 Ff for § < sand
arbitraryq,r, or for s = swhenr > g. Similarly for BS D"

Invoking a multiplier result, one finds a dyadic ball and awariterion:

Lemma 7.2. Let s> max0, 5 —n) for 0 < p < o and 0 < g < « and suppose juc . (R")
such that, for some A O,

suppZu; C B(0,A2)),  F(g):= ||(izsiq\uj(.)y<1)é||p < o, (7.6)

Theny_ou;j converges in/’(R") to some e F5, (R") forr >q, r>
for some c> 0 dependingonn, s, pandr.

When moreovesuppZu; C {& | A7121 < || < A21} for j > J for some 3> 1, then the
conclusions are valid for all s R and r=q.

s, and [ullrs, < cF(r)

This is an isotropic version of [JS08, Lem. 3.19-20], whéeproof is applicable for arbitrary
Littlewood—Paley partitions, though with other constantd’ is such thaR > 2. Alternatively
the reader may refer to the below Proposition 7.7, where tbef@lso covers the sufficiency of
(7.6) and in special cases gives the last part of Lemma 7.28s w

From Lemma 7.2 it follows thafgq is independent of the particular Littlewood—Paley decom-
position, and that different choices lead to equivalensguarms.

The functionsu, = ®(2-D)u will play a central role below because their maximal funeio
Uy are controlled in terms of the Lizorkin—Triebel noffn[s, as follows: for 0<t <« there is
an estimate, cf[Yam86, Thm. 2.10], in terms of the modifieddye.ittlewood maximal function

given by Miuk(X) = SURo(r " fix_yj<r [UY)[*dY),
U (N, R2 %) < Ui (,R29%) < cMyu(x), N >n/t. (7.7)
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So fort < min(p,q) the Fefferman-Stein inequality (cf [Yam86, Thm. 2.2]) diela basic in-
equality valid for theu; = uf(N,R2%,-) and anys € R,

ki
L0 ax<c [ iz Ifax<c [ 2% IR dx=cluly,.  (78)

As general references to the theory of these function sptteseader is referred to the books
[RS96, Tri83, Tri92]; the paper [Yam86] gives a concise gatriopic) presentation.

Remark7.3. As an alternative to the techniques in Section 3, there issimate for symbols
b(x,n) in Lyjoc(R?") N7 (R?") with support inR" x B(0,2¥) and suppZu C B(0,2¥), k€ N:

Ib(x,D)v(x)| < c||b(x, 2" n/tMtu( ), O<t<1l (7.9)

Mg
This is Marschall’'s inequality, it goes back to [Mar85, g.8nd was exploited in eg [Mar91];

in the above form it was proved in [Joh05] under the conditioat the right-hand side is in
L1joc(R") (cfalso [JS08]). Whilevku is as in (7.7), the homogeneous Besov norm of the symbol
is of special interest here. Itis defined in terms of a panitf unity 1=y, ®(2-1n), with

® asin (7.4), and (7.12) read witly overZ gives the norm. This yields the well-known dyadic
scaling property that

[b(x, 2% HBn/t_zk " ||b(x, HB% (7.10)

7.1. Basic estimates inL,. For general type JIl-operatorsa(x, D) one has the next result. This
appeared in [Joh05, Cor. 6.2], albeit with a rather sketclpfasation. Therefore a full proof is
given here, now explicitly based on Definition 2.1 and Set8o

Theorem 7.4.1fa € %l(R“ x R") the corresponding operator(& D) is a bounded map for all
s>max0,5-n),0<p,q< e,

a(x,D): nggd(R“) —F5(R"), p<o,r>q,r>n/(n+s), (7.11)
a(x,D): B%jad (R") — B3 4(RM). (7.12)

Here the twisted diagonal conditiq®.25)implies(7.11)and(7.12)for all s€ R and r=q.

Proof. Let ¢y denote an arbitrary modulation function, and recall thetioh from Section 5, in
particular (5.7) andR, r andh. It is exploited below that|u||paq can be calculated in terms of
the Littlewood—Paley partition associated with

ForaM(x,D)u= yp_,a"(x, D)ux andu € F§, the symbol factoF » can be handled with
a convolution estimate as in the proof of Proposition 3.6, so

[a"(x, D)uk(¥)] < Faen(N, RS X)U(N, R2; %) < el 7~ [ 1p(a) (R Tug(x).  (7.13)

Applying the norms of; andL, one has (ifg < o for simplicity’s sake)

L Xzsmwak ", D)uc(x)|% & dx < c2p(a)? ZZS*‘”kqu SR SNCER
R" =9



34 JON JOHNSEN

If N> n/min(p,q) here, itis seen from (7.8) that one has the bound in Lemmao¥ &lifs € R,
whilst the corona condition holds by Proposition 5.2, solémema gives

P
12 (%, D)ul|Es, < ¢ / Z 249 (x, D) ue(x)|%) 8 dX) P < ¢/ o (7.15)

In the contributiora® (x,D)u= 3%, a;(x,D)ul~" one has, cf (5.3),

- |
laj(x, DU "(x)| < Jz |aj (%, D)uk(X)| < i Fa; (N, R, X) U (N, R2 ). (7.16)
k=0 k=0

Here Corollary 3.4 gives the estimafg, < cyp(a)2~ M (R2€)9*M for k > 1, butk = 0 can be
incorporated by increasingy by a power ofR. The sum ovek can be treated by the well-
known elementary inequality £, 2%/9(5 o [bx|)? < ¢35 2519b; |9, valid for all bj € C and
0 < g < « provideds < 0; cf [Yam86]. ForM > s this gives

5 22 D)t (0 < iZ(S‘M”Wi o Pl@) (R M (N, R2¥ )

" (7.17)
< cp(a)® _gz(wd)lqu}*(N, R2!;x).
J:
By integration this clearly leads to
/ %zsl‘ﬂa (x,D)ul~N(x)[9)a dx) P < cp (@|( Z)Z (st iays Hp. (7.18)

Repeating the argument for (7.15) this gives® (x, D)ullrs, < C||U||F54dd.

In estimates ofal® (x,D)u the terms(ak — ak")(x,D)uy can be treated similarly to those

of a¥(x,D); then |.Z ~1(w — w(2"))||1 enters the constant instead [0 ~1y||;. Moreover,
ay(x, D) (U1 — M) = s1a(x,D)uk_| where each term is estimated by |, (N,R2¢';x),
analogously t@¥ (x,D)u; but the symbol factoF«(N, R24"; x) is now ¢(2-1)4), which con-
tributes to the constant by an extra factor of the faipit— 25'9)%/9. Altogether one has

ol

(/Rn(éozskq'(ak — &) (x, D)u(x) + a(x, D) (U~ = k)| %) 2 dx)
< Clzp(a)WkZ 25tk (x)9)3 |, (7.19)
=0

In case (2.25) holds, the last part of Proposition 5.3 arg) @how that the argument for (7.15)
applies mutatis mutandis. This givga'® (x,D)ullrs, < Clullssa. so foralls€ R,

lag (x, D)ullgs, < | Zz ||a(i)(x,D)u||F5_q < cp(a)||u||FSEd. (7.20)
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Otherwise the spectra are by Proposition 5 3 only containeialls, but the conditiors >
max(0, 5 —n) and those orr imply that |al®(x, D)ul[gs, < C||U||Fs+d, cf Lemma 7.2. This

gives the above inequality with replaced byr on the Ieft hand S|de
Thusay(x,D): FS+d For is continuous. Since” is dense inF5, for g < « (andF5.,, —

FS' for § <'s), there iS no dependence gn Henceu € D(a(x,D)) and the above inequalities
hold fora(x,D)u. This proves (7.11) in all cases.

The Besov case is analogous; one can interchange the ordgy afid /4 and refer to the
maximal inequality for scalar functions: Lemma 7.2 career to By , in a natural way for
0 < p< o with r =qin all cases; this is well known, cf [Yam86, Joh0s, JS08]. é@may also
obtain (7.12) by real interpolation of (7.11), cf [Tri83422], but only for 0< p < .) O

The borderline analysis in (7.3) is a little simpler than #t®ve. In fact, the proof in [Joh04,
Joh05] applies to the definition by vanishing frequency nlaiiton with the addendum that the
right-hand side of (5.7) does not dependrior u € Fg'l, because” is dense there.

By duality, Theorem 7.4 extends to operators that merelyl ke twisted diagonal condition
of arbitrary real order.

Theorem 7.5. Let &x,n) belong to the self-adjoint subclaﬁl(R” x R"), characterised in
Theorem 4.3. Then(g D) is a bounded map for all s R,

a(x,D): Fygd(R") = FS4(RM), 1<p<oo, 1<q< o, (7.21)
a(x,D): By(R") = B3 4(R"), 1< p<w, 1<qg< oo (7.22)

Proof. Whenp' + p = p'p andq +q = d'q, thenF3, is the dual ofF % oo since 1< p’ < » and
1<d < ; cf [Tri83, 2.11], the casgf =1 is covered by eg [FJ90 Rem. 5.14]. The adjoint

symbola*(x,n) is in %1 by assumption, so

a"(x,D): Fy S (R") — Fy S 9(RM) (7.23)

is continuous whenevers—d > max(O & —n) =0, ie for s < —d; this follows from Theo-

rem 7.4 sincgd’ > 1 andq > 1. The ad10|n1a*(x D)* is therefore boundeﬂS+O| — FS and it
equalsa(x,D) according to Theorem 4.6. Whes> 0 then (7.21) also holds by Theorem 7.4.
If d > 0 the gap withs € [—d, 0] can be closed sincax,D) = b(x,D)A! by Proposition 2.2
holds with At = OP((1+ |r7|2)t/2), t € R andb(x,n) = a(x,n)(1+|n|?) /2. The latter is of
order—1 fort = d+ 1, which gives (7.21) for als.
For theB 4 scale similar arguments apply, also for= . O

In casep = 2 = g, Hormander obtained boundednelsgx, D)ul| s < c||u||,;s.q for Schwartz

functionsu and alls€ R whenac §,. This was an immediate consequence obi89,
Thm. 4.1], but first formulated in [Br97, Thm. 9.4.2]. Obviously Theorem 7.5 gives a natu-
ral generalisation to thep-setting that relies on the definition of typeltoperators.

Specialisation of Theorems 7.4-7.5 to Sobolev ariber—Zygmund spaces, cf (7.1)—(7.2),
gives
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Corollary 7.6. Every &x,D) € OP(] ; (R" x R")) is bounded
a(x,D): HS(R") — HS([R"), s>0,1<p<o, (7.24)
a(x,D): CSH4(R") — CS(R"), s>0. (7.25)
This extends to all real s wheneveixan) belongs to the self-adjoint subclaéﬁl(R“ x RM).

7.2. Direct estimates for the self-adjoint subclass.To complement Theorem 7.5 with similar
results valid forp, g in ]0,1] one can exploit the paradifferential decomposition (5114 the
pointwise estimates used above.

However, in the results below there will be an arbitrarilyahioss of smoothness. The reason

is that the estimates @ffﬁ) (x,D) are based on a corona condition whichesymmetridn the
sense that the outer radii grow faster than the inner onest i$hthe last part of Lemma 7.2 will
now be extended to serigsu; fulfilling the more general condition, where<06 <1 andA>1,

suppZup C {& [ [§| <A}, for j>0,

suppZuj C {& | z2 < [&|<A2l} forj>J>1.
This situation is probably known to experts in function ggdut in lack of a reference it is
analysed here. The techniques should be standard, so tlaatipns will be brief.

The main point of (7.26) is tha u; still converges fos < 0, albeit with a loss of smoothness;
cf the cases below witd < s. Actually the loss is proportional tGl — 6)/6, hence tends to

for 8 — 0, which reflects that convergence in some cases fail§ fer0 (takeﬁj = %Lp cCy,
s=0,1<g< o).

(7.26)

Proposition 7.7.Let se R, 0< p< o, 0<g<o, Je N and0 < 6 <1 be given; with
q>n/(n+s) if s> 0. For each sequencgu;j)jcy, in =/ (R") fulfilling the corona condition
(7.26)together with the bound (usual modification foegw)

Fom (S 20 ()[04, <o (7.27)
I3, ool

the seriesy o uj converges in/’(R") to some we F&Q(R”) with
|ul[z¢ <cF, (7.28)
p.q

whereby the constant ¢ also depends gnvhich one can take ag s s for 6 = 1, or in case
0 < 6 < 1, take to fulfil

s =s for s>max0,§5-n), (7.29)

s<s/6 for s<0,p>1qg>1, (7.30)
or in general

g <s—18(max0,5—n)—s),. (7.31)

(Here $ = s is possible by7.29)if the positive part(...), has strictly negative argument.)
The conclusions carry over toﬁ% for any q€]0, o] when Bi= (3542%19u; H%)% < oo,
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Remark7.8. The above restrictiong > n/(n+s) for s> 0 is not severe, for if (7.27) holds for
a sum-exponent in0,n/(n+s)], then the constark is also finite for anyg > n/(n+s), which
yields the convergence and an estimate in a slightly laigeces, cf the in Lemma 7.2

Proof. IncreasingA > 1, as we may, gives a reduction to the cdse 1: u= Y uj has the
contributions O+ ---+0+uUj+Ujy1+... and (Up+---+Uj—1) + 0+ ..., where the former
fulfils the conditions forJ = 1; the latter trivially converges, it fulfils (7.26) faf = 1 if A is
replaced byA2’ and (7.27) agiug+ - -+ Uy_1||p < J2SVF < w. Hencelul|.y < C(c+J2V)F
if C is the constant from the quasi-triangle inequality. a

Itis first assumed that= ¥ uy converges in”’. Then each terr®;(D) ¥ uy in the expression
for ”u”ng is defined; cf (7.5). Writing nowj(n) as®(2-/n) for clarity, one has

®(27'D) § w= y o2 D). (7.32)
k>0 j—h<k<[j/6]+h

In fact, (7.26) gives ah ¢ N such thatd (2 /D). Zu, = 0 forall k ¢ [j —h, 4 +h].
To proceed it is convenient to use Marschall’'s inequalifyRemark 7.3. This gives

|®(271D)u(x)| < ¢[|P(RV) )l gp Mtuk() for 0<t<1, (7.33)

wherebyv should be taken so large th&at0, R2") contains the supports @(2-1-) and; also
R > A can be arranged. Note that by Remark 7.3,

lo(R2" 1)l p =2V |o(R (7.34)
1t

I p -
By,

This is applied in the following for somee |0, 1] that also fulfilst < min(p,q), and the main
point is to show that, witl$' as in the statement, it holds in all cases that

(%zsjq,q, (277D) ¥ u(x)[%) Ve < ¢ ) 25Ky u (x)9) 7. (7.35)
J:

k>0 k=0

The easiest case is for0q < 1. As/q — /1 for suchq, one has

%2*0'\«1) (277D) ¥ w9 < % 2519 (27 1D)u ()|
= j— h<k<]/6+h

K>0
° (7.36)
<c 2519) | o(R2" 1) ||y Meui(x)°.
kZo 9k—h§zj§k+h By
Herev = j gives a constant foj > k, so the above is both faf ; 0 estimated by
¢y (h2ska ; 28 19+ =M (k=1)a) MUy (x)9. (7.37)
K=0 ok—h< j<k

For 8 = 1 the sum ovejj has a fixed number of terms, hence/ig29) for § = s; cf (7.35).
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Inthe case in (7.29) one may @s- n/(n+s) arrange thag' = s> { —n>max0, 5 —n, g —n)
by takingt sufficiently close to mifp,q). Then the geometric series above is estlmated by the
last term, hence i&'(25K9), as required in (7.35).

What remains of (7.31) are the cases in which max(0, 5 —n), that is

s<s<max0,§—ng—n<{-n  te]o,min(pq). (7.38)

By (7.31) a suitably smatl > 0 yieldss= 6s' + (1— 6)(} —n), and sinces’ — ({ —n) < 0 in the

above sum an estimate by the first term giva@(s 0+(1-0)(F-mkay — ¢ (pska)
For 1< g < = the inequality (7.35) follows by use ofdtder’s inequality in (7.32), for if
q-+q = qq, one can fos' < 0 use #5k-) as a summation factor to get

—j CI [J/Q +h k ]Slgq - J q 2-(%—1)]8/9(]/ ﬂ/
|®(27iD) kzouk )N9<c ; 2( |®(R2 }| MtUk< (e )Y (7:39)

Therefore the above procedure yields an estimatgbf, 2§1q1¢(2‘1 D) Sk=ouk(x)|9 by
)3 2K 0N,y (x)9(h+ Z 2=D(E-may < ¢ )3 2(5'9+(1*9)(?*n))qutUk(x)q, (7.40)
= 6k—h<j<k

which again gives (7.35) by using (7.31) to arrarsge S0 + (1— 6)({ —n) forat €]0,1[. By
making the last inequality strict for a slightly largerthe argument is seen to extend to cases
with 0 <s' < s <max0, 5 —n) by usings' — ({ —n) < 0 instead ofs’' in Holder's inequality.
In fact, one getsy 2( (<041 O)(F-mIka(n2h(T -1 4 (1+ h+k(1— 8)))Muk(x)%, which again is
0249 as the terrk(1— 6) is harmless by the choice bfor for 8 = 1). Hence (7.35) holds.
In cases = s> 0, cf (7.29), one may take— 1 4+-n> 0 (as forg < 1) now with 2k~ 1)(s-+n)/2
as a summation factor: then..)%9 = ¢/(1), so the factor in front oM;uy becomes
2siat(k=i)(s=F+na/2+(k-)+(F-Ma _ ¢ pska). (7.41)
Ok—h<j<k+h
For g = o a direct argument yields sup-norms weighted Sj/ and 2Xin (7.35).
By the choice ot, the Fefferman—Stein inequality applies to (7.35), cf,Adhence

(. (3, ZH12i(D) 3w 1dn P <o JIFu) L a0t =ck (7.42)

Convergence is trivial for the partial surn€” = y ;_,uj, hence fou™M —uM . So (7.42)
applies to(0,...0,Uny1,-..,Umm,0,...), which for q < « by majorisation form — o yields

Ju™ M) —y ™y < o / (3 22900 |9)P9dx PN 0. (7.43)
P L=
As Fgfq is completey uj converges to an elemeuntx) with norm < cF according to (7.42). For

g = o there is convergence in the larger spﬁggl/e since the constarit remains finite ifs,co
are replaced bg— 1, 1; and agaidl\uH,:gq < cF holds by (7.42).
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For the Besov case the arguments are analogous. First dfealilisolute value should be
replaced by the norm df}, in (7.36), that now pertains to€ g < min(1, p). Holder’s inequality
applies in this case if Ag+1/d = 1/ min(1, p); and (7.42) can be replaced by boundedness of
M in Lp for t < p. Convergence is similarly shown. O

Thus prepared, one arrives at a general result far®< 1.

Theorem 7.9.1f a(x, ) belongs to the self-adjoint subcla%l(]R{” x RM), the operator éx,D)
is bounded foO < p<1,0<q< oo,

a(x,D): F&Ed(R”) — F[iq(R”) fors <s< PN (7.44)
a(x,D): BS(R") — B 4(R") fors <s<l-n. (7.45)

Proof. The theorem follows by elaboration of the proof of Theorem. @8y applying the last
part of Theorem 7.4 to the differenee- a1, the question is again reduced to the case in which

a(&,n) # 0 only holds for mad, |€ +n|) < |n|; cf (6.8).

Under this assumptiora™ (x, D)u anda® (x, D)u are for alls € R covered by Theorem 7.4;
cf (7.20). Thus it suffices to estimate the series in (6.9)fifieed S < s < %— n; notice that
simple embeddings and Remark 7.8 gives a reduction to treegcas/(n+s) if s> 0.

Now 6 €]0,1] can be taken so small thdt< s— 199( p —N—s), which is the last condition

in Proposition 7.7 with 1 6 instead of6. Thene = 279 in (6.14) clearly gives
2K M) g 1 £ (%, DIVK(X)| < (N, R2K; x) 2K(S+d) o ~k6(0-1-N-M/6), (7.46)

Here one may first of all tak® > n/min(p,q) so that (7.8) applies. Secondly, since by assump-
tion a(x, n) fulfils the twisted diagonal condition (2.31) of any real erdo can for anyM (with
0 fixed as above) be chosen so that#9-1-N-M/8) < 1 This gives

(11245 My o (6 D) [, b < e [[[ 245N, R2S | '
< ([ 2592 P < g

Here the last inequality follows from the (quasi-)triangiequality in/q andL.
Since the spectral support rule and Proposition 5.3 immyah, - (X,D)vk also has its spec-

trum in B(0, 2R2X), the above estimate allows application of Lemma 7.®/ iis so large that

M>0 M+s>0 M+s>g5—n (7.48)

(7.47)

This gives convergence gfay , -« (X, D)V to a function inF55, M fulfilling
I z 8y 240 (X, D)Vi|| s < ]|Ul|gs:a (7.49)
K= A P, p.q

On the left-hand side the embeddiﬁgﬁo'\" — Fgq applies, of course.
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For the remainde¥ ., bi(x, D)vy, cf (6.10) ff, note that (7.47) holds fod = O with the same
o. If combined with (7.19), it follows by the (quasi-)triarginequality that

129 D)w)|[?, dx < [[[2%(x.D) ~ @ z-10(x. D)) |7, dx< clulP - (7.50)

In addition the series was previously shown to fulfil a coronadition with inner radius @)k
for all largek, cf (6.19), so Proposition 7.7 applies. By the choicéofthis gives

[oe]

1S bi(x, D)kaFng < cl|ullgs:o- (7.51)
k=1 ’

In a7’ (x, D)u the other contributior (a%(x, D) — ak~"(x, D))uy, cf (6.9), can be treated sim-
ilarly. This was also done in the proof of Theorem 6.7, wherparticular (6.14) was shown to
hold for (ak — akM), «(x, D)uk, with just a change of the constant. Consequently (7.46)esarr
over, and with (7.48) the same arguments as for (7.49), (&

IS (@ —a ™)y e (X D)ui|[psm + || S Bu(X,D)u|cy < clullgssa. (7.52)
K= Pt K= p.q P.a
Altogether the estimates (7.49), (7.51), (7.52) show that
i (x.D)ulley, < cllullgye- (7.53)

Via the decomposition (5.75y(x, D) is therefore a bounded linear mE@*d ng Since.
is dense foig < o (a case one can reduce to), there is no dependence on theataaéinction
Y, so the type 11-operatora(x, D) is defined and continuous tﬁﬁd as stated.

The arguments are similar for the Besov spaces: it sufficestéochange the order of the
norms infq andLp, and to use the estimate in (7.8) for each sirigle O

The proof extends to cases withOp < « whens' < s < max(0, % —n), but this barely fails
to reprove Theorem 7.5, so onfy< 1 is included in Theorem 7.9.

When taken together, Theorems 7.4, 7.5 and 7.9 give a satisfec,-theory of operators
a(x,D) in OP(§11), inasmuch as for the domad(a(x,D)) they cover all possiblg, p. Only
a few of the codomains seem barely unoptimal, and these atleto cases with & q< 1 or
0 < p< 1; cfthe parametersin Theorem 7.4 and’ in Theorem 7.9.

One particular interest of Theorem 7.9 is tFﬁLZ(R”) in addition identifies with the so-called
local Hardy spacé,(R") for 0 < p < 1; cf [Tri83] and especially [Tri92, Ch. 1.4]. In this
case Theorem 7.9 gives boundednassD): hp(R") — FEZ(R“) for everys < 0, but this can
probably be improved in view of recent results:

Remark7.1Q Extensions tohy(R") of operators in the self-adjoint subclass (@%1) were
treated by Hounie and dos Santos Kapp [HdSK09], who usediatestimates to carry over
the L,-boundedness of dtmander [F9r89, Hir97] to hy, ie to obtain estimates witf = s= 0.
However, they worked without a precise definition of typé-bperators. Torres [Tor90] obtained
extensions by continuity using the atomic decomposition$390], but fors < 0 he relied on
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conditions on the adjoird(x, D)* rather than on the symbalx, n) itself. In theF3 ,-scales, gen-
eral type 11-operators were first estimated by Runst [Run85], though msufficient control
of the spectra as noted in [Joh05] (a remedy is provided byeAdjx B).

Remark7.11 In addition to Theorem 7.9, its proof gives that wha(x,D) fulfils the twisted
diagonal condition of a specific order> 0, then for 1< p < oo

Bfmu F&q c D(a(x,D)) for s>-o0+[n/2]+2. (7.54)

While this does provide a result in the, set-up, it is hardly optimal; cf Brmander’s condition
s> —o for p=2, recalled in (2.34).

8. FINAL REMARKS

In view of the satisfying results on type I-operators in”’ (R"), cf Section 6, and the conti-
nuity results in the scaledy, C?, FS, andBj  presented in Section 7, their somewhat unusual
definition by vanishing frequency modulatlon in Definitiord Zhould be well motivated.

As an open problem, it remains to characterise the tydedperatorsa(x,D) that are ev-
erywhere defined and continuous off (R"). For this it was shown above to be sufficient that
a(x,n) isin ~ql(ﬂ%” x RM), and it could of course be conjectured that this is necessawell.

Similarly, since the works of Bourdaud andHnander, cf [Bou83, Ch. I1V], [Bou88a], [#t88,
Hor89] and also [Kr97], it has remained an open problem to determine

B(L2(R")) NOR(S} 4). (8.1)

Indeed, this set was shown by Bourdaud to contain the s@fracsubclass OFS ,), and this
sufficient condition led some authors to the misleadingestant that eg lack df,-boundedness
for OP(S; ) is “attributable to the lack of self adjointness”. But satfjointness is not necessary,
since already Bourdaud, by modification of Ching'’s operafo®), gave an example [Bou88a,
p. 1069] of an operatar(x,D) in B(L,) YOP(S ;\ §,); ie a(x,D)* is not of type 11.

However, it could be observed thad, ; (ag) = ﬁ(s”/z [al) for Ching’s symbolag by
Lemma 2.10, and that this is sharp for thg-unbounded version dodig(x,D) by the last part
of Example 2.11. So it is natural to consider the conditiange- 0,

Ny ¢, (@) = o(e"2-101), (8.2)
It is conjectured that this is necessary fgrcontinuity of a givera(x,D) in OP(ql)

APPENDIXA. DYADIC CORONA CRITERIA

As a general tool, convergence of a serjgs yu; of temperate distributions follows if the;
fulfil both a growth condition and have their spectra in sbigadyadic coronas. This follows
from Lemma A.1, which for§y = 6, = 1 was given by Coifman and Meyer [MC97, Ch. 15]
without arguments. (A proof of this case can be found in []J308

The refined version in Lemma A.1 allows the inner and outeil cdidhe spectra to grow at dif-
ferent exponential rates {2and #1), even though the number of overlapping spectra increases
with j. This is crucial here, so a full proof is given.
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Lemma A.1. 1° Let (uj)jen, be a sequence i’”’(R") fulfilling that there exist A~ 1 and
61 > 6 > 0 such thatsupplip  { & | |&] < A} while for j> 1

suppl; C { € | 2% < |&] < A2I81}, (A1)
and that for suitable constants €0, N > 0,
uj(x)] < C2INO (14 |x)N for all j > 0. (A.2)

Theny$_u;j converges rapidly in””(R") to a distribution u, for whichl is of order N .

2° For every ue ./ (R") both (A.1) and (A.2) are fulfilled for 6o = 6; = 1 by the functions
Up = ®o(D)u and y = ®(271D)u whendg, ® € CF(R") and 0 ¢ suppd. In particular this is
the case for a Littlewood—Paley decompositioa ®q + z‘f:l CD(Z_j £).

Proof. In 2° it is clear that® is supported in a corona, sg¥ | % <|&| <A} foralargeA > 0;
hence (A.1). (A.2) follows from the proof of Lemma 3.1.

The proof of T exploits a well-known construction of an auxiliary funatiotaking g €
Cg (R™) depending oné | alone and so that € ¢ < 1 with (&) =1 for |§| < 1/(2A) while
Yo(&) =0for|&| > 1/A, then

d 1
Sun) =Sy for w(E) =& Oun(d), (A.3)
which by integration for K t < o gives an uncountable partition of unity
_ T wEyat n
1= go@)+ [ wT Eer (A-4)

Clearly the support ofy(& /t) is compact and given bj|&| <t < 2A|&| when¢ is fixed. For
j > 1 this implies

A W2 Eodto, AR dt
Uj _uJ‘/-’O‘i'UJ/1 ‘/—’(?)T—UJ /2190 L,U(?)T (A.5)
Defining ; € C3(R") as the last integral hergj; = 1 on suppﬁj; soif¢ € .7,
2 7M 2 M 0.\71 N
(U, @) < [+ X572 ug | A+ X927 (y9) |, (A.6)
The first norm is¢’(2N%1) by (A.2). For the second, note that
suppyj C {& e R AT1210-1 < g < A2IBHDY (A7)

and||DY || < 2716191 D ||/ || for a # O while |||l < diam(@(R)) < 1 by (A.3). In
addition the identity( 1+ |x|?)N*".7~1 = .#—1(1— A)N+" gives for arbitraryk > 0,

1L+ }PNZ (g d)]|2

< 3y ca,BHD“ijmH(Hrsnk*”/zD%Hoo(/je1 r2dnt2. (A8)
|af,|B[EN-+n 2i%-1/A

Here|| D%yl = €(1), so because of the;-norm the above ig7(2-%%) for everyk > 0.
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Hence(uj, ) = 0(21(ON-8Y) sok > N6, /6 yields thaty$ 5(uj, ¢ ) converges. [

RemarkA.2. The above proof yields that the conjunction of (A.1) and jAplies (uj, ¢ ) =
¢(2=IN) for arbitrary N > 0, hence there isapid convergence ofi = > i—oUj in the sense that

(U=3j<kUj, 0) =3 jsk(uj, 0) = 0(2N) for N> 0, ¢ € .7 (R").

APPENDIXB. THE SPECTRAL SUPPORT RULE

To control the spectrum of — a(x,D)u, ie the support of — .#a(x,D)u, there is a simple
rule which is recalled heae for the reader’s convenience.
Writing .Z a(x, D).Z ~1(u) instead, it is clear the question is how the suppor#af is changed

by the conjugated operatoFa(x,D).Z 1. Since this has? (£,n) = (2m)"a(§ —n,n) as its
distribution kernel, cf (1.11), one should expect the spewstof a(x, D)u to be contained in

= :=suppX osuppZu={& € R"|3n € suppli: (§,n) € suppx }. (B.1)

This is indeed the case if suppu € R", as was proved in [Joh05], while in general one should
use the closur& instead, as shown in [Joh08b]:

Theorem B.1. Let a€ S7;(R" x R") and suppose & D(a(x,D)) is such that, for some €
Cg (R™) equalling1 around the origin{(2.4) holds in the topology of”’(R"). Then it holds that

suppZ (a(x,D)u) C =, (B.2)
=={&+n|(&n)esuppZ_ca nesuppZu}. (B.3)
When ue .7 ~1£'(R") the.#’-convergence holds automatically a&ds closed for such u.

The reader is referred to [Joh08b] for the deduction of treefthe kernel formula. Note that
it suffices to take any € Cg (R") with support disjoint frone and verify that

(Za(x,D).Z 1, v) = (#,vau) =0. (B.4)

Although the expression to the right makes sensg(as LAJ),%/, 1) (as noted in [Joh08b], using
the remarks to [l8r85, Def. 3.1.1)), itis in general not trivial to justify éffirst equality sign.

RemarkB.2. There is a simple proof of (B.2) in casec &' andae qo: Whenv is as above

and suppi is compact, (B.1) yields diupp’, supgve Ui)) > 0. So withUe = ¢ * U for some
¢ € C5(R") with $(O) =1, ¢ = "¢ (-/¢), all sufficiently smalle > 0 give

supp# [ supp @ Us = 0. (B.5)
Therefore one has, sinc&a(x,D).Z 1 is continuous ins’ andu; € Co(RM),

(Fa(x,D).Z 1, v) = lim (7 a(x D).Z g, v) = lim (., v Ug)=0.  (B.6)
E— £—
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The argument in Remark B.2 actually suffices for the appbeat of Theorem B.1 in the
present paper. Indeed, it is clear from Remark 5.1 that tmmmndsa"‘h(x, D)uk etc, that
appear in the paradifferential decomposition (5.7), all ba rewritten in terms of symbols in
S~ without changing the séef.

Further comments on Theorem B.1 can be found in Remark 5.4henidtroduction.
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