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TYPE 1,1-OPERATORS ON SPACES OF TEMPERATE DISTRIBUTIONS

JON JOHNSEN

ABSTRACT. This paper is a follow-up on the author’s general definitionof pseudo-differential
operators of type 1,1, in Hörmander’s sense. It is shown that such operators are alwaysdefined
on the smooth functions that are temperate; and moreover aredefined and continuous on the space
of temperate distributions, whenever they fulfil the twisted diagonal condition of Ḧormander, or
more generally when they belong to the self-adjoint subclass. Continuity inLp-Sobolev spaces
and Ḧolder–Zygmund spaces, and more generally in Besov and Lizorkin–Triebel spaces, is for
positive smoothness also proved on the basis of the definition. These continuity results are ex-
tended to arbitrary real smoothness indices for operators that fulfil the twisted diagonal condition
or belong to the self-adjoint subclass. With systematic Littlewood–Paley analysis the well-known
paradifferential decomposition is also derived for type 1,1-operators. The proofs are based on a
spectral support rule for pseudo-differential operators in combination with pointwise estimates in
terms of maximal functions.

1. INTRODUCTION

1.1. Background. Pseudo-differential operators of type 1,1 have almost from the outset been
shown to have rather special properties, due to initial investigations in 1972 in the thesis of
Ching [Chi72] and unpublished lecture notes of Stein (cf [Ste93]); and again in 1978 by Parenti
and Rodino [PR78].

A more substantial understanding of their theory and applications was obtained in the fol-
lowing decade through works of Meyer [Mey81a, Mey81b], Bony[Bon81], Bourdaud [Bou82,
Bou83, Bou88b, Bou88a], Ḧormander [Ḧor88, Hör89]; cf also the exposition in [Ḧor97, Ch. 9].
In recent years progress in the subject has been made by the author, with [Joh04, Joh05] devoted
to theLp-theory and the fact that Lizorkin–Triebel spacesFs

p,q are optimal for certain borderlines.
However, the first formal definition of general type 1,1-operators was given by the author

in [Joh08b] as the basis for a discussion of unclosability, hypoellipticity, non-preservation of
wavefront sets and spectral support rules. The present paper continues the work in [Joh08b] with
a much deeper study of type 1,1-operators onS ′(Rn) and its subspaces.

By definition, the symbola(x,η) of a type 1,1-operator of orderd ∈ R fulfils

|Dα
η Dβ

x a(x,η)| ≤Cα ,β (1+ |η |)d−|α |+|β | for x,η ∈ Rn. (1.1)

2000Mathematics Subject Classification.35S05,47G30.
Key words and phrases.Exotic pseudo-differential operators, type 1,1, twisted diagonal condition, paradiffer-

ential decomposition, spectral support rule, factorisation inequality, corona conditions.
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2 JON JOHNSEN

The corresponding operator isa(x,D)u= (2π)−n∫
e− i x·ηa(x,η)

∧
u(η)dη if u is a Schwartz func-

tion, ieu∈S (Rn). But for u∈S ′ \S it is a question to settle whetheru belongs to the domain
or not; for this purpose a general definition was presented in[Joh08b], cf (1.8) below.

The pathologies of type 1,1-operators are without doubt reflecting the fact that, mostinterest-
ingly, this operator class has important applications to non-linear problems.

This was first described around 1980 by Meyer [Mey81a, Mey81b], who discovered that a
composition operatoru 7→ F ◦ u = F(u) with F ∈ C∞, F(0) = 0, can be decomposed when
acting onu∈⋃

s>n/pHs
p(Rn) by means of a specificu-dependent symbolau(x,η) ∈ S0

1,1 as

F(u(x)) = au(x,D)u(x). (1.2)

He also showed thatau(x,D) is bounded onHt
r for t > 0, so the fact that the non-linear map

F(u) sendsHs
p into itself results at once from (1.2) fort = s andr = p — indeed, this celebrated

proof is particularly elegant for non-integers> n/p.
Secondly, it became clear at the same time that type 1,1-operators enter the paradifferential

calculus of Bony [Bon81] and the microlocal inversion for nonlinear partial differential equations
of the form

G(x,(Dα
x u(x))|α |≤m) = 0. (1.3)

This was explicated eg by Ḧormander, who devoted Chapter 10 of [Hör97] to this subject. The
resulting framework was used eg by Hérau [H́er02] in a study of hypoellipticity of (1.3).

Thirdly, type 1,1-operators were recently used by the author in the analysisof semi-linear
boundary problems [Joh08a]. Because of the novelty, this will now be sketched through a typ-
ical example: in a boundedC∞-region Ω ⊂ Rn (with normal derivativesγ ju = (~n ·∇) ju at the
boundary∂Ω, ∆ = ∂ 2

x1
+ · · ·+∂ 2

xn
), let u(x) solve the perturbedℓ-harmonic Dirichĺet problem

(−∆)ℓu+u2 = f in Ω, γ ju = ϕ j on ∂Ω, j = 0, . . . , ℓ−1. (1.4)

For such problems the parametrix construction of [Joh08a] yields the solution formula

u = P(N)
u (Rℓ f +K0ϕ0 + · · ·+Kℓ−1ϕℓ−1)+(RℓLu)Nu, (1.5)

where the parametrixP(N)
u is the linear map

P(N)
u = I +RℓLu + · · ·+(RℓLu)N−1 (1.6)

in which the exact paralinearisationLu of u2 is a main ingredient, with the sign convention
−Lu(u) = u2. (Rℓ, K0,. . . ,Kℓ−1 resolve the linear problem, cf the caseLu ≡ 0 in (1.5).)

Formula (1.5) shows directly that the regularity ofu will be uninfluenced by the non-linear
term u2: the parametrixP(N)

u is of order 0 for everyN, while the remainder(RℓLu)Nu will be
in Ck(Ω) for every fixedk if N is taken large enough (in both cases becauseRℓLu will have
negative order if the givenu has a certain weak a priori regularity). These inferences may be
justified using parameter domains as in [Joh08a].

Moreover, in subregionsΞ ⋐ Ω, extra regularity properties off carry over tou (eg, if f |Ξ is
C∞ so isu|Ξ). This also follows from (1.5), becauseLu factors through a type 1,1-operatorAu;
ie whenrΩ andℓΩ denote restriction to and a linear extension fromΩ,

Lu = rΩAuℓΩ, Au ∈OP(S∞
1,1). (1.7)
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Hence, by inserting cut-off functions supported inΞ into (1.5) in a well-known way, cf [Joh08a,
Thm. 7.8], thepseudo-localproperty ofAu in (1.7) leads to improved regularity ofu locally in
Ξ, to the extent permitted by the dataf .

However, the pseudo-local property of general type 1,1-operators was first proved recently by
the author in [Joh08b]. It was anticipated more than three decades ago by Parenti and Rodino
[PR78], who gave an inspiring but incomplete indication, asthey did not assign a specific mean-
ing to a(x,D)u for u∈S ′ \C∞

0 .
A rigorous definition of type 1,1 operators was first given in [Joh08b], taking into account

that in some cases they can only be defined on proper subspacesE ⊂ S ′(Rn). Indeed, it was
proposed in [Joh08b] to stipulate thatu∈ D(a(x,D)) and to set

a(x,D)u := lim
m→∞

OP(ψ(2−mDx)a(x,η)ψ(2−mη))u (1.8)

whenever this limit exists inD ′(Rn) for all the ψ ∈C∞
0 (Rn) with ψ = 1 in a neighbourhood of

the origin and does not depend on suchψ .
This unconventional definition, byvanishing frequency modulation, could be seen as a rewrit-

ing of the usual one, which is suitable for the present general symbols. (Clearly (1.8) gives back
the integral after (1.1) ifu∈S ; in casea∈Sd

1,0 this identification extends tou∈S ′ by duality.)
Formally it is reminiscent of oscillatory integrals, now with the proviso thatu∈D(a(x,D)) when
the regularisation yields a limit independent of the integration factor.

Of course the frequencies ofa(·,η) are not modified using an integration factor in the strict
sense here, but rather with the Fourier multiplierψ(2−mDx). This difference is emphasized
because the use ofψ(2−mDx) gives easy access to Littlewood–Paley analysis ofa(x,D).

The definition was also investigated in [Joh08b] from several other perspectives. Some of these
will be recalled further below, but briefly mentioned, (1.8)was proved to be maximal among the
definitions ofA = a(x,D) that is both compatible with OP(S−∞) and stable under the limit in
(1.8); egA is always defined onF−1E ′, it is pseudo-local but does change wavefront sets in
certain cases; andA transports supports via the distribution kernel, ie suppAu⊂ suppK ◦suppu
when u ∈ D(A) has compact support, with a similarspectralsupport rule for supp

∧
u recalled

Appendix B below (including general versions without compactness assumptions); cf (1.18).
For the Weyl calculus, Ḧormander [Ḧor88] noted that type 1,1-operators do not fit well, as

Ching’s operator can have discontinuous Weyl-symbol. Boulkhemair [Bou95, Bou99] showed
that insertion ofa(x,η) in Sd

1,1 into the Weyl operator
∫∫

ei(x−y)·ηa(x+y
2 ,η)u(y)dydη/(2π)n may

give peculiar properties. Eg, already for Ching’s symbol with d = 0, the real or imaginary part
gives a Weyl operator that is unbounded onHs for every s∈ R.

For more remarks on the historic development of the subject the reader may refer to Section 2.2
below. A more thorough presentation was given in the introduction of [Joh08b].

1.2. Review of present results.The purpose of this paper is to continue the general study in
[Joh08b] and support the definition in (1.8) with further consequences.

First of all this means to address the hitherto untreated question: under which conditions is a
given type 1,1-operatora(x,D) an everywhere defined and continuous map

a(x,D) : S ′(Rn)→S ′(Rn) ? (1.9)
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For this it is shown here to be sufficient thata(x,η) fulfils Hörmander’s twisted diagonal
condition, that is, the partially Fourier transformed symbol

∧
a(ξ ,η) = Fx→ξ a(x,η) should vanish

in a conical neighbourhood of a non-compact part of the twisted diagonal given byξ +η = 0 in
Rn×Rn; or more precisely, for someB≥ 1

∧
a(ξ ,η) = 0 when B(|ξ +η |+1) < |η |. (1.10)

It should perhaps be noted that
∧
a(ξ ,η) is a natural object to consider, as it is related (cf [Joh08b,

Prop. 4.2]) both to the kernelK of a(x,D) and to the kernelK of F−1a(x,D)F ,

K (ξ ,η) = (2π)−n∧a(ξ −η ,η) = (2π)−nF(x,y)→(ξ ,η)K(x,−y). (1.11)

More generally than (1.10), (1.9) is proved for thea(x,η) in Sd
1,1 that just satisfy Ḧormander’s

twisted diagonal condition of orderσ for all σ ∈ R. This means that for somecα ,σ ,

sup
x∈Rn, R>0

R|α |−d(∫
R≤|η |≤2R

|Dα
η aχ,ε(x,η)|2 dη

Rn

)1/2 ≤ cα ,σ εσ+n/2−|α | for 0 < ε < 1. (1.12)

In this asymptotic formula
∧
aχ,ε denotes a specific localisation of

∧
a(x,η) to the conical neighbour-

hood|ξ +η |+1≤ 2ε|η | of the twisted diagonal. The details behind this are given inSection 2.2,
where also the consequences of (1.10), (1.12) for Sobolev space continuity is recalled.

These two sufficient conditions for (1.9) should be completely new in the sense that the ques-
tion has, seemingly, been neither raised nor treated before.

It is also shown that everya(x,D) of type 1,1 is defined on the maximal space of smooth
functionsC∞ ⋂

S ′ . More precisely, it restricts to a map

a(x,D) : C∞(Rn)
⋂

S ′(Rn)→C∞(Rn). (1.13)

This relies on and improves an extension of Bourdaud [Bou88a] to the spaceOM(Rn) of slowly
increasing smooth functions. Since the map in (1.13) leavesOM invariant, it also completes the
earlier resulta(x,D) : S +F−1E ′→ OM of the author [Joh05, Joh08b].

The usefulness of the definition (1.8) is more substantial than this, for it furthermore allows
Littlewood–Paley analysis via the well-known paradifferential splitting with dyadic coronas (as
used by Bony [Bon81], details are given in Section 5),

a(x,D) = a(1)
ψ (x,D)+a(2)

ψ (x,D)+a(3)
ψ (x,D). (1.14)

This decomposition follows directly from the bilinearity with respect toψ in definition (1.8), as
was briefly mentioned in [Joh08b, Sect. 9]. But as accounted for here, all terms on the right-hand
side are also in OP(Sd

1,1) whena(x,D) fulfils (1.10) or (1.12) for allσ ∈ R.
Since the 1980’s splittings like (1.14) have been used in numerous proofs of continuity in

Sobolev spacesHs
p and Ḧolder–Zygmund spacesCs∗, or Besov and Lizorkin–Triebel scalesBs

p,q
andFs

p,q. For type 1,1 operators such techniques have been used by the author in [Joh04, Joh05,
Joh08b] and earlier by Bourdaud [Bou82, Bou83, Bou88a], Marschall [Mar91], Runst [Run85].

These works are followed up here with the first full proof (based on (1.8)) that every type
1,1-operatora(x,D) is bounded for alls> 0, 1< p < ∞

a(x,D) : Hs+d
p (Rn)→ Hs

p(Rn), a(x,D) : Cs+d
∗ (Rn)→Cs

∗(Rn); (1.15)
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and it is proved that this extends to everys∈R when the twisted diagonal condition of orderσ in
(1.12) holds for allσ ∈R. This gives a generalisation to theLp-setting of a result of Ḧormander
[Hör88, Hör89], who showed the extendability tos≤ 0 for p = 2 under the conditions (1.10) or
(1.12) for allσ .

The results in (1.15) are actually shown here as corollariesof similar results for the general
Bs

p,q andFs
p,q scales, including the extension tos≤ 0 when (1.12) holds for allσ . TheseLp-

results exploit both (1.14) and the discussion ofS ′-continuity after (1.9) in a natural way (large
parts of the proofs are the same), hence should be well motivated in this article.

However, the decomposition (1.14) is also interesting because it is a main source of operators
with the property (1.9). Indeed, botha(1)

ψ (x,D) anda(3)
ψ (x,D) always satisfy the twisted diagonal

condition in (1.10), hence are harmless in the sense that they are defined for allu∈S ′ by (1.9).
Therefore it is the ’symmetric’ terma(2)

ψ (x,D) which may causea(x,D)u to be undefined, as
was previously known eg foru∈ ⋃

sHs; cf [Joh05]. More precisely, the infinite series defining

a(2)
ψ (x,D)u need not converge for allu ∈ S ′ , but it is shown here to do so whenevera(x,η)

fulfils the twisted diagonal condition of orderσ for everyσ ∈ R.
In comparison convergence of the series fora(1)

ψ (x,D)u anda(3)
ψ (x,D)u is verified below for

all u ∈ S ′, a ∈ S∞
1,1. Thereby both the splitting (1.14) itself and the convenient infinite series

expressions have been carried over to the framework of type 1,1-operators.
Although the convergence results are hardly surprising, they rely on two techniques introduced

recently in works of the author. One is apointwiseestimate

|a(x,D)u(x)| ≤ cu∗(x), x∈ Rn, (1.16)

cf Section 3, in terms of the Peetre–Fefferman–Stein maximal function

u∗(x) =
|u(x−y)|

(1+R|y|)N , when supp
∧
u⊂ B(0,R). (1.17)

The other ingredient is aspectral support rule, that controls suppF (a(x,D)u) in terms of the
supports of

∧
u and ofK (ξ ,η); (1.11). Eg in case supp

∧
u is compact,

suppF (a(x,D)u)⊂ suppK ◦supp
∧
u =

{
ξ +η

∣∣ (ξ ,η) ∈ supp
∧
a, η ∈ supp

∧
u
}
. (1.18)

This was proved in [Joh04, Joh05] with a more general versionin [Joh08b]. The purpose is
to avoid elementary symbols, that were introduced by Coifmanand Meyer [CM78] because
suppF (a(x,D)u) is easy to control for these. Indeed, they are symbols given in the form
a(x,η) = ∑mj(x)Φ j(η) for a sequence(mj) in L∞ and a Littlewood–Paley partition of unity

1 = ∑Φ j , whenceFa(x,D)u = (2π)−n∑
∧
mj ∗ (Φ j

∧
u) is a finite sum for which the support rule

for convolutions yields a proof of (1.18) in this case. A review of (1.18) is given in Appendix B,
including an equally easy proof for arbitrarya∈ Sd

1,0.
However, elementary symbols are not just technically redundant because of (1.18), they would

also be particularly cumbersome to use in the context of type1,1-symbols, as (1.8) would lead
to a double-limit procedure. So in the proof of (1.14) and theLp-theory based on it, (1.18) yields
a significant simplification.
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Remark1.1. The spectral support rule (1.18) shows clearly that the roleof the twisted diagonal
condition (1.10) is to ensure thata(x,D) cannot change (large) frequencies in supp

∧
u to 0. In

fact, (1.10) means thatξ cannot be close to−η when(ξ ,η) ∈ supp
∧
a, which by (1.18) means

thatη ∈ supp
∧
u will be changed to the frequencyξ +η 6= 0.

Notation is settled in Section 2 along with basics on operators of type 1,1. In Section 3
the pointwise estimates are recalled from [Joh10a], and extended to a version for frequency
modulated operators. Section 4 gives a precise analysis of the self-adjoint part ofSd

1,1, relying
on the results and methods from Hörmander’s lecture notes [Ḧor97, Ch. 9]; with consequences
derived from the present operator definition. Littlewood–Paley analysis of type 1,1-operators is
treated systematically in Section 5. In Section 6 the operators resulting from the paradifferential
splitting (1.14) is further analysed, especially for theircontinuity onS ′(Rn). Estimates in spaces
over Lp are discussed in Section 7, including Sobolev and Hölder–Zygmund spaces as special
cases of Besov and Lizorkin–Triebel spaces. Section 8 presents a few open problems.

2. PRELIMINARIES ON TYPE 1,1-OPERATORS

Notation and notions from distribution theory, such as the spacesC∞
0 , S , C∞ of smooth

functions and their dualsD ′, S ′, E ′ of distributions, and the Fourier transformationF , will
be as in Ḧormander’s book [Ḧor85], unless otherwise is mentioned. Eg〈u, ϕ 〉 denotes the value
of a distributionu on a test functionϕ . The spaceOM(Rn) consists of the slowly increasing
f ∈C∞(Rn), ie the f that for each multiindexα and someN > 0 fulfils |Dα f (x)| ≤ c(1+ |x|)N .

As usualt+ = max(0, t) is the positive part and[t] denotes the greatest integer≤ t . In general,
c will denote a real constant specific to the place of occurrence.

2.1. The general definition of type 1,1-operators. The reader may consult [Joh08b] for an
overview of results on type 1,1-operators and a systematic treatment. The present paper is partly
a continuation of [Joh04, Joh05, Joh08b], but it suffices to recall a few facts.

The operators are defined, as usual, on the Schwartz spaceS (Rn) by

a(x,D)u = OP(a)u(x) = (2π)−n
∫

ei x·ηa(x,η)Fu(η)dη , u∈S (Rn). (2.1)

Hereby the symbola(x,η) is required to be inC∞(Rn×Rn), of orderd ∈R and type 1,1; ie for
all multiindicesα , β ∈ Nn

0 it fulfils (1.1), or more precisely has finite seminorms

pα ,β (a) := sup
x,η∈Rn

(1+ |η |)−(d−|α |+|β |)|Dα
η Dβ

x a(x,η)|< ∞. (2.2)

The Fŕechet space of such symbols is denoted bySd
1,1(Rn×Rn), or justSd

1,1. Along with a(x,D)
one has the distribution kernelK(x,y) = F−1

η→za(x,η)
∣∣
z=x−y, that isC∞ for x 6= y as usual; cf

[Joh08b, Lem. 4.3]. It fulfils〈a(x,D)u, ϕ 〉= 〈K, ϕ ⊗u〉 for all u, ϕ ∈S .
For arbitraryu∈S ′ \S it is a delicate question whether or nota(x,D)u is defined. To recall

from [Joh08b] how type 1,1-operators can be defined in general, note that the modified symbol
b(x,η) = ψ(2−mDx)a(x,η) is given by

∧
b(ξ ,η) = Fx→ξ b(x,η) = ψ(2−mξ )

∧
a(ξ ,η). (2.3)
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Definition 2.1. For a symbola(x,η) in Sd
1,1(R

n×Rn) and arbitrary cut-off functionsψ ∈
C∞

0 (Rn) equal to 1 in a neighbourhood of the origin, let

aψ(x,D)u := lim
m→∞

OP(ψ(2−mDx)a(x,η)ψ(2−mη))u (2.4)

If for each suchψ the limit aψ(x,D)u exists inD ′(Rn) and moreover is independent ofψ , then
u belongs to the domainD(a(x,D)) by definition and

a(x,D)u = aψ(x,D)u. (2.5)

Thusa(x,D) is a mapS ′(Rn)→D ′(Rn) with dense domain.

Since the removal of high frequencies inx and η , that is achieved fromψ(2−mDx) and
ψ(2−mη), disappears form→ ∞, this was called definition byvanishing frequency modula-
tion in [Joh08b]. (Obviously the action onu is well defined for eachm in (2.4) as the modified
symbol is inS−∞.) Occasionally the functionψ will be referred to as amodulation function.

While the calculus of type 1,1-operators is delicate in general, cf [Hör88, Hör89, Hör97], the
following result is straightforward from the definition:

Proposition 2.2. When a(x,η) is in Sd1
1,1(R

n×Rn) and b(η) belongs to Sd2
1,0(R

n×Rn), then

c(x,η) := a(x,η)b(η) is in Sd1+d2
1,1 (Rn×Rn) and

c(x,D)u = a(x,D)b(D)u, (2.6)

where D(c(x,D)) = D(a(x,D)b(D)); that is, the two sides are simultaneously defined.

Proof. Thatc(x,η) is in Sd1+d2
1,1 can be verified in the usual way from symbolic estimates. For an

arbitrary modulation functionψ it is obvious from (2.1) that for everyu∈S ,

OP(ψ(2−mDx)a(x,η)ψ(2−mη))b(D)u = OP(ψ(2−mDx)a(x,η)ψ(2−mη)b(η))u. (2.7)

This extends to allu∈S ′ since the symbols are inS−∞ or Sd2
1,0. Moreover, form→ ∞ the limit

exists on both or none of the two sides for eachu∈S ′ , so in the notation of (2.4),

aψ(x,D)(b(D)u) = cψ(x,D)u. (2.8)

Now u∈D(c(x,D)) if and only if the right-hand side is independent ofψ , ie if the left-hand side
is so, which is equivalent tob(D)u∈ D(a(x,D)), ie to u∈ D(a(x,D)b(D)). ¤
Example 2.3.A standard example of a symbol of type 1,1 results by taking an auxiliary function
A∈C∞

0 (Rn), say with suppA⊂ {η | 3
4 ≤ |η | ≤ 5

4 }, andθ ∈ Rn fixed:

aθ (x,η) =
∞

∑
j=0

2 jde− i2 jx·θ A(2− jη). (2.9)

Clearlyaθ ∈ Sd
1,1 since the terms are disjointly supported.

Such symbols were used by Ching [Chi72] and Bourdaud [Bou88a] for d = 0, |θ |= 1 to show
L2-unboundedness. Refining this, Hörmander [Ḧor88] linked continuity fromHs with s>−r to
the property thatθ is a zero ofχ of orderr ∈ N0. Extension tod ∈ R was given in [Joh08b].
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The non-preservation of wavefront sets discovered by Parenti and Rodino [PR78] was also
based onaθ (x,η). Their ideas were in [Joh08b, Sect. 3.2] extended to alln≥ 1 and refined by
applyingaθ (x,D) to a productv(x) f (x ·θ), wherev∈F−1C∞

0 is an analytic function that con-
trols the spectrum, and the highly oscillatingf is Weierstrass’ nowhere differentiable function
for ordersd ∈ ]0,1], in acomplexversion with its wavefront set along a half-line. (Nowhere dif-
ferentiability was shown with a small microlocalisation argument, further explored in [Joh10b].)

Moreover, it was shown in [Joh08b, Lem. 3.2] thataθ (x,D) is unclosable inS ′ whenA is
taken to have support in a small neighbourhood ofθ . Therefore Definition 2.1 cannot in general
be replaced by a closure of the graph inS ′×S ′.

2.1.1. Action on functions with compact spectra.As a general result, it was shown in [Joh08b,
Sec. 4] that the subspaceS (Rn)+F−1E ′(Rn) always is contained in the domain ofa(x,D) and
that this is a map

a(x,D) : S (Rn)+F−1E ′(Rn)→ OM(Rn). (2.10)

In fact, if u = v+v′ is an arbitrary splitting ofu with v∈S andv′ ∈F−1E ′, it was shown that

a(x,D)u = a(x,D)v+OP(a(1⊗χ))v′, (2.11)

wherebya(1⊗ χ)(x,η) = a(x,η)χ(η) and χ ∈ C∞
0 (Rn) is chosen so thatχ = 1 holds in a

neighbourhood of suppFv′, but otherwise arbitrarily. Herea(x,η)χ(η) is in S−∞ =
⋂

Sd
1,1 so

that OP(a(1⊗χ)) is defined onS ′; and consequentlya(x,D)(F−1E ′)⊂OM(Rn).

Remark2.4. Occasionally it is useful that one can takeχ in (2.11) as a cut-off functioñχ fulfill-
ing that χ̃ = 1 only on a neighbourhood of the smaller set⋃

x∈Rn

suppa(x, ·)Fv′(·). (2.12)

Indeed, sincea(1⊗ χ) ∈ S−∞ it is clear from (2.1) that OP(a(1⊗ χ))v′ equals OP(a(1⊗ χ̃))v′
at least ifv′ ∈F−1C∞

0 (Rn), but this extends tov′ ∈F−1E ′ by mollification ofFv′.

It is a virtue of (2.10) thata(x,D) is compatible with, say OP(S∞
1,0). (Compatibility is dicussed

in general in [Joh08b].) Therefore some well-known facts extend to type 1,1-operators:

Example 2.5.Eacha(x,D) of type 1,1 is defined on all polynomials and

a(x,D)( ∑
|α |≤m

cαxα) = ∑
|α |≤m

cαDα
η (ei x·ηa(x,η))

∣∣
η=0 . (2.13)

In fact, since
∧
f (η) = (2π)n∑cα(−Dη)αδ0(η) has support{0} it is seen forv = 0 in (2.10) that

a(x,D) f (x) = 〈
∧
f , (2π)−nei〈x, · 〉a(x, ·)χ(·)〉 whereχ = 1 around 0; thence (2.13).

Example 2.6.Also whenA is of type 1,1, one can recover its symbol from the formula

a(x,ξ ) = e− i x·ξ A(ei x·ξ ). (2.14)

Here Fei〈 ·,ξ 〉 = (2π)nδξ (η) has compact support, so again it follows from (2.10) that (via a

suitable cut-off function) one hasA(ei〈 ·,ξ 〉) = 〈δξ , ei〈x, · 〉a(x, ·)〉= ei x·ξ a(x,ξ ).
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2.1.2. Extension to general smooth functions.To extenda(x,D) to more general sets of smooth
functions, it is useful to follow a remark by Bourdaud [Bou88b] on singular integral operators,
which shows that every type 1,1 symbola(x,η) induces a map̃A: OM(Rn)→D ′(Rn).

Indeed, Bourdaud defined̃A f for f ∈OM(Rn) as the distribution that onϕ ∈C∞
0 (Rn) is given

by the following, using the distribution kernelK and an auxiliary functionχ ∈C∞
0 (Rn) equal to

1 on a neighbourhood of suppϕ ,

〈 Ã f, ϕ 〉= 〈a(x,D)(χ f ), ϕ 〉+
∫∫

K(x,y)(1−χ(y)) f (y)ϕ(x)dydx. (2.15)

However, one may restate this in terms of the tensor product 1⊗ f in S ′(Rn×Rn) acting on
(ϕ ⊗ (1−χ))K ∈S (Rn×Rn), ie

〈 Ã f, ϕ 〉= 〈a(x,D)(χ f ), ϕ 〉+ 〈1⊗ f , (ϕ ⊗ (1−χ))K 〉, (2.16)

The advantage here is that both terms obviously makes sense as long asf is smooth and temper-
ate, ie for everyf ∈C∞(Rn)

⋂
S ′(Rn).

More precisely, forϕ with support in the interiorC ◦ of a compact setC ⊂ Rn andχ = 1 on
a neighbourhood ofC , the right-hand side of (2.16) gives the same value for anyχ̃ ∈C∞

0 equal
to 1 aroundC , for after subtraction the kernel relation implies that〈a(x,D)((χ − χ̃) f ), ϕ 〉 has
sign opposite to that of〈1⊗ f , (ϕ(χ̃ − χ))K 〉. Crude estimates now show thatÃ f yields a
distribution inD ′(C ◦), and theχ -independence implies that it coincides inD ′(C ◦⋂

C ◦
1 ) with

the distribution defined from another compact setC1. SinceRn =
⋃

C ◦ , the recollement de
morceauxtheorem yields that a distributioñA f ∈D ′(Rn) is defined by (2.16).

In relation to Definition 2.1, the above gives the point of departure for the new result that
a(x,D) always is a map defined on themaximalset of smooth functions, ie onC∞ ⋂

S ′:

Theorem 2.7.Every a(x,D) ∈OP(Sd
1,1(Rn×Rn)) restricts to a map

a(x,D) : C∞(Rn)
⋂

S ′(Rn)→C∞(Rn), (2.17)

which is given by(2.16)and maps the subspaceOM(Rn) into itself.

Proof. Let Am = OP(ψ(2−mDx)a(x,η)ψ(2−mη)) with kernelKm, soa(x,D)u= limmAmu when
u∈D(a(x,D)). With f ∈C∞ ⋂

S ′ andϕ,χ as above, this is the case foru= χ f ∈C∞
0 , and since

the support ofϕ⊗ (1−χ) is disjoint from the diagonal and bounded in thex-direction, [Joh08b,
Prop. 6.1] asserts that in the topology ofS (Rn×Rn)

ϕ(x)(1−χ(y))Km(x,y)−−−→
m→∞

ϕ(x)(1−χ(y))K(x,y). (2.18)

Exploiting these facts in (2.16) yields that

〈 Ã f, ϕ 〉= lim
m
〈Am(χ f ), ϕ 〉+ lim

m

∫∫
Km(x,y)(1−χ(y)) f (y)ϕ(x)dydx. (2.19)

Here the integral equals〈Am( f − χ f ), ϕ 〉 by the kernel relation, forAm∈OP(S−∞) and f may
as an element ofS ′ be approached fromC∞

0 . So (2.19) yields

〈 Ã f, ϕ 〉= lim
m
〈Am(χ f ), ϕ 〉+ lim

m
〈Am( f −χ f ), ϕ 〉= lim

m
〈Am f , ϕ 〉. (2.20)

ThusAm f → Ã f , which is independent ofψ . HenceÃ⊂ a(x,D) as desired.
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Moreover,Ã f is smooth becausea(x,D)( f χ) ∈S while the other contribution in (2.16) also
acts like aC∞-function: whenϕ̃ ∈C∞

0 is chosen to be 1 around suppϕ and supported byC ◦ , cf
the construction of̃A f , then the second term equals∫

〈 f , (ϕ̃(x)(1−χ))K(x, ·)〉ϕ(x)dx, (2.21)

wherex 7→ 〈 f , ϕ̃(x)(1−χ(·))K(x, ·)〉 is C∞ as seen in the verification thatg⊗ f ∈S ′(Rn×Rn)
for f ,g∈S ′(Rn). ThereforeÃ f is locally smooth, sõA f ∈C∞(Rn) follows.

When in addition f ∈ OM , then (1+ |x|)−2NDα Ã f is bounded for sufficiently largeN, for
whenr = dist(suppϕ,supp(1−χ)) one finds in the second contribution to (2.15) that

(1+ |y|)2N|Dα
x K(x,y)| ≤ (1+ |x|)2N max(1,1/r)2N(r + |x−y|)2N|Dα

x K(x,y)|
≤ c(1+ |x|)2N sup

x∈Rn

∫
|Dα

x (2∆η)Na(x,η)|dη ,
(2.22)

where the supremum is finite for 2N > d+ |α|+n whilst (1+ |y|)−2N f (y) is in L1 for largeN.
HenceÃ f ∈OM as claimed. ¤

In view of the theorem, the difficulties for type 1,1-operators are unrelated to growth at infinity
for C∞-functions. Moreover, the codomainC∞ in Theorem 2.7 is not contained inS ′ , but this
is consistent withD ′ as the codomain in Definition 2.1.

Example 2.8.The spaceC∞(Rn)
⋂

S ′(Rn) clearly contains functions of non-slow growth, eg

f (x) = ex1+···+xn cos(ex1+···+xn). (2.23)

Recall that f ∈ S ′ becausef = i D1g for g(x) = sin(ex1+···+xn), which is in L∞ ⊂ S ′ . But
g /∈OM , so already fora(x,D) = i D1 the spaceOM cannot contain the range in Theorem 2.7.

Remark2.9. In remarks prior to the proof of theT1-theorem, it was explained in [DJ84] that just
a few properties of the distribution kernel of a continuous map T : C∞

0 (Rn) → D ′(Rn) implies
thatT(1) is well defined modulo constants. In particular this was applied toT ∈OP(S0

1,1), but in
that case their extension is equal to the above of Bourdaud, so according to Theorem 2.7 it also
gives the same result as Definition 2.1.

2.2. Conditions along the twisted diagonal.As the first explicit condition on the symbol of a
type 1,1-operator, Ḧormander [Ḧor88] proved thata(x,D) has an extension by continuity

Hs+d → Hs for everys∈ R (2.24)

whenevera∈ Sd
1,1(R

n×Rn) fulfils the twisted diagonal condition: for someB≥ 1

∧
a(ξ ,η) = 0 where B(1+ |ξ +η |) < |η |. (2.25)

This means that the partially Fourier transformed symbol
∧
a(ξ ,η) := Fx→ξ a(x,η) vanishes in a

conical neighbourhood of a non-compact part of the twisted diagonal

T = {(ξ ,η) ∈ Rn×Rn | ξ +η = 0}. (2.26)
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Localisations to conical neighbourhoods ofT was also introduced by Ḧormander in [Ḧor88,
Hör89, Hör97]. Specifically this meant to pass froma(x,η) to aχ,ε(x,η) defined by

∧
aχ,ε(ξ ,η) =

∧
a(ξ ,η)χ(ξ +η ,εη), (2.27)

wherebyχ ∈C∞(Rn×Rn) is chosen so that

χ(tξ , tη) = χ(ξ ,η) for t ≥ 1, |η | ≥ 2 (2.28)

suppχ ⊂ {(ξ ,η) | 1≤ |η |, |ξ | ≤ |η |} (2.29)

χ = 1 in {(ξ ,η) | 2≤ |η |, 2|ξ | ≤ |η |}. (2.30)

Using this, Ḧormander analysed a milder condition than the strict vanishing in (2.25), namely
that for someσ ∈ R, it holds for all multiindicesα and 0< ε < 1 that

Nχ,ε,α(a) := sup
R>0, x∈Rn

R−d(∫
R≤|η |≤2R

|R|α |Dα
η aχ,ε(x,η)|2 dη

Rn

)1/2 ≤ cα ,σ εσ+n/2−|α |. (2.31)

This asymptotics forε → 0 always holds forσ = 0, as was proved in [Ḧor97, Lem. 9.3.2]:

Lemma 2.10.When a∈ Sd
1,1(R

n×Rn) and0 < ε ≤ 1, then aχ,ε ∈C∞ and

|Dα
η Dβ

x aχ,ε(x,η)| ≤Cα ,β (a)ε−|α |(1+ |η |)d−|α |+|β | (2.32)(∫
R≤|η |≤2R

|Dα
η aχ,ε(x,η)|2dη

)1/2 ≤CαRd(εR)n/2−|α |. (2.33)

The map a7→ aχ,ε is continuous in Sd1,1.

The last remark on continuity has been inserted here for later reference. It is easily verified by
observing in the proof of [Ḧor97, Lem. 9.3.2] (to which the reader is referred) that the constant
Cα ,β (a) is a continuous seminorm inSd

1,1.
For σ > 0 the faster convergence to 0 in (2.31) was proved to imply boundedness

a(x,D) : Hs+d(Rn)→ Hs(Rn) for s>−σ . (2.34)

The reader could consult [Ḧor97, Thm. 9.3.5] for this (and [Ḧor97, Thm. 9.3.7] for four pages
of proof of necessity ofs≥−supσ , with supremum over allσ for which (2.31) holds).

If
∧
a(ξ ,η) is so small alongT that (2.31) holds for allσ ∈R, consequently there is bounded-

nessHs+d → Hs for all s∈ R. Eg this is the case when (2.25) holds, for since

supp
∧
aχ,ε ⊂ {(ξ ,η) | 1+ |ξ +η | ≤ 2ε|η |}, (2.35)

clearlyaχ,ε ≡ 0 for 2ε > 1/B then.

Example 2.11.For the present paper it is interesting to use Ching’s symbol (2.9) to show the
existence of symbols fulfilling (2.31) for a givenσ ∈ N. To do so one may fix|θ |= 1 and take
someA(η) in C∞

0 ({η | 3
4 < |η |< 5

4 }) with a zero of orderσ at θ , so that Taylor’s formula gives
|A(η)| ≤ c|η −θ |σ in a neighbourhood ofθ .
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As
∧
a(x,η) = (2π)n∑∞

j=02 jdδ (ξ +2 jθ)A(2− jη), clearly

aθ ,χ,ε(x,η) =
∞

∑
j=0

2 jde− i x·2 j θ χ(η −2 jθ ,εη)A(2− jη). (2.36)

Because[R,2R] is contained in[3
42 j−1, 3

22 j−1]∪ [3
42 j , 3

22 j ] for some j ∈ Z, it suffices to estimate
the integral in (2.31) only forR= 3·2 j−2 with j ≥ 1. Then it involves only thej th term, ie∫

R≤|η |≤2R
|aθ ,χ,ε(x,η)|2dη =

∫
R≤|η |≤2R

R2d|A(η/R)|2|χ(η −Rθ ,εη)|2dη . (2.37)

By the choice ofχ , the integrand is 0 unless|η−Rθ | ≤ ε|η | ≤ 2εR and 1≤ εR, so for smallε ,∫
R≤|η |≤2R

|aθ ,χ,ε(x,η)|2dη ≤ ‖χ‖2
∞Rn+2d

∫
|ζ−θ |≤2ε

(c|ζ −θ |σ )2dζ ≤ c′ε2σ+nRn+2d. (2.38)

Applying (RDη)α before integration,(RDη)γ may fall onA(η/R), which lowers the degree and
yields (at most)εn/2+σ−|γ|. In the factor(RDη)α−γ χ(η −Rθ ,εη) the homogeneity of degree
−|α−γ| applies forεR≥ 2 and yields a bound in terms of finite suprema overB(θ ,2)×B(0,2),
hence isO(1); elseεR < 2 so the factor isO(R|α−γ|) = O(ε |γ|−|α |) when non-zero, as both
entries are in norm less than 4 then. Altogether this verifies(2.31). — A lower bound of (2.37) by
cε2σ+nRn+2d is similar (cf [Hör97, Ex. 9.3.3] forσ = 0 = d) when|A(η)| ≥ c0|η −θ |σ , which
can be obtained by takingA as a localisation of the right-hand side forevenσ (soA∈C∞); and
this shows that (2.31) cannot hold for larger values ofσ for this choice ofaθ (x,η).

3. POINTWISE ESTIMATES

A crucial technique in this paper will be to estimate|a(x,D)u(x)| at an arbitrary point of
Rn. The recent results on this by the author [Joh10a] are recalled here and further elaborated in
Section 3.2 with an estimate of frequency modulated operators.

3.1. The factorisation inequality. First of all, by [Joh10a, Thm. 4.1], when supp
∧
u is compact

in Rn, the action onu by a(x,D) can beseparatedfrom u at the cost of an estimate, which is the
factorisation inequality

|a(x,D)u(x)| ≤ Fa(N,R;x)u∗(N,R;x). (3.1)

Hereu∗ denotes the maximal function of Peetre–Fefferman–Stein type, defined as

u∗(N,R;x) = sup
y∈Rn

|u(x−y)|
(1+R|y|)N = sup

y∈Rn

|u(y)|
(1+R|x−y|)N (3.2)

when supp
∧
u⊂ B(0,R). The parameterN may eg be chosen so thatN≥ order

∧
u.

Thea-factorFa, also called the symbol factor, only depends onu in a vague way, viz. through
N andR. It is related to the distribution kernel ofa(x,D). More precisely

Fa(N,R;x) =
∫

Rn
(1+R|y|)N|F−1

η→y(a(x,η)χ(η))|dy, (3.3)

whereχ ∈C∞
0 (Rn) should equal 1 on a neighbourhood of supp

∧
u (or of

⋃
xsuppa(x, ·)∧u(·)).
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The estimate (3.1) is useful as both factors are easily controlled. Egu∗(x) is polynomially
bounded, for|u(y)| ≤ c(1+ |y|)N ≤ c(1+ R|y− x|)N(1+ |x|)N holds according to the Paley–
Wiener–Schwartz Theorem ifN≥ order

∧
u, R≥ 1, and by (3.2) this implies

u∗(N,R;x)≤ c(1+ |x|)N, x∈ Rn. (3.4)

Here it is first recalled that everyu∈S ′ has finite order as its value〈u, ψ 〉 on ψ ∈S fulfils

|〈u, ψ 〉| ≤ cpN(ψ), (3.5)

pN(ψ) = sup{(1+ |x|)N|Dαu(x)| | x∈ Rn, |α| ≤ N}. (3.6)

Indeed, forψ = ϕ ∈ C∞
0 an estimate of(1+ |x|)N on suppϕ shows thatu is of orderN. To

avoid the discussion whether the converse is true, it will throughout be convenient to call the
least integerN fulfilling (3.5) the temperateorder ofu, written N = orderS ′(u).

Returning to (3.4), when the compact spectrum ofu results from Fourier multiplication, then
the belowO(2kN)-information on the constant will be used repeatedly in the present paper.

Lemma 3.1. Let u∈S ′(Rn) be arbitrary and N≥ orderS ′(
∧
u). Whenψ ∈C∞

0 (Rn) has support
in B(0,R), then w= ψ(2−kD)u fulfils

w∗(N,R2k;x)≤C2kN(1+ |x|)N, k∈ N0, (3.7)

for a constant C independent of k.

Proof. Sinceψ(2−kD)u(x) = 〈 ∧u, ψ(2−k·)ei〈x, · 〉(2π)−n〉, continuity of
∧
u: S → C yields

|w(x)| ≤ csup
{

(1+ |ξ |)N|Dα
ξ (ψ(2−kξ )ei〈x,ξ 〉)| ∣∣ |α| ≤ N, ξ ∈ Rn}

. (3.8)

As |(1+ |ξ |)NDαψ(2−kξ )| ≤ c′2k(N−|α |), Leibniz’ rule yields that|w(x)| ≤ c′′2kN(1+ |x|)N .
Proceeding as before the lemma, the inequality follows withC = c′′max(1,R−N). ¤

The non-linear mapu 7→ u∗ is also bounded with respect to theLp-norm, which can be shown
in an elementary way; cf [Joh10a, Thm. 2.6].

Secondly, for thea-factor one hasFa ∈C(Rn)∩L∞(Rn) with estimates highly reminiscent of
the Mihlin–Hörmander conditions for Fourier multipliers:

Theorem 3.2. Assume the symbol a(x,η) is in Sd
1,1(R

n×Rn) and let Fa(N,R;x) be given by

(3.3)for parameters R,N > 0, with the auxiliary function taken asχ = ψ(R−1·) for ψ ∈C∞
0 (Rn)

equalling1 in a set with non-empty interior. Then it holds for all x∈ Rn that

0≤ Fa(x)≤ cn,N ∑
|α |≤N+[ n

2 ]+1

(∫
Rsuppψ

|R|α |Dα
η a(x,η)|2 dη

Rn

)1/2
. (3.9)

For the elementary proof of this the reader is referred to [Joh10a]; cf Theorem 4.1 and Sec-
tion 6 there. A further analysis of the dependence ona(x,η) and R was given in [Joh10a,
Cor. 4.6]:
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Corollary 3.3. Assume a∈Sd
1,1(R

n×Rn) and let N, R andψ be as in Theorem 3.2. When R≥ 1

there is a seminorm p on Sd
1,1 and a constant c> 0, depending only on n, N andψ , such that

0≤ Fa(x)≤ cp(a)Rmax(d,N+[n/2]+1) for all x ∈ Rn. (3.10)

Moreover, ifsuppψ is contained in a corona{η | θ0 ≤ |η | ≤ Θ0}, and ψ(η) = 1 holds for
θ1 ≤ |η | ≤ Θ1, whereby0 6= θ0 < θ1 < Θ1 < Θ0, then

0≤ Fa(x)≤ c0p(a)Rd for all x ∈ Rn, (3.11)

with c0 = cmax(1,θ d−N−[n/2]−1
0 ,θ d

0 ).

The above asymptotics forR→ ∞ is O(Rd) for larged. This can be improved whena(x,η)
has been subjected to modulation of the frequencies in thex-variable. With a second spectral
quantityQ > 0, the following was shown in [Joh10a, Cor. 4.8], cf Section 6 there:

Corollary 3.4. When aQ(x,η) = ϕ(Q−1Dx)a(x,η) for some a∈Sd
1,1(Rn×Rn) andϕ ∈C∞

0 (Rn)
with ϕ = 0 in a neighbourhood ofξ = 0, then there is a seminorm p on Sd

1,1 and constants cM ,
depending only on M, n, N,ψ andϕ , such that

0≤ FaQ(N,R;x)≤ cM p(a)Q−MRmax(d+M,[N+n/2]+1) for M,Q,R> 0. (3.12)

Here d+ M can replace the maximum when the auxiliary functionψ in FaQ fulfils the corona
condition in Corollary 3.3.

Remark3.5. The proof in [Joh10a] shows that the seminorm in Corollary 3.3may be chosen
in the same way for alld, namelyp(a) = ∑|α |≤[N+n/2]+1 pα ,0(a); cf (2.2). Similarly for Corol-
lary 3.4.

3.2. Estimates of frequency modulated operators.The results in the previous section easily
give the following, which is used repeatedly later in Sections 5 and 6.

Proposition 3.6. For a(x,η) in Sd
1,1(Rn×Rn), u,v ∈ S ′(Rn) and arbitrary Φ, Ψ ∈C∞

0 (Rn),
for whichΨ is constant in a neighbourhood of the origin and is supportedby B(0,R) for R≥ 1,
there is a c> 0 which for k∈ N0 and N≥ orderS ′(Fv) gives the polynomial bound,∣∣OP

(
Φ(2−kDx)a(x,η)Ψ(2−kη)

)
v(x)

∣∣≤ c2k(N+d)+(1+ |x|)N. (3.13)

Here the positive part(·)+ = max(0, ·) is redundant when0 /∈ suppΨ.

Proof. For the purposes of this proof it is convenient to letak(x,η) = Φ(2−kDx)a(x,η) and
vk = Ψ(2−kD)v. By the factorisation inequality (3.1), there is an estimate in terms of a product

|ak(x,D)vk(x)| ≤ Fak(N,R2k;x) · (vk)∗(N,R2k;x). (3.14)

Here, forN≥ orderS ′(
∧
v), Lemma 3.1 asserts that(vk)∗(N,R2k;x)≤C2kN(1+ |x|)N for x∈ Rn.

When 0/∈ suppΨ, the auxiliary functionχ = ψ(·/(R2k)) used inFak , cf Theorem 3.2, can
be so chosen that it fulfils the corona condition in Corollary 3.3. Since Remark 3.5 implies
p(ak)≤ p(a)

∫ |F−1Φ(y)|dy, there is by Corollary 3.4 withQ = 2−k an estimate

0≤ Fak(N,R2k;x)≤ c1‖F−1Φ‖1p(a)2kd, (3.15)



TYPE 1,1-OPERATORS ON SPACES OF TEMPERATE DISTRIBUTIONS 15

wherec1 depends onn, N only. These inequalities yield the claim in this case.
In generalvk = vk + vk−1 + · · ·+ v1 + v0, wherebyv j denotes the differencev j − v j−1 =

Ψ(2− jD)v−Ψ(2− j+1D)v. This gives the starting point

|ak(x,D)vk(x)| ≤ |ak(x,D)v0(x)|+
k

∑
j=1

Fak(N,R2 j ;x)v∗j (N,R2 j ;x). (3.16)

As Ψ̃ = Ψ−Ψ(2·) does not have 0 in its support, the above shows that with the samec1 one has
Fak(N,R2 j ;x) ≤ c1‖F−1Φ‖1p(a)2 jd for j = 1, . . . ,k. Lemma 3.1 also yields control ofv∗j , so
the sum on the right-hand side of (3.16) is estimated, ford+N 6= 0, by

k

∑
j=1

c1C
′p(a)2 j(N+d)(1+ |x|)N ≤ c1C

′p(a)(1+ |x|)N2(k+1)(N+d)+. (3.17)

This upper bound extends tod =−N becausea∈ Sd+ε
1,1 for ε > 0, for c1 is constant with respect

to d whilst Remark 3.5 gives that the seminorm inSd+ε
1,1 is ≤ p(a) asε → 0.

The remainder in (3.16) fulfils|ak(x,D)v0(x)| ≤ c1RN′
(1+ |x|)N for a largeN′; cf the first part

of Corollary 3.3 and Lemma 3.1. Altogether|ak(x,D)vk(x)| ≤ c2k(N+d)+(1+ |x|)N . ¤

4. ADJOINTS OF TYPE1,1-OPERATORS

4.1. The basic lemma.To show that the twisted diagonal condition (2.25) also implies conti-
nuity a(x,D) : S ′→S ′ , a lemma on the adjoint symbols is recalled. It was proved in [Hör88]
and [Hör97, Lem. 9.4.1], but given here in a slightly more precise form.

Lemma 4.1. When a(x,η) is in Sd
1,1(Rn×Rn) and for some B≥ 1 satisfies the twisted diagonal

condition (2.25), then the adjoint a(x,D)∗ = b(x,D) has the symbol b(x,η) = ei Dx·Dη a(x,η),
which is in Sd1,1(Rn×Rn) in this case and

∧
b(ξ ,η) = 0 when |ξ +η |> B(|η |+1). (4.1)

Moreover,

|Dα
η Dβ

x b(x,η)| ≤Cαβ (a)B(1+Bd−|α |+|β |)(1+ |η |)d−|α |+|β |, (4.2)

for certain continuous seminorms Cαβ on Sd
1,1(R

n×Rn), that do not depend on B.

In view of the lemma, ifa(x,D) fulfils the twisted diagonal condition (2.25), it obviouslyhas
the continuous linearextension b(x,D)∗ : S ′(Rn) → S ′(Rn). But it still has to be shown that
this coincides with the definition ofa(x,D) by vanishing frequency modulation:

Proposition 4.2. When a(x,η) ∈ Sd
1,1(Rn×Rn) fulfils (2.25), then a(x,D) is a continuous linear

mapS ′(Rn) → S ′(Rn) and it equals the adjoint of b(x,D) : S (Rn) → S (Rn), when b(x,η)
is the adjoint symbol as in Lemma 4.1.
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Proof. Whenψ ∈C∞
0 (Rn) is such thatψ = 1 in a neighbourhood of the origin, a simple convo-

lution estimate (cf [Joh08b, Lem. 2.1]) gives that in the topology of Sd+1
1,1 ,

ψ(2−mDx)a(x,η)ψ(2−mη)→ a(x,η) for m→ ∞. (4.3)

Since the supports of the partially Fourier transformed symbols

ψ(2−mξ )Fx→ξ a(ξ ,η)ψ(2−mη), m∈ N, (4.4)

are contained in suppFx→ξ a(ξ ,η), clearly this sequence also fulfils (2.25) for the sameB. As
the passage to adjoint symbols by (4.2) is continuous from the metric subspace ofSd

1,1 fulfilling

(2.25) toSd+1
1,1 , one therefore has that

bm(x,η) := ei Dx·Dη (ψ(2−mDx)a(x,η)ψ(2−mη))−−−→
m→∞

ei Dx·Dη a(x,η) =: b(x,η). (4.5)

Combining this with the fact thatb(x,D) as an operator on the Schwartz space depends continu-
ously on the symbol, one has foru∈S ′(Rn), ϕ ∈S (Rn),

(b(x,D)∗u|ϕ ) = (u| lim
m→∞

OP(bm(x,η))ϕ )

= lim
m→∞

(OP(ψ(2−mDx)a(x,η)ψ(2−mη))u|ϕ ).
(4.6)

As the left-hand side is independent ofψ the limit in (2.4) is so, hence the definition ofa(x,D)
gives that everyu∈S ′(Rn) is in D(a(x,D)) anda(x,D)u = b(x,D)∗u as claimed. ¤

The mere extendability toS ′ under the twisted diagonal condition (2.25) could have been
observed already in [Ḧor88, Hör97], but the above result seems to be the first giving a sufficient
condition for a type 1,1-operator to bedefinedon the entireS ′(Rn).

4.2. The self-adjoint subclassS̃d
11. Proposition 4.2 shows that the twisted diagonal condition

(2.25) suffices forD(a(x,D)) = S ′(Rn), but this condition is too strong to be necessary. A
vanishing to infinite order alongT should suffice.

In this section, the purpose is to prove thata(x,D) : S ′→S ′ is continuous if more generally
the twisted diagonal condition of orderσ , that is (2.31), holds for allσ ∈ R.

This will supplement Ḧormander’s investigation in [Ḧor88, Hör89, Hör97], from where the
main ingredients are recalled. Using (2.27) andFx→ξ it follows that inS ′(Rn×Rn),

a(x,η) = (a(x,η)−aχ,1(x,η))+
∞

∑
ν=0

(aχ,2−ν (x,η)−aχ,2−ν−1(x,η)). (4.7)

Here the terma(x,η)−aχ,1(x,η) fulfils (2.25) for B = 1, so Proposition 4.2 applies to it.
Introducingeε(x,D) as in [Hör97, Sect. 9.3] as

∧
eε(x,η) =

∧
aχ,ε(ξ ,η)− ∧

aχ,ε/2(ξ ,η) = (χ(ξ +η ,εη)−χ(ξ +η ,εη/2))
∧
a(x,η), (4.8)

it is useful to infer from the choice ofχ that

supp
∧
eε ⊂

{
(ξ ,η)

∣∣ ε
4|η | ≤max(1, |ξ +η |)≤ ε|η |}. (4.9)
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In particular this yields that
∧
eε = 0 when 1+ |ξ +η |< |η |ε/4, soeε fulfils (2.25) for B = 4/ε .

Hence the termse2−ν in (4.7) do so forB = 2ν+2.
The next result characterises thea∈ Sd

1,1 for which the adjoint symbola∗ is again inSd
1,1; cf

the below condition (i). Since adjoining is an involution, such symbols constitute the class

S̃d
1,1 := Sd

1,1∩ (Sd
1,1)

∗. (4.10)

Theorem 4.3.For a symbol a(x,η) in Sd
1,1(Rn×Rn) the following properties are equivalent:

(i) The adjoint symbol a∗(x,η) is also in Sd1,1(R
n×Rn).

(ii) For arbitrary N > 0 andα , β there is a constant Cα ,β ,N such that

|Dα
η Dβ

x aχ,ε(x,η)| ≤Cα ,β ,NεN(1+ |η |)d−|α |+|β | for 0 < ε < 1. (4.11)

(iii) For all σ ∈ R there is a constant cα ,σ such that for0 < ε < 1

sup
R>0, x∈Rn

R|α |−d(∫
R≤|η |≤2R

|Dα
η aχ,ε(x,η)|2 dη

Rn

)1/2 ≤ cα ,σ εσ+n
2−|α |. (4.12)

In the affirmative case a∈ S̃d
1,1, and there is an estimate

|Dα
η Dβ

x a∗(x,η)| ≤ (Cα ,β (a)+C′
α ,β ,N)(1+ |η |)d−|α |+|β | (4.13)

for a certain continuous seminorm Cα ,β on Sd
1,1(Rn×Rn) and a finite sum C′α ,β ,N of constants

fulfilling the inequalities in(ii) .

It should be observed that (i) holds fora(x,η) if and only if it holds fora∗(x,η) (neither (ii)
nor (iii) make this obvious). But (ii) immediately gives the(expected) inclusioñSd

1,1 ⊂ S̃d′
1,1 for

d′ > d. Condition (iii) is close in spirit to the Mihlin–Ḧormander multiplier theorem and is useful
for estimates, as shown later in Section 6.

Remark4.4. Conditions (ii), (iii) both hold either for allχ satisfying (2.31) or for none, for
(i) does not depend onχ . It suffices to verify (ii) or (iii) for 0< ε < ε0 for some convenient
ε0 ∈ ]0,1[ . This is implied Lemma 2.10 since every powerε p is bounded on the interval[ε0,1].

The theorem was undoubtedly known to Hörmander, who stated the equivalence of (i) and (ii)
explicitly in [Hör88, Thm. 4.2] and [Ḧor97, Thm. 9.4.2], in the latter with brief remarks on (iii).
Equivalence with continuous extensionsHs+d → Hs for all s∈ R was also shown.

However, the expositions there left a considerable burden of verification to the reader, and
especially since a decisive corollary to the proof will follow further below, complete details
should be in order here:

4.2.1. Equivalence of(ii) and (iii) . That (ii) implies (iii) is seen at once by insertion, taking
β = 0 andN = σ + n

2−|α|.
Conversely, note first that|ξ +η | ≤ ε|η | in the spectrum ofaχ,ε(·,η). That is,|ξ | ≤ (1+ε)|η |

so Bernstein’s inequality gives

|Dβ
x Dα

η aχ,ε(x,η)| ≤ ((1+ ε)|η |)|β | sup
x∈R

|Dα
η aχ,ε(x,η)|. (4.14)
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HenceCα ,β ,N = 2|β |Cα ,0,N is possible, so it suffices to prove (iii)=⇒ (ii) only for β = 0.
For the corona 1≤ |ζ | ≤ 2 Sobolev’s lemma gives forf ∈C∞(Rn),

| f (ζ )| ≤ c1( ∑
|β |≤[n/2]+1

∫
1≤|ζ |≤2

|Dβ f (ζ )|2dζ )1/2. (4.15)

Insertion ofDα
η aχ,ε(x,Rζ ) and substitutingζ = η/R, wherebyR≤ |η | ≤ 2R, R> 0,

|Dα
η aχ,ε(x,η)| ≤ c1( ∑

|β |≤[n/2]+1

R2|β |
∫

R≤|η |≤2R
|Dα+β

η aχ,ε(x,η)|2 dη
Rn )1/2

≤ c1( ∑
|β |≤[n/2]+1

R2d−2|α |C2
α+β ,σ ε2(σ+n

2−|α |−|β |))1/2

≤ c1( ∑
|β |≤[n/2]+1

C2
α+β ,σ )1/2εσ−1−|α |Rd−|α |.

(4.16)

HereRd−|α | ≤ (1+ |η |)d−|α | for d≥ |α|, that leads to (ii) asσ ∈ R can be arbitrary.
For |α|> d it is first noted that by the support condition onχ , clearlyaχ,ε(x,η) 6= 0 only for

2R≥ |η | ≥ ε−1 > 1. But R≥ 1/2 yieldsRd−|α | ≤ (1
3(1

2 +2R))d−|α | ≤ 6|α |−d(1+ |η |)d−|α |, so
(ii) follows from the above.

4.2.2. The implication(ii) =⇒ (i) and the estimate.The condition (ii) is exploited for each term
in the decomposition (4.7). Settingbν(x,η) = e∗2−ν (x,η) it follows from Lemma 4.1 thatbν is
in Sd

1,1 by the remarks after (4.9), cf (4.7) ff, and (4.2) gives

|Dα
η Dβ

x bν(x,η)| ≤Cα ,β (eν)2ν+2(1+2(ν+2)(d−|α |+|β |))(1+ |η |)d−|α |+|β |. (4.17)

Now (ii) implies thatCα ,β (aχ,2−ν )≤C′
α ,β ,N2−νN for all N > 0 (with other contantsC′

α ,β ,N as the
seminormsCα ,β may contain derivatives of higher order than|α| and|β |). HenceCα ,β (e2−ν )≤
C′

α ,β ,N21−νN . It follows from this that∑bν converges to someb in Sd
1,1 (in the Fŕechet topology

of this space), so thata∗(x,η) = b(x,η) is in Sd
1,1.

More precisely, (4.2) and the above yields forN = 2+(d−|α|+ |β |)+

|Dα
η Dβ

x a∗(x,η)|
(1+ |η |)d−|α |+|β | ≤ 2NCα ,β (a−aχ,1)+

∞

∑
ν=0

Cα ,β (e2−ν )2ν+2(1+2(ν+2)(d−|α |+|β |)+)

≤ 2NCα ,β (a−aχ,1)+
∞

∑
ν=0

16C′
α ,β ,N2−ν(N−1)2(ν+2)(d−|α |+|β |)+

≤ 2NCα ,β (a−aχ,1)+4N+2C′
α ,β ,N.

(4.18)

Invoking the continuity from Lemma 2.10 in the first term, thelast statement follows.
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4.2.3. Verification of (i) =⇒ (ii) . It suffices to derive another decomposition

a = A+
∞

∑
ν=0

aν , (4.19)

in which A∈ S−∞ and eachaν ∈ Sd
1,1 with

∧
aν(ξ ,η) = 0 for 2ν+1|ξ + η | < |ξ | and seminorms

Cα ,β (aν) = O(2−νN) for eachN > 0.
Indeed, whenχ(ξ +η ,εη) 6= 0 the triangle inequality gives|ξ +η | ≤ ε|η | ≤ ε|ξ +η |+ε|ξ |,

whence|ξ +η |(1− ε)/ε ≤ |ξ |, so that for one thing

∧
aχ,ε(x,η) = χ(ξ +η ,εη)

∧
A(x,η)+ ∑

2ν+1>(1−ε)/ε
χ(ξ +η ,εη)

∧
aν(x,η) (4.20)

Secondly, for each seminormCα ,β in Sd
1,1 one hasCα ,β (aν ,χ,ε)≤ ε−|α |Cα ,β (aν) by Lemma 2.10,

so by estimating the geometric series by its first term, the above formula entails that

Cα ,β (aχ,ε)≤Cα ,β (Aχ,ε)+ ∑
2ν+1>(1−ε)/ε

CN+|α |
ε |α |

2−ν(N+|α |) ≤Cα ,β (Aχ,ε)+cε−|α |(
2ε

1− ε
)N+|α |.

(4.21)
This gives the factorεN in (ii) for 0 < ε ≤ 1/2. For 1/2 < ε < 1 the series isO(ε−|α |) because
2−ν ≤ 1< 2ε/(1−ε) for all ν . But 1≤ (2ε)N+|α | for suchε , so (ii) will follow for all ε ∈ ]0,1[ .
(It is seen directly that|Aχ,ε(x,η)| ≤ cεN(1+ |η |)d etc, for only the caseε|η | ≥ 1 is non-trivial,
and thenε−N ≤ (1+ |η |)N while A∈ S−∞.)

In the deduction of (4.19) one can use a Littlewood–Paley partition of unity, say 1= ∑∞
ν=0Φν

with dilated functionsΦν(η) = Φ(2−νη) 6= 0 only for 11
202ν ≤ |η | ≤ 13

102ν if ν ≥ 1. Beginning
with a trivial split a∗ = A0 + A1 into two terms for whichA0 ∈ S−∞ and A1 ∈ Sd

1,1 such that
A1(x,η) = 0 for |η |< 1/2, this gives

∧
a∗(ξ ,η) =

∧
A0(ξ ,η)+

∞

∑
ν=0

Φν(ξ/|η |)
∧
A1(ξ ,η). (4.22)

This yields the desiredaν(x,η) as the adjoint symbol toF−1
ξ→xΦν(ξ/|η |)

∧
A1(ξ ,η), that is to∫ |2νη |n

∨
Φ(|2νη |y)A1(x− y,η)dy. Indeed, it follows directly from [Ḧor88, Prop. 3.3] (where

the proof uses Taylor expansion and vanishing moments of
∨
Φ for ν ≥ 1) thata∗ν belongs toSd

1,1

with (2Nνa∗ν)ν∈N bounded inSd
1,1 for all N > 0. Therefore (4.22) gives (4.19) by inverse Fourier

transformation. Moreover, since
∧
a∗ν(ξ ,η) for ν ≥ 1 is supported by the region

11
202ν |η | ≤ |ξ | ≤ 13

202ν |η |, (4.23)

where a fortiori

1+ |ξ +η | ≥ |ξ |− |η | ≥ (11
202ν −1)|η | ≥ 1

10|η |, (4.24)
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it is clear that
∧
a∗ν(ξ ,η) vanishes if 10(|ξ +η |+1) < |η |. According to Lemma 4.1 this implies

thataν = a∗∗ν is also inSd
1,1 and that, because of the above boundedness inSd

1,1,

|Dα
η Dβ

x aν(x,η)| ≤Cα ,β (a∗ν)10(1+10d−|α |+|β |)(1+ |η |)d−|α |+|β | ≤ c2−Nν(1+ |η |)d−|α |+|β |
(4.25)

for some constant independent ofν . Therefore theaν tend rapidly to 0, which completes the
proof of Theorem 4.3.

4.2.4. Consequences for the classS̃d
1,1. One can set Theorem 4.3 in relation to the definition of

a(x,D) by vanishing frequency modulation, simply by elaborating on the above proof:

Corollary 4.5. On S̃d
1,1(R

n×Rn) the adjoint operation is stable with respect to vanishing fre-

quency modulation in the sense that, when a∈ S̃d
1,1, ψ ∈C∞

0 (Rn) with ψ = 1 around0, then(
ψ(2−mDx)a(x,η)ψ(2−mη)

)∗ −−−→
m→∞

a(x,η)∗ (4.26)

holds in the topology of Sd+1
1,1 (Rn×Rn).

Proof. For brevitybm(x,η) = ψ(2−mDx)a(x,η)ψ(2−mη) denotes the symbol that is frequency
modulated in both variables. The proof consists in insertion of a(x,η)− bm(x,η) into (4.18),
where the first sum can be read as an integral with respect to the counting measure, which tends
to 0 for m→ ∞ by majorised convergence.

Note that for eachν ≥ 0 in the first sum of (4.18) one must controlCα ,β (em
2−ν ) for m→ ∞

whenem
2−ν is given by

∧
em

2−ν (ξ ,η) = (χ(ξ +η ,2−νη)−χ(ξ +η ,2−ν−1η))(1−ψ(2−mξ )ψ(2−mη))
∧
a(ξ ,η). (4.27)

To do so, note first that a convolution estimate givespα ,β (bm)≤ c∑γ≤α pγ,β (a), whence(bm)m∈N
is bounded inSd

1,1. Similar arguments yield thatbm → a in Sd+1
1,1 for m→ ∞; cf [Joh08b,

Lem. 2.1]. Moreover, for eachν ≥ 0, every seminormpα ,β now onSd+1
1,1 , gives

pα ,β (em
2−ν )≤ pα ,β ((a−bm)

χ,2−ν )+ pα ,β ((a−bm)χ,2−ν−1). (4.28)

Here both terms on the right-hand side tend to 0 form→∞, in view of the continuity ofa 7→ aχ,ε
on Sd+1

1,1 ; cf Lemma 2.10. HenceCα ,β (em
2−ν )→ 0 for m→ ∞.

It therefore suffices to replaced by d+1 in (4.18) and majorise. However,a 7→ aχ,ε commutes
with a 7→ bm as maps inS ′(Rn×Rn), so sincea∈ S̃d+1

1,1 , it follows from (ii) that

pα ,β ((a−bm)χ,ε)≤ pα ,β (aχ,ε)+c ∑
γ≤α

pγ,β (aχ,ε)≤ (1+c)( ∑
γ≤α

Cγ,β ,N)εN ≤C′
α ,β ,NεN. (4.29)

Using this in the previous inequality,Cα ,β (em
2−ν ) ≤ C2−νN is obtained forC independent of

m∈ N. Now it follows from (4.18) thatbm(x,η)∗→ a(x,η)∗ in Sd+1
1,1 as desired. ¤

Thus prepared, the proof of Proposition 4.2 can now be repeated from (4.5) onwards, which
immediately gives the first main result of the paper:



TYPE 1,1-OPERATORS ON SPACES OF TEMPERATE DISTRIBUTIONS 21

Theorem 4.6. When a symbol a(x,η) of type1,1 belongs to the class̃Sd
1,1(R

n×Rn), as char-
acterised in Theorem 4.3, then

a(x,D) : S ′(Rn)→S ′(Rn) (4.30)

is everywhere defined and continuous, and it equals the adjoint of OP(ei Dx·Dη ā(x,η)).

5. DYADIC CORONA DECOMPOSITIONS

This section describes how Littlewood–Paley techniques provide a convenient passage to aux-
iliary operators, that may be analysed with pointwise estimates.

5.1. Paradifferential splitting of symbols and operators. Recalling the definition of type 1,1-
operators in (2.4)–(2.5), it is noted that to each modulation function ψ , ie ψ ∈ C∞

0 (Rn) with
ψ = 1 in a neighbourhood of 0, there existR> r > 0 with R≥ 1 satisfying

ψ(ξ ) = 1 for |ξ | ≤ r; ψ(ξ ) = 0 for |ξ | ≥ R. (5.1)

For fixedψ it is convenient to take an integerh≥ 2 so large that 2R< r2h.
To obtain a Littlewood–Paley decomposition fromψ , setϕ = ψ −ψ(2·). Then a dilation of

this function is supported in a corona,

suppϕ(2−k·)⊂ {
ξ

∣∣ r2k−1 ≤ |ξ | ≤ R2k}
, for k≥ 1. (5.2)

The identity 1= ψ(x)+∑∞
k=1ϕ(2−kξ ) follows by lettingm→ ∞ in the telescopic sum,

ψ(2−mξ ) = ψ(ξ )+ϕ(ξ/2)+ · · ·+ϕ(ξ/2m). (5.3)

Using this, functionsu(x) and symbolsa(x,η) will be localised to frequencies|η | ≈ 2 j as

u j = ϕ(2− jD)u, a j(x,η) = ϕ(2− jDx)a(x,η) = F−1
ξ→x(ϕ(2− jξ )

∧
a(ξ ,η)). (5.4)

Localisation to balls given by|η | ≤ R2 j are written with upper indices,

u j = ψ(2− jD)u, a j(x,η) = ψ(2− jDx)a(x,η) = F−1
ξ→x(ψ(2− jξ )

∧
a(ξ ,η)). (5.5)

In addition u0 = u0 and a0 = a0; by convention they are all taken to equal 0 forj < 0. (To
avoid having two different meanings of sub- and superscripts, the dilationsψ(2− j ·) are written
as such, with the corresponding Fourier multiplier asψ(2− jD), and similarly forϕ ). Note that
ak(x,D) = OP(ψ(2−kDx)a(x,η)) etc.

Inserting the relation (5.3) twice in (2.4), bilinearity gives

OP(ψ(2−mDx)a(x,η)ψ(2−mη))u =
m

∑
j,k=0

a j(x,D)uk. (5.6)

Of course the sum may be split in three groups in whichj ≤ k−h, | j − k| < h andk≤ j −h,
respectively. Form→ ∞ this yields the paradifferential decomposition

aψ(x,D)u = a(1)
ψ (x,D)u+a(2)

ψ (x,D)u+a(3)
ψ (x,D)u, (5.7)
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whenevera andu fit together such that the three series below converge inD ′(Rn):

a(1)
ψ (x,D)u =

∞

∑
k=h

∑
j≤k−h

a j(x,D)uk =
∞

∑
k=h

ak−h(x,D)uk (5.8)

a(2)
ψ (x,D)u =

∞

∑
k=0

(
ak−h+1(x,D)uk + · · ·+ak−1(x,D)uk +ak(x,D)uk

+ak(x,D)uk−1 + · · ·+ak(x,D)uk−h+1
)

(5.9)

a(3)
ψ (x,D)u =

∞

∑
j=h

∑
k≤ j−h

a j(x,D)uk =
∞

∑
j=h

a j(x,D)u j−h. (5.10)

Note the convenient shorthandak−h(x,D) for ∑ j≤k−ha j(x,D) = OP(ψ(2h−kDx)a(x,η)) etc. In
this way (5.9) also has a brief form, namely

a(2)
ψ (x,D)u =

∞

∑
k=0

((ak−ak−h)(x,D)uk +ak(x,D)(uk−1−uk−h)). (5.11)

In the following the subscriptψ is usually dropped because this auxiliary function will be
fixed (ψ was left out already ina j anda j ; cf (5.4)–(5.5)).

Remark5.1. It was tacitly used in (5.6) and (5.8)–(5.10) that one has

a j(x,D)uk = OP(a j(x,η)ϕ(2−kη))u. (5.12)

This is because, withχ ∈C∞
0 equalling 1 on suppFuk, both sides are equal to

OP(a j(x,η)χ(η))uk. (5.13)

Indeed, while this is trivial for the right-hand side of (5.12), where the symbol is inS−∞ and
χ ≡ 1 on suppϕk, it is for the type 1,1-operator on the left-hand side a fact that follows at once
from (2.10) (as observed in [Joh08b]). Therefore the preliminary extension toF−1E ′ in (2.10)
is crucial for the simple formulae in the present paper.

Analogously Definition 2.1 may be rewritten asa(x,D)u = lim am(x,D)um.

The importance of the decomposition in (5.8)–(5.10) lies inthe fact that the summands have
their spectra in balls and coronas:

Proposition 5.2. If a ∈ Sd
1,1(Rn×Rn) and u∈S ′(Rn), and r, R are chosen as in(5.1) for each

auxiliary functionψ , then every h∈ N such that2R< r2h gives

suppF (ak−h(x,D)uk)⊂
{

ξ
∣∣ Rh2k ≤ |ξ | ≤ 5R

4
2k}

(5.14)

suppF (ak(x,D)uk−h)⊂ {
ξ

∣∣ Rh2k ≤ |ξ | ≤ 5R
4

2k}
, (5.15)

where Rh = r
2−R2−h > 0.

Proof. Sinceuk ∈ F−1E ′ is in the domain of the type 1,1-operatorak−h(x,D), the last part of
Theorem B.1 and (5.2) give

suppF (ak−h(x,D)uk)⊂
{

ξ +η
∣∣ (ξ ,η) ∈ supp(ψh−k⊗1)

∧
a, r2k−1 ≤ |η | ≤ R2k}

. (5.16)
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So by the triangle inequality everyζ = ξ +η in the support fulfils

r2k−1−R2k−h ≤ |ζ | ≤ R2k−h +R2k ≤ 5
4R2k, (5.17)

ash≥ 2. This shows (5.14) and (5.15) follows analogously. ¤

To achieve less complicated constants one could takeh so large that 4R≤ r2h instead, which
would allow Rh = r/4 (and 9R/8). However, the present constants are preferred in order to
reduce the number of terms ina(2)(x,D)u, as has been common in the literature.

In comparison the terms ina(2)(x,D)u only satisfy a dyadic ball condition. This was eg ob-
served in [Joh05], as was the fact that when the twisted diagonal condition (2.25) can be shown
to hold, then the situation improves for largek:

Proposition 5.3. When a∈ Sd
1,1(Rn×Rn), u∈S ′(Rn), and r, R are chosen as in(5.1) for each

auxiliary functionψ , then every h∈ N such that2R≤ r2h gives

suppF
(
ak(x,D)(uk−1−uk−h)+(ak−ak−h)(x,D)uk

)⊂ {
ξ

∣∣ |ξ | ≤ 2R2k}
(5.18)

If a(x,η) satisfies(2.25)for some B≥ 1, the support is contained in the annulus{
ξ

∣∣ r
2h+1B

2k ≤ |ξ | ≤ 2R2k}
(5.19)

for all k ≥ h+1+ log2(B/r).

Proof. As in Proposition 5.2 it is seen that suppFak(x,D)(uk−1−uk−h) is contained in{
ξ +η

∣∣ (ξ ,η) ∈ supp(ϕk⊗1)
∧
a, r2k−h ≤ |η | ≤ R2k−1}

. (5.20)

Therefore anyζ in the support fulfils|ζ | ≤R2k +R2k−1 = (3R/2)2k. If (2.25) holds thenB(1+
|ξ +η |)≥ |η | on suppFx→ξ a so that, for allk larger than the given limit,

|ζ | ≥ 1
B|η |−1≥ 1

Br2k−h−1≥ ( r
2hB

−2−k)2k ≥ r
2h+1B

2k. (5.21)

The term(ak−ak−h)(x,D)uk is analogous, but causes 3R/2 to be replaced by 2R. ¤

Remark5.4. The dyadic ball and corona properties given in Proposition 5.2–5.3 have been a
main reason for the introduction the paradifferential splitting (5.7) in the 1980’s. However, the
above inclusions were then derived under the additional assumption thata(x,η) should be an
elementary symbol; cf [Bou83, Bou88a, Yam86]. With the spectral support rule recalled in
Appendix B, this is redundant. Cf also the remarks in the introduction.

5.2. Calculation of symbols and remainder terms.Although (5.8)–(5.10) yield a well-known
splitting, the operator notationa( j)(x,D) requires justification in case of type 1,1-operators.
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Departing from the right hand sides of (5.8)–(5.10) one is via (5.12) at once led to the symbols

a(1)(x,η) =
∞

∑
k=h

ak−h(x,η)ϕ(2−kη) (5.22)

a(2)(x,η) =
∞

∑
k=0

(
(ak−h+1(x,η)+ · · ·+ak−1(x,η)+ak(x,η))ϕ(2−kη)

+ak(x,η)(ϕ(2−(k−1)η)+ · · ·+ϕ(2−(k−h+1)η)
)

(5.23)

=
∞

∑
k=0

((ak(x,η)−ak−h(x,η))ϕ(2−kη)+ak(x,η)(ψ(2−(k−1)η)−ψ(2−(k−h)η)))

(5.24)

a(3)(x,η) =
∞

∑
j=h

a j(x,η)ψ(2−( j−h)η). (5.25)

These series converge in the Fréchet spaceSd+1
1,1 (Rn×Rn), for the sums are locally finite.

Actually Proposition 5.2 is closely related to the behaviour of a(1)(x,η) anda(3)(x,η) at the
twisted diagonal:

Proposition 5.5. For each a(x,η) in Sd
1,1(R

n×Rn) and modulation functionψ ∈C∞
0 (Rn) as in

(5.1) the associated symbols a(1)
ψ (x,η) and a(3)

ψ (x,η) fulfil the twisted diagonal condition(2.25)

with constants B1 = 2h(2hr
2R −1)−1 > 2, respectively B3 = (2hr

2R −1)−1 > 1.

Proof. For each term in
∧
a(1)(ξ ,η) that is non-zero at(ξ ,η) one has

|ξ +η | ≥ 2k( r
2−R2−h)≥ |η |( r

2R−2−h). (5.26)

Hence
∧
a(1)(ξ ,η) = 0 wheneverB1|ξ + η |< |η |. As B−1

1 < r/(2R), one has (2.25) forB1 > 2.

For a(3)(x,η) the corresponding calculation is|ξ +η | ≥ r
22 j −R2 j ≥ |η |( r2h

2R −1). ¤

Clearly it is natural to verify that the type 1,1-operators corresponding to (5.22)–(5.25) are
in fact given by the infinite series in (5.8)–(5.10), in particular that the series fora( j)(x,D)u
converges precisely whenu belongs to the domain of the operatora( j)(x,D).

In view of the definition by vanishing frequency modulation in (2.4) ff, this will necessarily
be lengthy because a second auxiliary function has to be introduced.

To indicate the details fora(1)(x,η), let ψ,Ψ ∈ C∞
0 (Rn) be equal to 1 around the origin,

and letΨ be used as the fixed auxiliary function enteringa(1)(x,D) = a(1)
Ψ (x,D) etc; and set

Φ = Ψ−Ψ(2·). The numbersr,R andh are then chosen in relation toΨ as in (5.1). Moreover,
ψ is used for the frequency modulation in (2.4). This gives thefollowing identity in Sd

1,1, where
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prime indicates a finite sum,

ψ(2−mDx)a(1)(x,η)ψ(2−mη) =
m+µ

∑
k=h

ak−h(x,η)Φ(2−kη)

+ ∑′

k

ψ(2−mDx)ak−h(x,η)Φ(2−kη)ψ(2−mη). (5.27)

In fact if λ ,Λ > 0 are chosen so thatψ(η) = 1 for |η | ≤ λ while ψ = 0 for |η | ≥Λ, the support
of Φ(2−kη) lies in one of the level setsψ(2−mη) = 1 or ψ(2−mη) = 0 when

R2k ≤ λ2m or r2k−1 ≥ Λ2m; (5.28)

that is, with the exception of thek fulfilling

m+ log2(λ/R) < k < m+1+ log2(Λ/r). (5.29)

This shows that the primed sum has at most 1+ log2
RΛ
rλ terms, independently of the modulation

parameterm; and in addition thatψ(2−mη) andψ(2−mDx) disappear from the other terms as
stated by takingµ = [log2(λ/R)].

Consequently the change of variablesk = m+ l gives foru∈S ′(Rn) that

OP(ψ(2−mDx)a(1)(x,η)ψ(2−mη))u =
m+µ

∑
k=h

ak−h(x,D)uk

+ ∑′

µ<l<1+log2(Λ/r)
OP(ψ(2−mDx)Ψ(2h−l−mDx)a(x,η)Φ(2−m−l η)ψ(2−mη))u. (5.30)

A similar reasoning applies toa(3)(x,η). The main difference is that the possible inclusion of
suppΦ(2− j ·), into the level sets whereψ(2−m·) equals 1 or 0, in this case applies to the symbol
ψ(2−mDx)a j(x,η) = F−1

ξ→x(ψ(2−mξ )Φ(2− jξ )
∧
a(ξ ,η)). Therefore one has for the sameµ ,

OP(ψ(2−mDx)a(3)(x,η)ψ(2−mη))u =
m+µ

∑
j=h

a j(x,D)u j−h

+ ∑′

µ<l<1+log2(Λ/r)
OP(ψ(2−mDx)Φ(2−l−mDx)a(x,η)Ψ(2h−m−l η)ψ(2−mη))u. (5.31)

Treating a(2)
Ψ (x,D) analogously, it is not difficult to see that once again the central issue is

whether suppΦ(2−k·) is contained in the set whereψ(2−m·) = 1 or = 0. So for the sameµ ,

OP(ψ(2−mDx)a(2)(x,η)ψ(2−mη))u =
m+µ

∑
k=h

(
(ak−ak−h)(x,D)uk +ak(x,D)(uk−1−uk−h)

)
+ ∑′

µ<l<1+log2(Λ/r)
OP(ψ(2−mDx)(am+l (x,η)−am+l−h(x,η))Φ(2−m−l η)ψ(2−mη))u

+ ∑′

µ<l<1+log2(Λ/r)
OP(ψ(2−mDx)am+l (x,η)(Ψ(21−m−l η)−Ψ(2h−m−l η))ψ(2−mη))u (5.32)
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To complete the programme introduced after Proposition 5.5, it only remains to letm→ ∞ in
(5.30)–(5.32) and to show that the remainders given by the primed sums can be safely ignored:

Proposition 5.6. When a(x,η) is given in Sd1,1(Rn×Rn) andψ , Ψ ∈C∞
0 (Rn) equal1 in neigh-

bourhoods of the origin, then it holds for every u∈S ′(Rn) that each term (with l fixed) in the
primed sums in(5.30)–(5.31)tend to0 in S ′(Rn) for m→ ∞.

This is valid for(5.32)too, if a(x,η) in addition fulfils the twisted diagonal condition(2.25).

The verification of this result is postponed until Section 6.1, where pointwise estimates are
used anyway.

Remark5.7. For a(2)(x,D)u the vanishing (form→ ∞) of the remainder terms in (5.32) is only
claimed here in case (2.25) holds. This is because one has (5.19) then, whereas in general only
the dyadic ball condition (5.18) is available. Later in Theorem 6.7 the vanishing will also be
shown to hold under the milder condition (2.31). It is an openproblem whether the primed
sums in (5.32) will vanish for alla ∈ Sd

1,1, u ∈ S ′ . (However, the split into infinite series in
(5.8)–(5.10) can of course always be used even so.)

Remark5.8. The decomposition in (5.7)–(5.10) can be traced back to Kumano-go and Na-
gase, who used a version ofa(1)(x,η) defined by an integral to smooth non-regular symbols,
cf [KgN78, Thm 1.1]. It was also important in the paradifferential calculus of Bony [Bon81],
and has afterwards been convenient for the continuity analysis of pseudo-differential operators,
as is evident from eg [Yam86, Mar91, Joh05, Lan06].

Remark5.9. For pointwise multiplication decompositions analogous to(5.7) were used implic-
itly by Peetre [Pee76] and Triebel [Tri77]. Moreover, fora = a(x) Definition 2.1 reduces to the
productπ(a,u) introduced formally by the author in [Joh95] as

π(a,u) = lim
m→∞

am ·um. (5.33)

This was extensively analysed in [Joh95], including continuity properties deduced from (5.7),
that essentially amounts to a splitting of the generalised pointwise productπ(·, ·) into paraprod-
ucts. Partial associativity was obtained in [Joh08b, Thm. 6.7], though.

6. ACTION OF TYPE1,1-OPERATORS ON TEMPERATE DISTRIBUTIONS

In this section the paradifferential decomposition (5.7) is analysed using the pointwise esti-
mates in Section 3, leading to fundamental Littlewood–Paley results for type 1,1-operators; cf
Theorems 6.3, 6.5 and 6.7 below.

6.1. Polynomial bounds for the paradifferential splitting. In the treatment ofa(1)(x,D)u and
a(3)(x,D)u in (5.8) and (5.10) one may conveniently commence by observing that, according to
Proposition 5.2, the terms in these series fulfil condition (A.1) in Lemma A.1 forθ0 = θ1 = 1.

So to deduce their convergence from Lemma A.1, it remains to obtain the polynomial bounds
in (A.2). This is a natural opportunity to use the efficacy of the pointwise estimates in [Joh10a],
and Proposition 3.6 at once gives
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Proposition 6.1. If a(x,η) is in Sd
1,1(R

n×Rn) and N≥ orderS ′(Fu), then

|ak−h(x,D)uk(x)| ≤ c2k(N+d)(1+ |x|)N, (6.1)

|ak(x,D)uk−h(x)| ≤ c2k(N+d)+(1+ |x|)N. (6.2)

Proof. The last claim follows by taking the two cut-off functions inProposition 3.6 asΦ and
Ψ(2−h·), in the notation of Section 5. The first claim is seen by interchanging their roles, that is,
by usingΨ(2−h·) respectivelyΦ; the latter is 0 around the origin soN +d is obtained without
the positive part. ¤

The difference in the above estimates appears becauseuk in (6.1) has spectrum in a corona.
However, one should not confound this with spectral inclusions like (A.1) that one might obtain
after application ofak−h(x,D), for these are irrelevant for the pointwise estimates here.

Therefore it is clear that similar estimates hold for the terms in a(2)(x,D)u as well. For ex-
ample, takingΨ−Ψ(2−h·) andΦ, respectively, as the cut-off functions in Proposition 3.6, one
finds the estimate of the first term below. Note that the positive part can be avoided for 0≤ k≤ h
by using a sufficiently large constant.

Proposition 6.2. If a(x,η) is in Sd
1,1(R

n×Rn) and N≥ orderS ′(Fu), the terms in a(2)
ψ (x,D)u

fulfil

|(ak−ak−h)(x,D)uk(x)|+ |ak(x,D)(uk−1−uk−h)(x)| ≤ c2k(N+d)(1+ |x|)N. (6.3)

Finally, using the full generality of Proposition 3.6 once more, one also obtains a

Proof of Proposition 5.6.To show that each remainder term tends to 0 form→ ∞ and fixedl , it
suffices to verify (A.1) and (A.2) in view of Remark A.2.

For a(1)
Ψ (x,D), note that by repeating the proof of Proposition 5.2 (and ignoring ψ ) each re-

mainder in (5.30) hasξ in its spectrum only when(R02l )2m≤ |ξ | ≤ 5·2l

4 R2m.
Moreover, each remainder term is≤ c2k(N+d)(1+ |x|)N according to Proposition 3.6, for with

the cut-off functionsψΨ(2h−l ·) andΦ(2−l ·)ψ the latter is 0 around the origin. Hence a further
crude estimate byc2k(N+d+)(1+ |x|)N+d+ shows that (A.2) is fulfilled.

Similar arguments apply for the primed sum in (5.31), forΨ(2h−l ·)ψ is 1 around the origin;
which again results in the boundc2k(N+d+)(1+ |x|)N+d+ .

The procedure also works for (5.32), for (A.1) is verified as in Proposition 5.3, cf (5.19),
because the extra spectral localisations provided byψ(2−m·) cannot increase the spectra. For the
pointwise estimates one may now use egψΦ(2−l ·) and(Ψ(21−l ·)−Ψ(2h−l ·))ψ as the cut-off
functions in the last part of (5.32). This yields the proof ofProposition 5.6.

6.2. Littlewood–Paley analysis of type1,1-operators. In the following result on the decom-
position in (5.8)–(5.10), one should note in particular theconfirmation thata(2)(x,D) induces
no anomalies in casea(x,η) fulfils the twisted diagonal condition (2.25): one may treatall (but
finitely many) terms ina(2)(x,D)u in the same way as fora(1)(x,D)u and a(3)(x,D)u, simply
because they too fulfil the dyadic corona condition when (2.25) holds.
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Theorem 6.3. When a(x,η) is a symbol in Sd1,1(R
n×Rn) for some d∈ R and ψ ∈ C∞

0 (Rn)

equals1 around the origin, then the associated type1,1-operators a(1)
ψ (x,D) and a(3)

ψ (x,D) are
everywhere defined continuous linear maps

a(1)
ψ (x,D), a(3)

ψ (x,D) : S ′(Rn)→S ′(Rn), (6.4)

that are given by formulae(5.8)and(5.10), where the infinite series converge rapidly inS ′(Rn)
for every u∈S ′(Rn). The adjoints are also inOP(Sd

1,1(Rn×Rn)).
If furthermore a(x,η) fulfils (2.25), these conclusions are valid verbatim for the operator

a(2)
ψ (x,D), except that it is given by the series in(5.9).

Proof. As the symbolsa(1)
Ψ (x,η) anda(3)

Ψ (x,η) both belong toSd
1,1 and fulfil (2.25) by Proposi-

tion 5.5, the corresponding operators are defined and continuous onS ′(Rn) by Proposition 4.2,
with a(1)(x,D)∗ anda(3)(x,D)∗ both of type 1,1.

As suppFx→ξ a(2) ⊂ suppFx→ξ a, the preceding argument also applies toa(2)(x,D) when
a(x,η) satisfies (2.25).

Moreover, the series∑∞
k=0ak−h(x,D)uk in (5.8) converges rapidly inS ′ for every u ∈ S ′ .

This follows from 1◦ of Lemma A.1, for the terms fulfil (A.1) and (A.2) by Proposition 5.2, cf
(5.14), and Proposition 6.1, respectively. (The latter gives a bound by 2k(N+d+)(1+ |x|)N+d+ .)

Similarly Lemma A.1 yields convergence of the series (5.10)for a(3)(x,D)u when u ∈ S ′ .
In view of Proposition 5.3 and Proposition 6.2, convergenceof the series fora(2)(x,D)u in (5.9)
also follows from Lemma A.1.

To identify these series with the operators it remains to apply Proposition 5.6. ¤
It should be emphasized that duality methods and pointwise estimates contribute in two differ-

ent ways in Theorem 6.3: once the symbola(1)(x,η) has been introduced, continuity onS ′(Rn)
of the associated type 1,1-operatora(1)(x,D) is obtained by duality through Proposition 4.2. But
the pointwise estimates in Section 3 yield (vanishing of theremainder terms, hence) the identifi-
cation ofa(1)(x,D)u with the series in (5.8). Furthermore, the pointwise estimates also give an
explicit proof of the fact thata(1)(x,D) is defined on the entireS ′(Rn), for the right-hand side of
(5.8) does not depend on the modulation functionψ . Similar remarks apply toa(3)(x,D). Thus
duality methods and pointwise estimates together lead to a deeper analysis of type 1,1-operators.

Remark6.4. Theorem 6.3 generalises a result of Coifman and Meyer [MC97, Ch.15] in three
ways. They stated Lemma A.1 forθ0 = θ1 = 1 and derived a corresponding fact for paramulti-
plication, though only with a treatment of the first and thirdterm.

Changing focus back to the given operatora(x,D), one can by means of (5.7) restate Theo-
rem 6.3 as follows:

Theorem 6.5.When a∈ Sd
1,1(Rn×Rn) fulfils the twisted diagonal condition(2.25), then the as-

sociated type1,1-operator a(x,D) defined by vanishing frequency modulation is an everywhere
defined continuous linear map

a(x,D) : S ′(Rn)→S ′(Rn), (6.5)
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with its adjoint a(x,D)∗ also inOP(Sd
1,1(R

n×Rn)). The operator fulfils

a(x,D)u = a(1)
ψ (x,D)u+a(2)

ψ (x,D)u+a(3)
ψ (x,D)u (6.6)

for everyψ ∈C∞
0 (Rn) equal to1 in a neighbourhood of the origin, and the series in(5.8), (5.9),

(5.10)converge rapidly inS ′(Rn) for every u∈S ′(Rn).

For generala(x,D), Theorem 6.3 at least shows thata(1)(x,D)u and a(3)(x,D)u are always
defined. So, by accepting that the operator notationa(2)(x,D)u has not yet been justified in all
cases, the theorem also gives

Corollary 6.6. For a(x,η) in Sd
1,1(Rn×Rn) a distribution u∈ S ′(Rn) belongs to the domain

D(a(x,D)) if and only if the series for a(2)(x,D)u in (5.9)converges inD ′(Rn).

6.3. The twisted diagonal condition of arbitrary order. The above results will now be ex-
tended to the more general situation wherea(x,η) is in S̃d

1,1, which by Theorem 4.3 means thata
fulfils the twisted diagonal condition of arbitrary real order σ in (2.31). The estimates there en-
ter the convergence proof fora(2)(x,D)u directly. The full generality withθ0 < θ1 in the corona
criterion Lemma A.1 is needed now, but does not alone suffice for this case.

Theorem 6.7. Suppose a(x,η) in S̃d
1,1(Rn×Rn), ie a(x,η) fulfils one of the equivalent condi-

tions in Theorem 4.3. Then the conclusions of Theorem 6.5 arevalid for a(x,D), and furthermore

the type1,1-operatorOP(a(2)
ψ (x,η)) is given by the infinite series for a(2)

ψ (x,D)u in (5.9).

Proof. The continuity onS ′ is assured by Theorem 4.6. For the convergence of the series in the
paradifferential splitting, it is convenient to write, in the notation of (2.31) ff,

a(x,η) = (a(x,η)−aχ,1(x,η))+aχ,1(x,η), (6.7)

wherea−aχ,1 satisfies (2.25) forB = 1, so that Theorem 6.5 applies to it. Asaχ,1 is in S̃d
1,1 like

a anda−aχ,1 (the latter by Proposition 4.2), one may reduce to the case inwhich
∧
a(x,η) 6= 0 =⇒ max(1, |ξ +η |)≤ |η |. (6.8)

Continuing under this assumption, it is according to Corollary 6.6 enough to show for all
u∈S ′ that there is convergence of the two series

∞

∑
k=0

(ak−ak−h)(x,D)uk,
∞

∑
k=1

ak(x,D)(uk−1−uk−h). (6.9)

Since the distributions here are functions of polynomial growth by Proposition 6.2, it suffices to
improve the estimates there; and to do so fork≥ h, respectivelyk≥ 2.

Using Hörmander’s localisation to a neighbourhood ofT , cf (2.28)–(2.30), one arrives at
∧
ak,χ,ε(ξ ,η) =

∧
a(ξ ,η)Φ(2−kξ )χ(ξ +η ,εη), (6.10)

This leaves the remainderbk(x,η) = ak(x,η)−ak,χ,ε(x,η), that applied to the above difference

vk = uk−1−uk−h = F−1((Φ(21−k·)−Φ(2h−k·))∧u) gives

ak(x,D)vk = ak,χ,ε(x,D)vk +bk(x,D)vk. (6.11)
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To utilise the pointwise estimates, setN = orderS ′(
∧
u) and takeψ ∈ C∞

0 (Rn) equal to 1 in a
neighbourhood of the coronarR2−1−h ≤ |η | ≤ 1 and equal to 0 outside the set withrR2−2−h ≤
|η | ≤ 2. Taking the dilated functionψ(η/(R2k)) as the auxiliary function in the symbol factor,
the factorisation inequality (3.1) and Theorem 3.2 give

|ak,χ,ε(x,D)vk(x)| ≤ Fak,χ,ε (N,R2k;x)v∗k(N,R2k;x)

≤ cv∗k(x)
N+[n/2]+1

∑
|α |=0

(
∫

r2k−h−2≤|η |≤R2k+1
|(R2k)|α |−n/2Dα

η ak,χ,ε(x,η)|2dη)1/2.

(6.12)

Here the ratio of the limits is 2R/(r2−h−2) > 32, so with extension to|η | ∈ [R2k+1−L,R2k+1]
there isL ≥ 6 dyadic coronas. This gives an estimate byc(R2k)dL1/2Nχ,ε,α(ak). In addition,
Minkowski’s inequality gives

Nχ,ε,α(ak)≤ sup
ρ>0

ρ |α |−d
∫

Rn
|2kn

∨
Φ(2ky)|(

∫
ρ≤|η |≤2ρ

|Dα
η aχ,ε(x−y,η)|2 dη

ρn )1/2dy≤ cNχ,ε,α(a).

(6.13)
So it follows from the above that

|ak,χ,ε(x,D)vk(x)| ≤ cv∗k(N,R2k;x)
(

∑
|α |≤N+[n/2]+1

cα ,σ εσ+n/2−|α |)L1/2(R2k)d. (6.14)

Using Lemma 3.1 and takingε = 2−kθ , say forθ = 1/2 this gives

|ak,χ,2−kθ (x,D)vk(x)| ≤ c(1+ |x|)N2−k(σ−1−2d−3N)/2. (6.15)

Choosingσ > 3N+2d+1, the series∑k〈ak,χ,ε(x,D)vk, ϕ 〉 converges rapidly forϕ ∈S .

To treat∑∞
k=0bk(x,D)vk it is observed that

∧
ak,χ,2−kθ (x,η) =

∧
ak(x,η) holds in the set where

χ(ξ +η ,2−kθ η) = 1, that is, when 2max(1, |ξ +η |)≤ 2−kθ |η |, so by (6.8),

supp
∧
bk ⊂

{
(ξ ,η)

∣∣ 2−1−kθ |η | ≤max(1, |ξ +η |)≤ |η |}. (6.16)

This implies by Theorem B.1 thatζ = ξ +η is in suppFbk(x,D)vk only if both

|ζ | ≤ |η | ≤ R2k (6.17)

max(1, |ζ |)≥ 2−1−kθ |η | ≥ r2k(1−θ)−h−2. (6.18)

Whenk fulfils 2k(1−θ) > 2h+2/r , so that the last right-hand side is> 1, these inequalities give

(r2−h−2)2k(1−θ) ≤ |ζ | ≤ R2k. (6.19)

This shows that the corona condition (A.1) in Lemma A.1 is fulfilled for θ0 = 1−θ = 1/2 and
θ1 = 1, and the growth condition (A.2) is easily checked since both ak,χ,ε(x,D)vk andak(x,D)vk

are estimated by 2k(N+d+)(1+ |x|)N+d+ , as can be seen from (6.15) and Proposition 3.6, respec-
tively. Hence∑bk(x,D)vk converges rapidly.

For the series∑∞
k=0 |〈(ak−ak−h)(x,D)uk, ϕ 〉| it is not complicated to modify the above. In-

deed, the pointwise estimates of thev∗k are easily carried over tou∗k , for R2k was used as the
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outer spectral radius ofvk; and r2k−h−1 may also be used as the inner spectral radius ofuk. In
addition the symbolak−ak−h can be treated by replacingΦ(2−kξ ) by Ψ(2−kξ )−Ψ(2h−kξ ) in
(6.10) ff., for the use of Minkowski’s inequality will now give the factor

∫ |Ψ−Ψ(2h·)|dy in the
constant. The treatment ofbk(x,D)vk may be used verbatim for

b̃k(x,D)uk = (ak−ak−h)(x,D)uk− (ak−ak−h)χ,ε(x,D)uk. (6.20)

Concerning the remainder terms, one can now simply carry overthe above arguments to each
term in the primed sums in (5.32). Indeed, fork = m+ l the functionΦ(2−kξ ) in (6.10) should
then be replaced byψ(2−mξ )Φ(2−m−l ξ ), whereas invk the Fourier multiplier should now be
ψ(2−m·)(Φ(21−l−m·)−Φ(2h−l−m·)). Ignoring the localisations provided byψ(2−m·), these
changes only give other constants, so the contributions analogous to (6.10) ff. tend to 0 for a
largeσ , respectively by Remark A.2. The first primed sum in (5.32) can be similarly treated. ¤

The detailed analysis in Theorem 6.7 is exploited in the nextsection.

7. Lp-ESTIMATES

As another application of the paradifferential splitting (5.7), it would be natural to explain how
it leads to boundedness ofa(x,D) in the scale of Sobolev spacesHs

p = OP((1+ | · |2)−s/2)Lp.
However, because of the Littlewood–Paley analysis that will follow, it requires almost no

extra effort to cover the more general Besov spacesBs
p,q and Lizorkin–Triebel spacesFs

p,q. It is
recalled that there are well-known identifications such as

Hs
p = Fs

p,2 for 1 < p < ∞, (7.1)

Cs
∗ = Bs

∞,∞ for s∈ R, (7.2)

whereCs∗ denotes the Ḧolder–Zygmund spaces, defined eg as in [Hör97, Def. 8.6.4].

Example 7.1. In the Fs
p,q-scale, f (t) = ∑∞

j=02− jdei2 j t belongs locally toFd
p,∞(R); cf [Joh08b,

Rem. 3.7]. This is for 0< d≤ 1 a variant of Weierstrass’ nowhere differentiable function.
Homogeneous distributions were characterised in theBs

p,q-scale in Prop. 2.8 of [Joh08a]: when
u∈D ′(Rn) is C∞ on Rn\{0} and homogeneous of degreea∈ C there (cf [Ḧor85, Def 3.2.2]),

then (atx = 0) u is locally in B
n
p +Rea
p,∞ (Rn) for 0 < p≤ ∞. If −n < Rea < 0 andp∈ ]− n

Rea,∞]

then u ∈ B
n
p +Rea
p,∞ (Rn); this holds also forp = ∞ if Rea = 0. These conclusions are optimal

with respect tos and q, unlessu is a homogenenous polynomial (the only case in whichu ∈
C∞(Rn)). Eg δ0 ∈ B

n
p
p,∞ while a quotient of two homogeneous polynomials of the same degree,

sayP(x)/Q(x) is locally in B
n
p
p,∞ for 0 < p≤ ∞.

To invoke theBs
p,q andFs

p,q scales is natural in the context, for it was shown in [Joh04, Joh05]
that every type 1,1-operatora(x,D) of orderd ∈ R is a bounded map

a(x,D) : Fd
p,1(R

n)→ Lp(Rn) for 1≤ p < ∞. (7.3)

BecauseBd
p,1 ⊂ Fd

p,1 is a strict inclusion forp > 1, this sharpened the borderline analysis of
Bourdaud [Bou88a]; (7.3) was moreover proved to be optimal within theBs

p,q- andFs
p,q-scales.
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To recall the definition ofBs
p,q andFs

p,q, let 1= ∑∞
j=0Φ j(η) be a Littlewood–Paley partition of

unity with Φ j = Φ(2− j ·) for Φ = Ψ−Ψ(2·), thoughΦ0 = Ψ, wherebyΨ ∈C∞
0 (Rn) equal to 1

around the origin is fixed; cf (5.3). Usually it has been required that suppΦ should be contained
in the corona with1

2 ≤ |ξ | ≤ 2; but this restriction is avoided here in order thatΨ can be taken
equal to an arbitrary modulation function enteringa(x,D). That this is possible can be seen by
adopting the approach in eg [Yam86, JS08]:

WhenΨ is fixed as above, then the spaces are defined fors∈ R and p,q∈ ]0,∞] as follows,
when‖ · ‖p denotes the (quasi-)norm of the Lebesgue spaceLp(Rn) for 0 < p≤ ∞ and‖ · ‖ℓq

stands for that of the sequence spaceℓq(N0),

Bs
p,q(Rn) =

{
u∈S ′(Rn)

∣∣ ∥∥{2s j‖Φ j(D)u(·)‖p}∞
j=0

∥∥
ℓq

< ∞
}
, (7.4)

Fs
p,q(Rn) =

{
u∈S ′(Rn)

∣∣ ∥∥‖{2s jΦ j(D)u}∞
j=0‖ℓq(·)

∥∥
p < ∞

}
. (7.5)

Throughout it will be understood thatp < ∞ when Lizorkin–Triebel spacesFs
p,q are considered.

In the definition the finite expressions are norms forp,q≥ 1 (quasi-norms ifp < 1 or q < 1).
In generalu 7→ ‖u‖λ is subadditive forλ ≤min(1, p,q), so‖ f −g‖λ is a metric.

This implies continuous embeddingsS →֒Bs
p,q →֒S ′ andS →֒Fs

p,q →֒S ′ in the usual way,

thence completeness (cf [JS07, Tri83]). There are simple embeddingsFs
p,q →֒ Fs′

p,r for s′ < s and
arbitraryq,r , or for s′ = s whenr ≥ q. Similarly for Bs

p,q.
Invoking a multiplier result, one finds a dyadic ball and corona criterion:

Lemma 7.2. Let s> max(0, n
p −n) for 0 < p < ∞ and 0 < q≤ ∞ and suppose uj ∈ S ′(Rn)

such that, for some A> 0,

suppFu j ⊂ B(0,A2 j), F(q) :=
∥∥(

∞

∑
j=0

2s jq|u j(·)|q) 1
q
∥∥

p < ∞. (7.6)

Then∑∞
j=0u j converges inS ′(Rn) to some u∈ Fs

p,r(Rn) for r ≥ q, r > n
n+s, and‖u‖Fs

p,r
≤ cF(r)

for some c> 0 depending on n, s, p and r.
When moreoversuppFu j ⊂ {ξ | A−12 j ≤ |ξ | ≤ A2 j } for j ≥ J for some J≥ 1, then the

conclusions are valid for all s∈ R and r= q.

This is an isotropic version of [JS08, Lem. 3.19-20], where the proof is applicable for arbitrary
Littlewood–Paley partitions, though with other constantsif Ψ is such thatR> 2. Alternatively
the reader may refer to the below Proposition 7.7, where the proof also covers the sufficiency of
(7.6) and in special cases gives the last part of Lemma 7.2 as well.

From Lemma 7.2 it follows thatFs
p,q is independent of the particular Littlewood–Paley decom-

position, and that different choices lead to equivalent quasi-norms.
The functionsuk = Φ(2−kD)u will play a central role below because their maximal functions

u∗k are controlled in terms of the Lizorkin–Triebel norm‖u‖Fs
p,q

as follows: for 0< t < ∞ there is
an estimate, cf [Yam86, Thm. 2.10], in terms of the modified Hardy-Littlewood maximal function
given byMtuk(x) = supr>0(r

−n∫
|x−y|≤r |u(y)|t dy)1/t ,

u∗k(N,R2k;x)≤ u∗k(
n
t ,R2k;x)≤ cMtuk(x), N≥ n/t. (7.7)
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So for t < min(p,q) the Fefferman-Stein inequality (cf [Yam86, Thm. 2.2]) yields a basic in-
equality valid for theu∗k = u∗k(N,R2k, ·) and anys∈ R,∫

Rn
‖2sku∗k(·)‖p

ℓq
dx≤ c

∫
Rn
‖2skMtuk(·)‖p

ℓq
dx≤ c′

∫
Rn
‖2skuk(·)‖p

ℓq
dx= c′‖u‖p

Fs
p,q

. (7.8)

As general references to the theory of these function spaces, the reader is referred to the books
[RS96, Tri83, Tri92]; the paper [Yam86] gives a concise (anisotropic) presentation.

Remark7.3. As an alternative to the techniques in Section 3, there is an estimate for symbols
b(x,η) in L1,loc(R2n)∩S ′(R2n) with support inRn×B(0,2k) and suppFu⊂ B(0,2k), k∈ N:

|b(x,D)v(x)| ≤ c
∥∥b(x,2k·)∥∥

Ḃn/t
1,t

Mtu(x), 0 < t ≤ 1. (7.9)

This is Marschall’s inequality, it goes back to [Mar85, p.37] and was exploited in eg [Mar91];
in the above form it was proved in [Joh05] under the conditionthat the right-hand side is in
L1,loc(Rn) (cf also [JS08]). WhileMtu is as in (7.7), the homogeneous Besov norm of the symbol
is of special interest here. It is defined in terms of a partition of unity 1= ∑∞

j=−∞ Φ(2− jη), with
Φ as in (7.4), and (7.12) read withℓq overZ gives the norm. This yields the well-known dyadic
scaling property that ∥∥b(x,2k·)∥∥

Ḃn/t
1,t

= 2k( n
t −n)∥∥b(x, ·)∥∥

Ḃn/t
1,t

. (7.10)

7.1. Basic estimates inLp. For general type 1,1-operatorsa(x,D) one has the next result. This
appeared in [Joh05, Cor. 6.2], albeit with a rather sketchy explanation. Therefore a full proof is
given here, now explicitly based on Definition 2.1 and Section 3:

Theorem 7.4. If a ∈ Sd
1,1(R

n×Rn) the corresponding operator a(x,D) is a bounded map for all
s> max(0, n

p −n), 0 < p,q≤ ∞,

a(x,D) : Fs+d
p,q (Rn)→ Fs

p,r(Rn), p < ∞, r ≥ q, r > n/(n+s), (7.11)

a(x,D) : Bs+d
p,q (Rn)→ Bs

p,q(Rn). (7.12)

Here the twisted diagonal condition(2.25)implies(7.11)and (7.12)for all s∈ R and r= q.

Proof. Let ψ denote an arbitrary modulation function, and recall the notation from Section 5, in
particular (5.7) andR, r andh. It is exploited below that‖u‖Fs

p,q
can be calculated in terms of

the Littlewood–Paley partition associated withψ .
For a(1)(x,D)u = ∑∞

k=hak−h(x,D)uk andu∈ Fs
p,q the symbol factorFak−h can be handled with

a convolution estimate as in the proof of Proposition 3.6, so

|ak−h(x,D)uk(x)| ≤ Fak−h(N,R2k;x)u∗k(N,R2k;x)≤ c1‖F−1ψ‖1p(a)(R2k)du∗k(x). (7.13)

Applying the norms ofℓq andLp one has (ifq < ∞ for simplicity’s sake)∫
Rn

(
∞

∑
k=0

2skq|ak−h(x,D)uk(x)|q)
p
q dx≤ c2p(a)p

∥∥(
∞

∑
k=0

2(s+d)kqu∗k(x)
q)

1
q
∥∥p

p. (7.14)
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If N > n/min(p,q) here, it is seen from (7.8) that one has the bound in Lemma 7.2 for all s∈R,
whilst the corona condition holds by Proposition 5.2, so thelemma gives

‖a(1)(x,D)u‖Fs
p,q
≤ c(

∫
Rn

(
∞

∑
k=0

2skq|ak−h(x,D)uk(x)|q)
p
q dx)

1
p ≤ c′‖u‖Fs+d

p,q
. (7.15)

In the contributiona(3)(x,D)u = ∑∞
j=ha j(x,D)u j−h one has, cf (5.3),

|a j(x,D)u j−h(x)| ≤
j−h

∑
k=0

|a j(x,D)uk(x)| ≤
j

∑
k=0

Fa j (N,R2k;x)u∗k(N,R2k;x). (7.16)

Here Corollary 3.4 gives the estimateFa j ≤ cM p(a)2− jM(R2k)d+M for k≥ 1, butk = 0 can be
incorporated by increasingcM by a power ofR. The sum overk can be treated by the well-
known elementary inequality∑∞

j=02s jq(∑ j
k=0 |bk|)q ≤ c∑∞

j=02s jq|b j |q, valid for all b j ∈ C and
0 < q≤ ∞ provideds< 0; cf [Yam86]. ForM > s this gives

∞

∑
j=0

2s jq|a j(x,D)u j−h(x)|q ≤
∞

∑
j=0

2(s−M) jq(
j

∑
k=0

cM p(a)(R2k)d+Mu∗k(N,R2k;x))q

≤ cp(a)q
∞

∑
j=0

2(s+d) jqu∗j (N,R2 j ;x)q.

(7.17)

By integration this clearly leads to

(
∫

Rn
(

∞

∑
j=0

2s jq|a j(x,D)u j−h(x)|q) p
q dx)

1
p ≤ c3p(a)

∥∥(
∞

∑
j=0

2(s+d) jqu∗j (x)
q)

1
q
∥∥

p. (7.18)

Repeating the argument for (7.15) this gives‖a(3)(x,D)u‖Fs
p,q
≤ c‖u‖Fs+d

p,q
.

In estimates ofa(2)(x,D)u the terms(ak− ak−h)(x,D)uk can be treated similarly to those
of a(1)(x,D); then‖F−1(ψ −ψ(2h·))‖1 enters the constant instead of‖F−1ψ‖1. Moreover,
ak(x,D)(uk−1− uk−h) = ∑h−1

l=1 ak(x,D)uk−l where each term is estimated byu∗k−l (N,R2k−l ;x),
analogously toa(1)(x,D)u; but the symbol factorFak(N,R2k−l ;x) is nowO(2(k−l)d), which con-
tributes to the constant by an extra factor of the form(∑h−1

l=1 2slq)1/q. Altogether one has

(∫
Rn

(
∞

∑
k=0

2skq|(ak−ak−h)(x,D)uk(x)+ak(x,D)(uk−1−uk−h)|q) p
q dx

) 1
p

≤ c′2p(a)
∥∥(

∞

∑
k=0

2(s+d)kqu∗k(x)
q)

1
q
∥∥

p. (7.19)

In case (2.25) holds, the last part of Proposition 5.3 and (7.8) show that the argument for (7.15)
applies mutatis mutandis. This gives‖a(2)(x,D)u‖Fs

p,q
≤ c‖u‖Fs+d

p,q
, so for alls∈ R,

‖aψ(x,D)u‖Fs
p,q
≤ ∑

j=1,2,3
‖a( j)(x,D)u‖Fs

p,q
≤ cp(a)‖u‖Fs+d

p,q
. (7.20)
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Otherwise the spectra are by Proposition 5.3 only containedin balls, but the conditions >
max(0, n

p − n) and those onr imply that ‖a(2)(x,D)u‖Fs
p,r
≤ c‖u‖Fs+d

p,q
; cf Lemma 7.2. This

gives the above inequality withq replaced byr on the left-hand side.
Thusaψ(x,D) : Fs+d

p,q → Fs
p,r is continuous. SinceS is dense inFs

p,q for q < ∞ (andFs
p,∞ →֒

Fs′
p,1 for s′ < s), there is no dependence onψ . Henceu∈ D(a(x,D)) and the above inequalities

hold for a(x,D)u. This proves (7.11) in all cases.
The Besov case is analogous; one can interchange the order ofLp and ℓq and refer to the

maximal inequality for scalar functions: Lemma 7.2 carriesover to Bs
p,q in a natural way for

0 < p≤ ∞ with r = q in all cases; this is well known, cf [Yam86, Joh05, JS08]. (One may also
obtain (7.12) by real interpolation of (7.11), cf [Tri83, 2.4.2], but only for 0< p < ∞.) ¤

The borderline analysis in (7.3) is a little simpler than theabove. In fact, the proof in [Joh04,
Joh05] applies to the definition by vanishing frequency modulation with the addendum that the
right-hand side of (5.7) does not depend onψ for u∈ Fd

p,1, becauseS is dense there.
By duality, Theorem 7.4 extends to operators that merely fulfil the twisted diagonal condition

of arbitrary real order.

Theorem 7.5. Let a(x,η) belong to the self-adjoint subclass̃Sd
1,1(Rn×Rn), characterised in

Theorem 4.3. Then a(x,D) is a bounded map for all s∈ R,

a(x,D) : Fs+d
p,q (Rn)→ Fs

p,q(Rn), 1 < p < ∞, 1 < q≤ ∞, (7.21)

a(x,D) : Bs+d
p,q (Rn)→ Bs

p,q(Rn), 1 < p≤ ∞, 1 < q≤ ∞. (7.22)

Proof. When p′+ p = p′p andq′+q = q′q, thenFs
p,q is the dual ofF−s

p′,q′ since 1< p′ < ∞ and
1≤ q′ < ∞; cf [Tri83, 2.11], the caseq′ = 1 is covered by eg [FJ90, Rem. 5.14]. The adjoint
symbola∗(x,η) is in Sd

1,1 by assumption, so

a∗(x,D) : F−s
p′,q′(R

n)→ F−s−d
p′,q′ (Rn) (7.23)

is continuous whenever−s−d > max(0, n
p′ −n) = 0, ie for s< −d; this follows from Theo-

rem 7.4 sincep′ ≥ 1 andq′ ≥ 1. The adjointa∗(x,D)∗ is therefore boundedFs+d
p,q → Fs

p,q, and it
equalsa(x,D) according to Theorem 4.6. Whens> 0 then (7.21) also holds by Theorem 7.4.

If d ≥ 0 the gap withs∈ [−d,0] can be closed sincea(x,D) = b(x,D)Λt by Proposition 2.2
holds withΛt = OP((1+ |η |2)t/2), t ∈ R andb(x,η) = a(x,η)(1+ |η |2)−t/2. The latter is of
order−1 for t = d+1, which gives (7.21) for alls.

For theBs
p,q scale similar arguments apply, also forp = ∞. ¤

In casep = 2 = q, Hörmander obtained boundedness
∥∥a(x,D)u

∥∥
Hs ≤ c

∥∥u
∥∥

Hs+d for Schwartz
functions u and all s ∈ R when a ∈ S̃d

1,1. This was an immediate consequence of [Hör89,
Thm. 4.1], but first formulated in [Ḧor97, Thm. 9.4.2]. Obviously Theorem 7.5 gives a natu-
ral generalisation to theLp-setting that relies on the definition of type 1,1-operators.

Specialisation of Theorems 7.4–7.5 to Sobolev and Hölder–Zygmund spaces, cf (7.1)–(7.2),
gives
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Corollary 7.6. Every a(x,D) ∈OP(Sd
1,1(R

n×Rn)) is bounded

a(x,D) : Hs+d
p (Rn)→ Hs

p(Rn), s> 0, 1 < p < ∞, (7.24)

a(x,D) : Cs+d
∗ (Rn)→Cs

∗(Rn), s> 0. (7.25)

This extends to all real s whenever a(x,η) belongs to the self-adjoint subclassS̃d
1,1(R

n×Rn).

7.2. Direct estimates for the self-adjoint subclass.To complement Theorem 7.5 with similar
results valid forp, q in ]0,1] one can exploit the paradifferential decomposition (5.7) and the
pointwise estimates used above.

However, in the results below there will be an arbitrarily small loss of smoothness. The reason
is that the estimates ofa(2)

ψ (x,D) are based on a corona condition which isasymmetricin the
sense that the outer radii grow faster than the inner ones. That is, the last part of Lemma 7.2 will
now be extended to series∑u j fulfilling the more general condition, where 0< θ ≤ 1 andA> 1,

suppFu0 ⊂ {ξ | |ξ | ≤ A2 j }, for j ≥ 0,

suppFu j ⊂ {ξ | 1
A2θ j ≤ |ξ | ≤ A2 j } for j ≥ J≥ 1.

(7.26)

This situation is probably known to experts in function spaces, but in lack of a reference it is
analysed here. The techniques should be standard, so the explanations will be brief.

The main point of (7.26) is that∑u j still converges fors≤ 0, albeit with a loss of smoothness;
cf the cases below withs′ < s. Actually the loss is proportional to(1−θ)/θ , hence tends to∞
for θ → 0, which reflects that convergence in some cases fails forθ = 0 (take

∧
u j = 1

j ψ ∈C∞
0 ,

s= 0, 1< q≤ ∞).

Proposition 7.7. Let s∈ R, 0 < p < ∞, 0 < q ≤ ∞, J ∈ N and 0 < θ ≤ 1 be given; with
q > n/(n+ s) if s > 0. For each sequence(u j) j∈N0 in S ′(Rn) fulfilling the corona condition
(7.26)together with the bound (usual modification for q= ∞)

F :=
∥∥(

∞

∑
j=0

|2s ju j(·)|q)
1
q
∥∥

Lp
< ∞, (7.27)

the series∑∞
j=0u j converges inS ′(Rn) to some u∈ Fs′

p,q(Rn) with∥∥u
∥∥

Fs′
p,q
≤ cF, (7.28)

whereby the constant c also depends on s′, which one can take as s′ = s for θ = 1, or in case
0 < θ < 1, take to fulfil

s′ = s for s> max(0, n
p−n), (7.29)

s′ < s/θ for s≤ 0, p≥ 1, q≥ 1, (7.30)

or in general

s′ < s− 1−θ
θ (max(0, n

p−n)−s)+. (7.31)

(Here s′ = s is possible by(7.29)if the positive part(. . .)+ has strictly negative argument.)

The conclusions carry over to Bs′
p,q for any q∈]0,∞] when B:= (∑∞

j=02s jq‖u j‖q
p)

1
q < ∞.
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Remark7.8. The above restrictionq > n/(n+ s) for s> 0 is not severe, for if (7.27) holds for
a sum-exponent in]0,n/(n+s)], then the constantF is also finite for anyq > n/(n+s), which
yields the convergence and an estimate in a slightly larger space; cf ther in Lemma 7.2

Proof. IncreasingA ≥ 1, as we may, gives a reduction to the caseJ = 1: u = ∑u j has the
contributions 0+ · · ·+ 0+ uJ + uJ+1 + . . . and (u0 + · · ·+ uJ−1) + 0+ . . . , where the former
fulfils the conditions forJ = 1; the latter trivially converges, it fulfils (7.26) forJ = 1 if A is
replaced byA2J and (7.27) as‖u0+ · · ·+uJ−1‖p≤ J2|s|JF < ∞. Hence‖u‖Fs′

p,q
≤C(c+J2|s|J)F

if C is the constant from the quasi-triangle inequality.
It is first assumed thatu= ∑uk converges inS ′ . Then each termΦ j(D)∑uk in the expression

for ‖u‖Fs′
p,q

is defined; cf (7.5). Writing nowΦ j(η) asΦ(2− jη) for clarity, one has

Φ(2− jD) ∑
k≥0

uk = ∑
j−h≤k≤[ j/θ ]+h

Φ(2− jD)uk. (7.32)

In fact, (7.26) gives anh∈ N such thatΦ(2− jD)Fuk = 0 for all k /∈ [ j−h, j
θ +h].

To proceed it is convenient to use Marschall’s inequality; cf Remark 7.3. This gives

|Φ(2− jD)uk(x)| ≤ c
∥∥Φ(R2ν− j ·)∥∥

Ḃ
n
t
1,t

Mtuk(x), for 0 < t ≤ 1, (7.33)

wherebyν should be taken so large thatB(0,R2ν) contains the supports ofΦ(2− j ·) and
∧
uk; also

R≥ A can be arranged. Note that by Remark 7.3,∥∥Φ(R2ν− j ·)∥∥
Ḃ

n
t
1,t

= 2(ν− j)( n
t −n)∥∥Φ(R·)∥∥

Ḃ
n
t
1,t

. (7.34)

This is applied in the following for somet ∈ ]0,1] that also fulfilst < min(p,q), and the main
point is to show that, withs′ as in the statement, it holds in all cases that( ∞

∑
j=0

2s′ jq|Φ(2− jD) ∑
k≥0

uk(x)|q
)1/q ≤ c

( ∞

∑
k=0

2skqMtuk(x)q)1/q
. (7.35)

The easiest case is for 0< q≤ 1. As ℓq →֒ ℓ1 for suchq, one has

∞

∑
j=0

2s′ jq|Φ(2− jD) ∑
k≥0

uk(x)|q ≤
∞

∑
j=0

∑
j−h≤k≤ j/θ+h

2s′ jq|Φ(2− jD)uk(x)|q

≤ c
∞

∑
k=0

∑
θk−h≤ j≤k+h

2s′ jq∥∥Φ(R2ν− j ·)∥∥q

Ḃ
n
t
1,t

Mtuk(x)q.

(7.36)

Hereν = j gives a constant forj ≥ k, so the above is both fors′ R 0 estimated by

c
∞

∑
k=0

(h2s′kq+ ∑
θk−h≤ j≤k

2s′ jq+( n
t −n)(k− j)q)Mtuk(x)q. (7.37)

For θ = 1 the sum overj has a fixed number of terms, hence isO(2skq) for s′ = s; cf (7.35).
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In the case in (7.29) one may asq> n/(n+s) arrange thats′ = s> n
t −n> max(0, n

p−n, n
q−n)

by takingt sufficiently close to min(p,q). Then the geometric series above is estimated by the
last term, hence isO(2skq), as required in (7.35).

What remains of (7.31) are the cases in whichs≤max(0, n
p −n), that is

s′ < s≤max(0, n
p −n, n

q −n) < n
t −n, t ∈ ]0,min(p,q)[ . (7.38)

By (7.31) a suitably smallt > 0 yieldss= θs′+(1−θ)(n
t −n), and sinces′− (n

t −n) < 0 in the

above sum an estimate by the first term givesO(2(s′θ+(1−θ)( n
t −n))kq) = O(2skq).

For 1< q < ∞ the inequality (7.35) follows by use of Ḧolder’s inequality in (7.32), for if
q+q′ = q′q, one can fors′ < 0 use 2θs′(k− j) as a summation factor to get

|Φ(2− jD) ∑
k≥0

uk(x)|q ≤ c
[ j/θ ]+h

∑
k= j−h

2(k− j)s′θq
∥∥Φ(R2ν− j ·)∥∥q

Ḃ
n
t
1,t

Mtuk(x)q(
2−( 1

θ −1) js′θq′

2−s′θq′−1
)

q
q′ . (7.39)

Therefore the above procedure yields an estimate of∑∞
j=02s′ jq|Φ(2− jD)∑k≥0uk(x)|q by

∞

∑
k=0

2ks′θqMtuk(x)q(h+ ∑
θk−h≤ j<k

2(k− j)( n
t −n)q)≤ c

∞

∑
k=0

2(s′θ+(1−θ)(n
t −n))kqMtuk(x)q, (7.40)

which again gives (7.35) by using (7.31) to arranges≥ s′θ +(1−θ)(n
t −n) for a t ∈ ]0,1[ . By

making the last inequality strict for a slightly largert , the argument is seen to extend to cases
with 0≤ s′ < s≤ max(0, n

p −n) by usings′− (n
t −n) < 0 instead ofs′ in Hölder’s inequality.

In fact, one gets∑2(s′θ+(1−θ)( n
t −n))kq(h2h( n

t −n) + (1+ h+ k(1− θ)))Mtuk(x)q, which again is
O(2skq) as the termk(1−θ) is harmless by the choice oft (or for θ = 1). Hence (7.35) holds.

In cases′ = s> 0, cf (7.29), one may takes− n
t +n> 0 (as forq≤ 1) now with 2(k− j)(s− n

t +n)/2

as a summation factor: then(. . .)q/q′ = O(1), so the factor in front ofMtu
q
k becomes

∑
θk−h≤ j≤k+h

2s jq+(k− j)(s− n
t +n)q/2+(k− j)+( n

t −n)q = O(2skq). (7.41)

For q = ∞ a direct argument yields sup-norms weighted by 2s′ j and 2sk in (7.35).
By the choice oft , the Fefferman–Stein inequality applies to (7.35), cf (7.8), whence

(
∫

Rn
(

∞

∑
j=0

2s′ jq|Φ j(D) ∑
k≥0

uk(x)|q)p/qdx)1/p ≤ c(
∫ ∥∥2skuk(·)

∥∥p
ℓq

dx)1/p = cF. (7.42)

Convergence is trivial for the partial sumsu(m) = ∑ j≤mu j , hence foru(m+M)−u(m). So (7.42)
applies to(0, . . .0,um+1, . . . ,um+M,0, . . .), which for q < ∞ by majorisation form→ ∞ yields∥∥u(m+M)−u(m)∥∥

Fs′
p,q
≤ c(

∫
Rn

(
∞

∑
k=m

2skq|uk(x)|q)p/qdx)1/p ց 0. (7.43)

As Fs′
p,q is complete,∑u j converges to an elementu(x) with norm≤ cF according to (7.42). For

q = ∞ there is convergence in the larger spaceFs′−1/θ
p,1 since the constantF remains finite ifs,∞

are replaced bys−1, 1; and again‖u‖Fs′
p,q
≤ cF holds by (7.42).
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For the Besov case the arguments are analogous. First of all the absolute value should be
replaced by the norm ofLp in (7.36), that now pertains to 0< q≤min(1, p). Hölder’s inequality
applies in this case if 1/q+1/q′ = 1/min(1, p); and (7.42) can be replaced by boundedness of
Mt in Lp for t < p. Convergence is similarly shown. ¤

Thus prepared, one arrives at a general result for 0< p≤ 1.

Theorem 7.9. If a(x,η) belongs to the self-adjoint subclassS̃d
1,1(Rn×Rn), the operator a(x,D)

is bounded for0 < p≤ 1, 0 < q≤ ∞,

a(x,D) : Fs+d
p,q (Rn)→ Fs′

p,q(Rn) for s′ < s≤ n
p−n, (7.44)

a(x,D) : Bs+d
p,q (Rn)→ Bs′

p,q(Rn) for s′ < s≤ n
p−n. (7.45)

Proof. The theorem follows by elaboration of the proof of Theorem 6.7. By applying the last
part of Theorem 7.4 to the differencea−aχ,1, the question is again reduced to the case in which
∧
a(ξ ,η) 6= 0 only holds for max(1, |ξ +η |)≤ |η |; cf (6.8).

Under this assumption,a(1)(x,D)u anda(3)(x,D)u are for alls∈ R covered by Theorem 7.4;
cf (7.20). Thus it suffices to estimate the series in (6.9) forfixed s′ < s≤ n

p − n; notice that
simple embeddings and Remark 7.8 gives a reduction to the case q > n/(n+s) if s> 0.

Now θ ∈ ]0,1[ can be taken so small thats′ < s− θ
1−θ ( n

p −n−s), which is the last condition
in Proposition 7.7 with 1−θ instead ofθ . Thenε = 2−kθ in (6.14) clearly gives

2k(s+M)|ak,χ,ε(x,D)vk(x)| ≤ cv∗k(N,R2k;x)2k(s+d)2−kθ(σ−1−N−M/θ). (7.46)

Here one may first of all takeN > n/min(p,q) so that (7.8) applies. Secondly, since by assump-
tion a(x,η) fulfils the twisted diagonal condition (2.31) of any real order, σ can for anyM (with
θ fixed as above) be chosen so that 2−kθ(σ−1−N−M/θ) ≤ 1. This gives

(
∫ ∥∥2k(s+M)ak,χ,ε(x,D)vk(·)

∥∥p
ℓq

dx)
1
p ≤ c(

∫ ∥∥2k(s+d)v∗k(N,R2k; ·)∥∥p
ℓq

dx)
1
p

≤ c′(
∫ ∥∥2k(s+d)vk(·)

∥∥p
ℓq

dx)
1
p ≤ c′′

∥∥u
∥∥

Fs+d
p,q

.
(7.47)

Here the last inequality follows from the (quasi-)triangleinequality inℓq andLp.
Since the spectral support rule and Proposition 5.3 imply that ak,χ,ε(x,D)vk also has its spec-

trum in B(0,2R2k), the above estimate allows application of Lemma 7.2, ifM is so large that

M > 0, M +s> 0, M +s> n
p −n. (7.48)

This gives convergence of∑ak,χ,2−kθ (x,D)vk to a function inFs+M
p,∞ fulfilling

∥∥ ∞

∑
k=1

ak,χ,2−kθ (x,D)vk
∥∥

Fs+M
p,∞

≤ c‖u‖Fs+d
p,q

. (7.49)

On the left-hand side the embeddingFs+M
p,∞ →֒ Fs

p,q applies, of course.
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For the remainder∑∞
k=1bk(x,D)vk, cf (6.10) ff, note that (7.47) holds forM = 0 with the same

σ . If combined with (7.19), it follows by the (quasi-)triangle inequality that∫ ∥∥2ksbk(x,D)vk(·)
∥∥p

ℓq
dx≤

∫ ∥∥2ks(ak(x,D)−ak,χ,2−kθ (x,D))vk(·)
∥∥p

ℓq
dx≤ c‖u‖p

Fs+d
p,q

. (7.50)

In addition the series was previously shown to fulfil a coronacondition with inner radius 2(1−θ)k

for all largek, cf (6.19), so Proposition 7.7 applies. By the choice ofθ , this gives∥∥ ∞

∑
k=1

bk(x,D)vk
∥∥

Fs′
p,q
≤ c‖u‖Fs+d

p,q
. (7.51)

In a(2)
ψ (x,D)u the other contribution∑(ak(x,D)−ak−h(x,D))uk, cf (6.9), can be treated sim-

ilarly. This was also done in the proof of Theorem 6.7, where in particular (6.14) was shown to
hold for (ak−ak−h)χ,ε(x,D)uk, with just a change of the constant. Consequently (7.46) carries
over, and with (7.48) the same arguments as for (7.49), (7.51) give∥∥ ∞

∑
k=h

(ak−ak−h)χ,ε(x,D)uk
∥∥

Fs+M
p,∞

+
∥∥ ∞

∑
k=h

b̃k(x,D)uk
∥∥

Fs′
p,q
≤ c‖u‖Fs+d

p,q
. (7.52)

Altogether the estimates (7.49), (7.51), (7.52) show that∥∥a(2)
ψ (x,D)u

∥∥
Fs′

p,q
≤ c

∥∥u
∥∥

Fs+d
p,q

. (7.53)

Via the decomposition (5.7),aψ(x,D) is therefore a bounded linear mapFs+d
p,q → Fs′

p,q. SinceS
is dense forq< ∞ (a case one can reduce to), there is no dependence on the modulation function
ψ , so the type 1,1-operatora(x,D) is defined and continuous onFs+d

p,q as stated.
The arguments are similar for the Besov spaces: it suffices tointerchange the order of the

norms inℓq andLp, and to use the estimate in (7.8) for each singlek. ¤

The proof extends to cases with 0< p≤ ∞ whens′ < s≤ max(0, n
p−n), but this barely fails

to reprove Theorem 7.5, so onlyp≤ 1 is included in Theorem 7.9.
When taken together, Theorems 7.4, 7.5 and 7.9 give a satisfactory Lp-theory of operators

a(x,D) in OP(S̃d
1,1), inasmuch as for the domainD(a(x,D)) they cover all possibles, p. Only

a few of the codomains seem barely unoptimal, and these all concern cases with 0< q < 1 or
0 < p≤ 1; cf the parametersr in Theorem 7.4 ands′ in Theorem 7.9.

One particular interest of Theorem 7.9 is thatF0
p,2(R

n) in addition identifies with the so-called
local Hardy spacehp(Rn) for 0 < p ≤ 1; cf [Tri83] and especially [Tri92, Ch. 1.4]. In this
case Theorem 7.9 gives boundednessa(x,D) : hp(Rn)→ Fs′

p,2(R
n) for everys′ < 0, but this can

probably be improved in view of recent results:

Remark7.10. Extensions tohp(Rn) of operators in the self-adjoint subclass OP(S̃0
1,1) were

treated by Hounie and dos Santos Kapp [HdSK09], who used atomic estimates to carry over
theL2-boundedness of Ḧormander [Ḧor89, Hör97] tohp, ie to obtain estimates withs′ = s= 0.
However, they worked without a precise definition of type 1,1-operators. Torres [Tor90] obtained
extensions by continuity using the atomic decompositions in [FJ90], but fors< 0 he relied on
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conditions on the adjointa(x,D)∗ rather than on the symbola(x,η) itself. In theFs
p,q-scales, gen-

eral type 1,1-operators were first estimated by Runst [Run85], though with insufficient control
of the spectra as noted in [Joh05] (a remedy is provided by Appendix B).

Remark7.11. In addition to Theorem 7.9, its proof gives that whena(x,D) fulfils the twisted
diagonal condition of a specific orderσ > 0, then for 1≤ p≤ ∞

Bs
p,q∪Fs

p,q ⊂ D(a(x,D)) for s>−σ +[n/2]+2. (7.54)

While this does provide a result in theLp set-up, it is hardly optimal; cf Ḧormander’s condition
s>−σ for p = 2, recalled in (2.34).

8. FINAL REMARKS

In view of the satisfying results on type 1,1-operators inS ′(Rn), cf Section 6, and the conti-
nuity results in the scalesHs

p, Cs∗, Fs
p,q andBs

p,q presented in Section 7, their somewhat unusual
definition by vanishing frequency modulation in Definition 2.1 should be well motivated.

As an open problem, it remains to characterise the type 1,1-operatorsa(x,D) that are ev-
erywhere defined and continuous onS ′(Rn). For this it was shown above to be sufficient that
a(x,η) is in S̃d

1,1(Rn×Rn), and it could of course be conjectured that this is necessaryas well.
Similarly, since the works of Bourdaud and Hörmander, cf [Bou83, Ch. IV], [Bou88a], [Ḧor88,

Hör89] and also [Ḧor97], it has remained an open problem to determine

B(L2(Rn))∩OP(S0
1,1). (8.1)

Indeed, this set was shown by Bourdaud to contain the self-adjoint subclass OP(S̃0
1,1), and this

sufficient condition led some authors to the misleading statement that eg lack ofL2-boundedness
for OP(S0

1,1) is “attributable to the lack of self adjointness”. But self-adjointness is not necessary,
since already Bourdaud, by modification of Ching’s operator (2.9), gave an example [Bou88a,
p. 1069] of an operatorσ(x,D) in B(L2)

⋂
OP(S0

1,1\ S̃0
1,1); ie σ(x,D)∗ is not of type 1,1.

However, it could be observed thatNχ,ε,α(aθ ) = O(εn/2−|α |) for Ching’s symbolaθ by
Lemma 2.10, and that this is sharp for theL2-unbounded version ofaθ (x,D) by the last part
of Example 2.11. So it is natural to consider the condition for ε → 0,

Nχ,ε,α(a) = o(εn/2−|α |). (8.2)

It is conjectured that this is necessary forL2-continuity of a givena(x,D) in OP(S0
1,1).

APPENDIX A. DYADIC CORONA CRITERIA

As a general tool, convergence of a series∑∞
j=0u j of temperate distributions follows if theu j

fulfil both a growth condition and have their spectra in suitable dyadic coronas. This follows
from Lemma A.1, which forθ0 = θ1 = 1 was given by Coifman and Meyer [MC97, Ch. 15]
without arguments. (A proof of this case can be found in [JS08].)

The refined version in Lemma A.1 allows the inner and outer radii of the spectra to grow at dif-
ferent exponential rates (2θ0 and 2θ1), even though the number of overlapping spectra increases
with j . This is crucial here, so a full proof is given.
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Lemma A.1. 1◦ Let (u j) j∈N0 be a sequence inS ′(Rn) fulfilling that there exist A> 1 and

θ1 > θ0 > 0 such thatsupp
∧
u0 ⊂ {ξ | |ξ | ≤ A} while for j≥ 1

supp
∧
u j ⊂ {ξ | 1

A2 jθ0 ≤ |ξ | ≤ A2 jθ1 }, (A.1)

and that for suitable constants C≥ 0, N≥ 0,

|u j(x)| ≤C2 jNθ1(1+ |x|)N for all j ≥ 0. (A.2)

Then∑∞
j=0u j converges rapidly inS ′(Rn) to a distribution u, for which

∧
u is of order N.

2◦ For every u∈S ′(Rn) both (A.1) and (A.2) are fulfilled for θ0 = θ1 = 1 by the functions
u0 = Φ0(D)u and uj = Φ(2− jD)u whenΦ0,Φ ∈C∞

0 (Rn) and 0 /∈ suppΦ. In particular this is
the case for a Littlewood–Paley decomposition1 = Φ0 +∑∞

j=1Φ(2− jξ ).

Proof. In 2◦ it is clear thatΦ is supported in a corona, say{ξ | 1
A ≤ |ξ | ≤ A} for a largeA > 0;

hence (A.1). (A.2) follows from the proof of Lemma 3.1.
The proof of 1◦ exploits a well-known construction of an auxiliary function: taking ψ0 ∈

C∞
0 (Rn) depending on|ξ | alone and so that 0≤ ψ ≤ 1 with ψ0(ξ ) = 1 for |ξ | ≤ 1/(2A) while

ψ0(ξ ) = 0 for |ξ | ≥ 1/A, then

d
dt

ψ0(
ξ
t
) = ψ(

ξ
t
)
1
t

for ψ(ξ ) =−ξ ·∇ψ0(ξ ), (A.3)

which by integration for 1≤ t ≤ ∞ gives an uncountable partition of unity

1 = ψ0(ξ )+
∫ ∞

1
ψ(

ξ
t
)

dt
t

, ξ ∈ Rn. (A.4)

Clearly the support ofψ(ξ/t) is compact and given byA|ξ | ≤ t ≤ 2A|ξ | whenξ is fixed. For
j ≥ 1 this implies

∧
u j =

∧
u jψ0 +

∧
u j

∫ ∞

1
ψ(

ξ
t
)

dt
t

=
∧
u j

∫ A22 jθ1+1

2 jθ0
ψ(

ξ
t
)

dt
t

. (A.5)

Definingψ j ∈C∞
0 (Rn) as the last integral here,ψ j = 1 on supp

∧
u j ; so if ϕ ∈S ,

|〈u j , ϕ 〉| ≤ ∥∥(1+ |x|2)−N+n
2 u j

∥∥
2

∥∥(1+ |x|2)N+n
2 F−1(ψ j

∧
ϕ)

∥∥
2. (A.6)

The first norm isO(2Nθ1 j) by (A.2). For the second, note that

suppψ j ⊂ {ξ ∈ Rn | A−12 jθ0−1 ≤ |ξ | ≤ A2 jθ1+1} (A.7)

and‖Dαψ j‖∞ ≤ 2− jθ0|α |‖Dαψ‖∞/|α| for α 6= 0 while ‖ψ j‖∞ ≤ diam(ψ(R))≤ 1 by (A.3). In
addition the identity(1+ |x|2)N+nF−1 = F−1(1−∆)N+n gives for arbitraryk > 0,

‖(1+ |x|2)N+nF−1(ψ j
∧
ϕ)‖2

≤ ∑
|α |,|β |≤N+n

cα ,β‖Dαψ j‖∞‖(1+ |ξ |)k+n/2Dβ ∧
ϕ‖∞(

∫ ∞

2 jθ0−1/A
r−1−2kdr)1/2. (A.8)

Here‖Dαψ j‖∞ = O(1), so because of theL2-norm the above isO(2− jkθ0) for everyk > 0.
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Hence〈u j , ϕ 〉= O(2 j(θ1N−θ0k)), sok > Nθ1/θ0 yields that∑∞
j=0〈u j , ϕ 〉 converges. ¤

RemarkA.2. The above proof yields that the conjunction of (A.1) and (A.2) implies 〈u j , ϕ 〉 =
O(2− jN) for arbitraryN > 0, hence there israpid convergence ofu = ∑∞

j=0u j in the sense that
〈u−∑ j<k u j , ϕ 〉= ∑ j≥k〈u j , ϕ 〉= O(2−kN) for N > 0, ϕ ∈S (Rn).

APPENDIX B. THE SPECTRAL SUPPORT RULE

To control the spectrum ofx 7→ a(x,D)u, ie the support ofξ 7→Fa(x,D)u, there is a simple
rule which is recalled here for the reader’s convenience.

Writing Fa(x,D)F−1(
∧
u) instead, it is clear the question is how the support ofFu is changed

by the conjugated operatorFa(x,D)F−1. Since this hasK (ξ ,η) = (2π)−n∧a(ξ −η ,η) as its
distribution kernel, cf (1.11), one should expect the spectrum of a(x,D)u to be contained in

Ξ := suppK ◦suppFu = {ξ ∈ Rn | ∃η ∈ supp
∧
u: (ξ ,η) ∈ suppK }. (B.1)

This is indeed the case if suppFu ⋐ Rn, as was proved in [Joh05], while in general one should
use the closureΞ instead, as shown in [Joh08b]:

Theorem B.1. Let a∈ S∞
1,1(Rn×Rn) and suppose u∈ D(a(x,D)) is such that, for someψ ∈

C∞
0 (Rn) equalling1 around the origin,(2.4)holds in the topology ofS ′(Rn). Then it holds that

suppF (a(x,D)u)⊂ Ξ, (B.2)

Ξ =
{

ξ +η
∣∣ (ξ ,η) ∈ suppFx→ξ a, η ∈ suppFu

}
. (B.3)

When u∈F−1E ′(Rn) theS ′-convergence holds automatically andΞ is closed for such u.

The reader is referred to [Joh08b] for the deduction of this from the kernel formula. Note that
it suffices to take anyv∈C∞

0 (Rn) with support disjoint fromΞ and verify that

〈Fa(x,D)F−1∧u, v〉= 〈K , v⊗ ∧
u〉= 0. (B.4)

Although the expression to the right makes sense as〈(v⊗ ∧
u)K , 1〉 (as noted in [Joh08b], using

the remarks to [Ḧor85, Def. 3.1.1]), it is in general not trivial to justify the first equality sign.

RemarkB.2. There is a simple proof of (B.2) in case
∧
u∈ E ′ anda∈ Sd

1,0: Whenv is as above

and supp
∧
u is compact, (B.1) yields dist(suppK ,supp(v⊗ ∧

u)) > 0. So with
∧
uε = ϕε ∗ ∧

u for some

ϕ ∈C∞
0 (Rn) with

∧
ϕ(0) = 1, ϕε = ε−nϕ(·/ε), all sufficiently smallε > 0 give

suppK
⋂

suppv⊗ ∧
uε = /0. (B.5)

Therefore one has, sinceFa(x,D)F−1 is continuous inS ′ and
∧
uε ∈C∞

0 (Rn),

〈Fa(x,D)F−1∧u, v〉= lim
ε→0

〈Fa(x,D)F−1∧uε , v〉= lim
ε→0

〈K , v⊗ ∧
uε 〉= 0. (B.6)
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The argument in Remark B.2 actually suffices for the applications of Theorem B.1 in the
present paper. Indeed, it is clear from Remark 5.1 that the summandsak−h(x,D)uk etc, that
appear in the paradifferential decomposition (5.7), all can be rewritten in terms of symbols in
S−∞ without changing the setΞ.

Further comments on Theorem B.1 can be found in Remark 5.4 andthe introduction.
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