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Department of Mathematical Sciences
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ABSTRACT

In this paper it is demonstrated how a nonparametric
estimator of the stationary workload distribution func-
tion of the M/G/1-queue can be obtained by system-
atic sampling the workload process. Weak convergence
results and bootstrap methods for empirical distribu-
tion functions for stationary associated sequences are
used to derive asymptotic results and bootstrap meth-
ods for inference about the workload distribution func-
tion. The potential of the method is illustrated by a
simulation study of the M/D/1 model.

1 INTRODUCTION

Sampling (or probing) the workload in queuing systems
is a standard tool for performance evaluation. This is
e.g. used in call center evaluations, where the distri-
bution of the waiting time to service is estimated by
the empirical distribution function of the call answer
time for repeated phone calls. Another application is
when a call admission controller in an ATM network
decides, whether there are sufficient resources to allow
a new connection to be established, based on informa-
tion obtained by sampling the workload at neighboring
nodes. Reliable estimation of the cumulative distribu-
tion function is an important subject as a variety of
characteristics can be estimated by functionals of the
empirical cumulative distribution function (ecdf).

Throughout the paper we consider an M/G/1-queue,
i.e. the inter-arrival times are independently and expo-
nentially distributed with mean λ, the service times are
independently and generally distributed with mean f1,
there is 1 server, and infinite waiting room.

For later purposes let {(Tn, Sn), n ≥ 1}, denote the
sequence of arrival and service times of the customers.
Let S be a generic random variable with the same dis-
tribution as S1.

Let the workload in the system at time t be denoted
by Vt, i.e. Vt is the sum of the residual service times of
the customer being presently served and the customers

awaiting service. By convention, a workload process
{Vt, t ∈ R} will be taken right-continuous with left-
hand limits. For the M/G/1 queue, the evolution of Vt

between two arrivals is described by Lindley’s equation

Vt = (VTn− + Sn − (t− Tn)) ∧ 0, (1)

where t ∈ [Tn, Tn+1). In general a workload process Vt

is defined only for t ≥ 0. However, by Loynes’ The-
orem (Baccelli and Brémaud 2003, Theorem 2.1.1) it
is possible to prove that under the stability condition
ρ = λf1 < 1 there exists a unique stationary workload
process {Vt, t ∈ R} satisfying (1). We will use, V0 as
a generic random variable with the stationary distribu-
tion.

In what follows a cumulative distribution function
(cdf) is denoted by a capital letter, A, say. The k’th
moment by ak, the stationary excess distribution by
Ae(x) = a−1

1

∫ x

0
(1−A(y))dy, x ≥ 0, the complementary

cdf by Ā(x) = 1−A(x), x ≥ 0, and its Fourier transform

by Â(t) =
∫∞
−∞

A(x) exp(−itx)dx, t ∈ R.
If we let F denote the cdf of the service time distribu-

tion function and G the cdf of the stationary workload
distribution function, one can prove, under the stability
condition ρ < 1 that Pollaczeck-Khintchine’s formula
holds (Asmussen 2003, Theorem X.5.2)

G(x) = (1− ρ)

∞∑

k=0

ρkF ⋆k
e (x), 0 ≤ x < ∞, (2)

where ⋆k denotes k-fold convolution.
We now assume that it is possible to test the perfor-

mance of the queue by sampling the workload, without
loss of generality, at every positive integer time point,
as other sampling intervals can be obtained by proper
rescaling. This process is denoted by {Vi, i ≥ 1}. The
main objective of this paper is to infer G from the sam-
pled workloads. We suggest the ecdf as an estimator
for G

Gn(x) = n−1
n∑

i=1

I(Vi ≤ x), 0 ≤ x < ∞. (3)
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It’s n’th empirical process counterpart is defined as

βn(x) = n1/2(Gn(x)−G(x)), 0 ≤ x < ∞. (4)

In the following we will provide sufficient conditions for
the empirical process to converge weakly to a Gaussian
process. This information will be used to make statisti-
cal inference about the workload distribution function.

The paper is organized as follows. In Section 2 the
covariance structure of the workload process is studied.
The weak convergence of the empirical process of sub-
sampled M/G/1 workloads and the bootstrap method
are given in Section 3. Section 4 discusses algorith-
mic aspects and gives an illustrative numerical example.
Section 5 contains some remarks on possible extensions
and other aspects of the results. All proofs are carried
out in Section 6.

2 Dependency structure of sampled workload

In general, when one establish weak convergence of em-
pirical processes, to appropriate Gaussian processes, a
handle on the dependence structure of the process un-
der study is needed.

One possibility is to utilize the regenerative structure
of the workload process and proceed with an analysis
along the lines of Datta and McCormick (1993). This
will require a detailed study of the relation between the
regenerative structure of the workload process and the
sampled workload process along with the development
of a theory for bootstrapping the empirical measure of
regenerative processes. This track is currently under
study and will be reported elsewhere, see Hansen and
Pitts (2005a), Hansen and Pitts (2005b). More specif-
ically, Hansen and Pitts (2005a) shows by utilizing the
regenerative structure that weak convergence for the
empirical process is ensured if ES2 < ∞. In Hansen and
Pitts (2005b) the regenerative structure is used to show
weak convergence for the empirical process and asymp-
totic results for a blocked bootstrap procedure. This in-
dicates that the methods described in the present paper
can be used on much more general queueing systems.

As it is straightforward to show that the sampled
workload is associated a number of standard tools for
associated sequences can be utilized. One of these tools
is the moving block bootstrap procedure, and a clear
advantage is that this is supported in most statistical
software packages.

The theory of associated sequences was introduced
by Esary, Proschan, and Walkup (1967) and has since
found many applications in probability, statistics, and
reliability, we refer to Newman (1984) for a survey and
Vanichpun and Makowski (2002) for a recent review of
applications within the analysis of queuing systems.

Definition 1 A finite sequence of random variables,
X1, . . . , Xn is said to be associated if, the inequality

Cov(f(X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0

holds for all coordinate-wise nondecreasing functions
f, g : R

n → R for which the covariance is defined. An
infinite sequence of random variables is said to be asso-
ciated if every finite subsequence is associated.

We now turn to establishing that {Vi, i ≥ 1} is an
associated sequence. Unfortunately, we are not able to
show this directly, although it is sequentially increas-
ing which implies associateness, see Definition 3 and
Lemma 1 of Section 6 for details.

Proposition 1 The sampled workload process {Vi, i ≥
1} is an associated sequence of random variables.

Under a regularity condition on G it is possible to
bound Cov(G(V1), G(Vn)).

Assumption 1 Let B(R+) denote the Borel σ-field.
Define a σ-finite measure µ on the measurable space
(R+,B(R+)) by

µ(A) = 1A(0) +

∫

A

dx, A ∈ B(R+). (5)

Assume that G has a density g with respect to µ. In
that case g can be decomposed as

g(x) = (1− ρ)1{0}(x) + gac(x), x ≥ 0,

where gac is the absolutely continuous component of G.
In addition assume that gac is essentially bounded with
respect to Lebesgue measure.

Remark 1 If the service time cdf is absolutely contin-
uous we notice by Young’s inequality

‖ f⋆k ‖∞ ≤ ‖ f ‖∞‖ f⋆(k−1) ‖1 = ‖ f ‖∞,

where ‖ · ‖∞ is the essential supremum with respect
to Lebesgue measure. Hence, the absolutely continuous
part gac is bounded by

‖ gac ‖∞ ≤ ρ‖ f ‖∞.

Proposition 2 Assume that G satisfies Assumption 1,
then

Cov(G(V1), G(Vn)) ≤ ‖ gac ‖
2
∞ Cov(V1, Vn).

The covariance structure of the workload process for
the M/G/1-queue has been under intensive investiga-
tion, see Beněs (1957), Ott (1977) and Abate and Whitt
(1994). From these results it is possible to derive the
following proposition (see Section 6 for details).
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Proposition 3 If ESν+3 < ∞, for ν ≥ 1, then

Cov(V1, Vn) = O(n−v−ǫ) (6)

for some ǫ > 0.

The properties outlined in Proposition 1, 2 and 3 turn
out to be sufficient information to apply several useful
results from weak convergence and resampling methods
of associated sequences.

3 Asymptotic normality and the bootstrap

The theory of empirical processes plays a central role
in statistics and it has many applications ranging from
parameter estimation to hypothesis testing. The litera-
ture of empirical processes is large and there are many
profound results, see e.g. van der Vaart and Wellner
(1996) for a comprehensive overview for independent
random variables.

To deal with random variables such as time series
that are dependent, one naturally asks whether results
obtained under the independence assumption remain
valid. Such asymptotic theory is evidently useful for
statistical inference of stochastic processes.

Without the independence assumption, it is more de-
manding to develop weak convergence theory and boot-
strap methods. There are three main directions: Via
1) mixing conditions, 2) martingale methods for causal
processes, 3) structural properties of Markov chains
(e.g. Harris recurrence), 4) conditions on the covari-
ance structure of associated sequence or 5) regenera-
tive processes by Hansen and Pitts (2005a), Hansen and
Pitts (2005b). In the present paper we follow direction
4) based on Shao and Yu (1996), Peligrad (1998) and
Louhichi (2000).

Let Q be the quantile function of G defined by

Q(t) = inf{x : G(x) ≥ t}, 0 < t ≤ 1 (7)

Q(0) = Q(0+).

This means, the quantile function Q is the left contin-
uous generalized inverse (Billingsley 1968, Page 42) of
the right continuous distribution function G.

In this paper we treat weak convergence →D in
D[0, T ), where [0, T ) is a subset of the extended pos-
itive real line, and D[0, T ) the Skorohod space of all
right-continuous functions on [0, T ) with left hand lim-
its endowed with the metric induced by the supremum
norm, see Jacod and Shiryaev (1987), Chapter IV.

Finally, let B be a tight random element in D[0,∞),
satisfying B(∞) = 0, whose marginal distributions are
zero-mean normal and a covariance function specified

by

E(B(x)B(y))

=

∞∑

k=1

Cov(I(V1 ≤ x), I(Vk ≤ y)). (8)

We are now ready to present the weak approximation
result for the n’th empirical process βn defined in (4).

Theorem 1 If ESν+3 < ∞ for some ν ≥ 4 and G
satisfies Assumption 1, then we have

βn →D B in D[0,∞). (9)

In order to assess the performance of the estimator
Gn, some sort of confidence band is needed. Since we
regard the estimate as an element of D[0,∞), it is natu-
ral to consider confidence regions in this function space.
This leads to consideration of simultaneous confidence
bands from the unknown distribution function.

Assume for the moment, that the distribution of
‖B ‖∞ is known and q is its quantile function (see (7)).
Then, Theorem 1 implies that

P(‖βn ‖∞ ≤ q(α)) → P(‖B ‖∞ ≤ q(α)) = α,

as n →∞. An α · 100%-confidence band could then be
calculated as

Gn ± n−1/2q(α).

However, the quantile function is unknown. To deal
with this problem we use the bootstrap. As the data
is not iid, Efron’s (Efron 1979) IID-bootstrap method
is modified by Künsch’s (Künsch 1989) moving block
bootstrap (MBB) method. See, Lahiri (2003) for a re-
cent and detailed account of bootstrap methods and
their properties for dependent data.

Let k and l be two integers such that n = kl. Let
Tn1, . . . , Tnk be iid random variables each having uni-
form distribution on {1, 2, . . . , n}. Define the triangular
array {Vni, 1 ≤ i ≤ n} by Vni = Vi for 1 ≤ i ≤ n and
Vni = Vi−n for n < i ≤ n+l. Then the bootstrapped es-
timator of the empirical distribution function is defined
as

G∗
n(x) =

1

k

k∑

i=1

1

l

Tni+l−1∑

j=Tni

I(Vnj ≤ x), 0 ≤ x < ∞.

The n’th-bootstrapped empirical process is then defined
as

β∗n(x) = n1/2(G∗
n(x)−Gn(x)), 0 ≤ x < ∞.

In the following P ∗ denotes the conditional probability
given (V1, . . . , Vn). The notation ≪ in the following
Theorem is, for notational convenience, used to replace
the O-notation.
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Theorem 2 If ESν+3 < ∞ for some ν ≥ 3, G satis-
fies Assumption 1, and ln, kn are sequences of natural
numbers satisfying

nh ≪ l ≪ n1/3−α

for some 0 < h < 1/3− α, 0 < α < 1/3, ln = l(2k) for
2k ≤ n < 2k+1, ln →∞ as n →∞, and n = knln, then
the series in (8) is convergent and

β∗n →D B, in D[0,∞)

holds P ∗-almost surely in the Skorohod Topology on
D[0,∞).

Remark 2 As noted in Peligrad (1998), Remark 2.1,
the central limit theorem of the bootstrapped empirical
process is ensured for a larger class of processes, than
the empirical process of the original data.

From Theorem 2 the following result follows.

Corollary 1 Under the conditions in Theorem 2, we
get

P∗ (‖β∗n ‖∞ ≤ q(α)) → P (‖B ‖∞ ≤ q(α)) = α,

as n →∞.

The confidence band is then constructed by simulat-
ing N independent replications β∗n,i, i = 1, . . . , N of β∗n,
and q(α) is estimated by

q̂N (α) = inf

{
x : N−1

N∑

i=1

I(‖β∗n,i ‖∞ ≤ x) ≥ α

}
.

A α · 100% bootstrapped confidence band can then be
constructed as

Gn ± n−1/2q̂N (α). (10)

4 Simulation results

The results above have interesting consequences for sta-
tistical inference about queuing systems. We shall in
the present section see, how the presented weak con-
vergence results enable statistical inference about the
workload distribution function.

We will consider the widely used M/D/1 queue for
our simulation study, which means the service times
have a deterministic length. For the simulation study
we will throughout this section assume ρ = 0.5 and
S ≡ 1. (For simulation results on other service time dis-
tributions, see Hansen and Pitts (2005a), Hansen and
Pitts (2005b).)

Observe that all moments of S exists and that G is
absolutely continuous except for the atom at zero. From
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Figure 1: Upper panel: Simulated data set of size n =
200 with ρ = 0.5 and Sn ≡ 1, n ≥ 0. Lower panel:
Corresponding estimated acf.
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Figure 2: The theoretical distribution function G (bro-
ken line) and the estimate (solid line).

Remark 1 it follows that the absolute continuous part
of G is bounded by ρ.

In order to make comparisons, we calculate the sta-
tionary cdf of the workload distribution. One approach
to calculate the compound geometric distribution in (2),
is 1. to notice that the stationary excess distribution of
the constant random variable S ≡ 1, is the uniform dis-
tribution over [0, 1], 2. derive the Fourier transform of
Fe and 3. utilize that

G(x) =
1

2π

∫ ∞

−∞

(1− ρ)
1

1− ρF̂e(t)
exp(−itx)dt.

However, inverting the Fourier transform is by no means
trivial because of the discontinuity at 0. For numer-
ically stable procedures we refer to Abate and Whitt
(1992) and Grübel and Hermesmeier (1999).

Another and more simple possibility is to notice that,
if F is one-sided and of lattice-type, i.e. concentrated
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Figure 3: Sample mean of 1000 iid bootstrapped esti-
mates of the nominal confidence interval, for block size
l = 1, 10, 30, and 50. A ±1.96 times the sample stan-
dard error, interval is centered around the sample mean,
is shown by the vertical broken line segments.

on the non-negative integer multiples of some h > 0,
then the compound geometric distribution (2) can be
handled numerically by Panjer recursion (Panjer 1981).
If F is not of lattice-type, then the use of Panjer recur-
sion requires an initial discretization step which leads
to a discretization error. Theoretical justifications for
discretized Panjer recursion can be found in Grübel and
Hermesmeier (1999), Grübel and Hermesmeier (2000).
Using Panjer recursion instead of transform methods
avoids problems that may arise if the Fourier transform
winds about 0.

Algorithm 1 (Panjer Recursion)

1. Choose a discretization level h > 0 and consider
the corresponding lattice Ph = {hz| z ∈ Z}.

2. Discretize the density of the uniform distribution
function Fe over [0, 1] in the following way

f(x) =

{
h for x ∈ Ph ∩ (0, 1]
0 elsewhere

3. Calculate an approximation to the density of G by
the following recursion

g(x)

=






1− ρ x = 0

ρ
∑x/h

j=1 f(jh)g(jh− x) x ∈ Ph ∩ (0,∞)

0 elsewhere

For the workload distribution function of the M/D/1
under study, approximated with h = 1/1000, see the
broken line in Figure 2.

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4: The distribution function G (broken line), the
estimate (solid line), and the bootstrap confidence band
(dotted lines) for ρ = 0.5, n = 200, l = 1, k = 1000
and N = 1000. The experiment was replicated on six
independent simulations of the queue.

A stationary version of the M/D/1-workload pro-
cess (1) can be started out at 0, by realizing, that the
marginal distribution of V0 equals the distribution of a
geometrically-stopped uniformly-summed random vari-
able. Recall that the stationary excess distribution Fe

is the uniform distribution on [0, 1] and the geometric
distribution has mean (1− ρ)−1.

Figure 1 (upper panel) shows a simulated data set of
size n = 200 from the stationary version of the M/D/1-
model in (1) with ρ = 0.5 and S ≡ 1. The auto-
correlation function, acf(n) = Cov(V1, Vn)/ Var(V0), is
estimated and plotted in the lower panel (solid lines)
together with the approximate 95% confidence limits
for the hypothesis of no correlation. The plot shows
positive and non-vanishing autocorrelations until lag 4,
which indicates a quickly decaying positive autocorre-
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lation function. This is expected as, from Proposition
3, we have Cov(V1, Vn) = O(n−k−ǫ) for all k ≥ 1.

The ecdf (3) of the sample is illustrated by the solid
line in Figure 2. We notice from this plot that the
ecdf fits the distribution function quite well. To get an
idea of the variability, see the six ecdf’s based on in-
dependent replications of the experiment with the cor-
responding theoretical distribution function in Figure
4.

A practical problem of applying the asymptotic re-
sults of Section 3 lies in choosing the block size l. In
the present case we use the ’calibration by adjusting the
block size’ method presented in Politis, Romano, and
Wolf (1999), Algorithm 9.3.2. The rationale behind cal-
ibration methods is for various block sizes to calculate
the nominal confidence interval. The word nominal is
used to describe that we calculate the actual coverage
probability for the chosen block size. However, as the
distribution function is unknown, one uses the ecdf as
an approximation to the theoretical cdf. To describe
the calibration formally, see the following algorithm.

Algorithm 2 (Calibration)

1. For each block size l

2. Generate I MBB distribution functions (using
block size l)

F ∗
n,i, 1 ≤ i ≤ I,

from the ecdf Fn.

3. From each F ∗
n,i generate J MBB distribution func-

tions (using block size l)

F ∗j
n,i, 1 ≤ j ≤ J.

4. For each F ∗
n,i estimate the α·100% confidence band

by

q̂∗i,N (α)

= inf




x : J−1
J∑

j=1

I(‖F ∗j
n,i − F ∗

n,i ‖∞ ≤ x) ≥ α






and
F ∗

n,i ± q̂∗i,N (α)

5. Estimate the actual coverage probability by

♯
{
i : ‖F ∗

n,i − Fn ‖∞ ≤ q∗i,N (α)
}

I

Note, we have not claimed any asymptotic optimality
of the described procedure. It should only be seen as a
sensible way of choosing the block size in the small sam-
ple case. More formal analyses of calibration methods
in the time series case, seem to be an open question.

In Figure 3, the 90% nominal coverage probability
is estimated at block sizes 1, 10, 30 and 50 and linearly
interpolated in between them. In the simulation study
the algorithm is based on I = 1000 and J = 100. A
95% confidence interval based on the 1000 independent
samples of the confidence interval is indicated by the
vertical broken lines. The conclusion seems to be that
a small block size will do. This is not surprising as we
noticed that the autocorrelations died out quickly. In
our further analysis the block size was chosen to be 1.

As an estimate for the empirical distribution function
we used the ecdf of the data and the MBB method
to construct a 90% confidence band, by one iteration,
i.e. I = 1 and J = 1000 in Algorithm 2.

In Figure 4 we started 6 independent queues in the
stationary distribution and sampled n = 200 values.
For each realization we calculated the ecdf and the 90%
MBB confidence interval. We see, in each case, that the
confidence region covers the true distribution function.

All programming and simulations have been carried
out with standard routines in the freely available com-
putational statistical software package R, see <http:

//www.r-project.org> for more details.

5 Discussion

Under strong requirements on the moment of the service
time distribution we have proven weak convergence to a
Gaussian process. Moreover, we have presented a recipe
for analyzing data from the widely used M/D/1-model.
However, by relaxing the moment conditions on S, the
sum of the covariance function will not converge (Ott
1977, Theorem 1)

∞∑

n=1

Cov(V1, Vn) = ∞.

Processes of this type are described by various authors,
as being long-range dependent. It is well-known that
the scaling factor n1/2 used in the empirical processes
is substantially smaller for long-range dependent data.
Furthermore, the limit distribution of the normalized
ecdf can be nonnormal. Procedures for a rather spe-
cial class of long-range dependent data are reviewed
in Lahiri (2003), Chapter 10, but a systematic study
of long-range dependent associated sequences seems to
an open issue. As it is well documented that data in
communication systems can be long-range dependent
an interesting topic for further study is to see if similar
results can be derived for sampling the workload of the
M/G/1-queue with heavy tailed service times.

These and other open questions as well as applica-
tions are studied in the separate papers Hansen and
Pitts (2005a) and Hansen and Pitts (2005b). In these
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papers the moment condition on the service times are
relaxed to ES2 < ∞. Quite interestingly this pro-
vides examples where the covariance function is not
summable but we have indeed convergence to the nor-
mal distribution.

6 Proofs

In order to prove Proposition 1, we prove the slightly
stronger property of being sequentially stochastically
increasing.

Definition 2 Let X, Y be R
n-valued random vectors.

We say that X ≤ Y in the sense of stochastically or-
dering (written X ≤st Y ) if

E(f(X)) ≤ E(f(Y ))

for all increasing measurable functions f : R
n → R.

Definition 3 The real-valued sequence {Xn, n ≥ 1} is
said to be sequentially stochastically increasing (SSI) if
for each n = 1, 2, . . . it holds that

[Xn|(X1, . . . , Xn−1) = x]≤st[Xn|(X1, . . . , Xn−1) = y]

for x, y ∈ R
n−1 satisfying x ≤ y component-wise.

Lemma 1 If a sequence of random variables {Xn, n ≥
1} are sequentially stochastically increasing, then they
are necessarily also associated.

For a proof, see Theorem 4.7 of Barlow and Proschan
(1975).

Proof of Proposition 1 First we notice that {Vi, i ≥
1} is sequentially stochastically increasing. Let f be any
real-valued measurable and increasing function and

(u1, . . . , un−1) ≤ (v1, . . . , vn−1)

component-wise. Then by Lindley’s equation (1)

E(f([Vn|V1 = u1, . . . , Vn−1 = un−1]))

= E(f([Vn|Vn−1 = un−1]))

≤ E(f([Vn|Vn−1 = vn−1]))

= E(f([Vn|V1 = v1, . . . , Vn−1 = vn−1])).

Hence by Lemma 1 {Vi, i ≥ 1} is associated. 2

Proof of Proposition 2 Let 0 ≤ x ≤ y, then

G(y)−G(x) ≤ ‖ gac ‖∞(y − x).

From which we observe that the function f1 defined by

f1(x) = ‖ gac ‖∞x−G(x), x ≥ 0,

is increasing. Now, by successive applications of Defi-
nition 1 we get

Cov(G(V1), G(Vn)) ≤ ‖ gac ‖∞ Cov(V1, G(Vn))

≤ ‖ gac ‖
2
∞ Cov(V1, Vn).

2

Lemma 2 If ESν+3 < ∞, for some ν ≥ 1, then

Cov(V0, Vt) = O(t−ν−ǫ),

for some ǫ > 0.

Proof From Abate and Whitt (1994), Proposition 1, it
follows that Vt has one moment less than S. Further-
more, it also follows (Abate and Whitt 1994, Theorem
10) that

Cov(V0, Vt) = Var(V0)Ūe(t).

The cdf U , has one moment less than Vt. Consequently,
by the tail integration formula

uν+1 =

∫ ∞

0

xν+1U(dx)

=

∫ ∞

0

(ν + 1)xνŪ(x)dx (11)

< ∞.

Whereby, for some ǫ > 0,

Ū(x) = O(x−(ν+1)−ǫ), for x →∞.

From which

Ūe(x) = u−1
e 1

∫ ∞

x

Ū(y)dy

= O(x−ν−ǫ), for x →∞,

and some ǫ > 0. 2

Proof of Proposition 3 Follows immediately from
Lemma 2. 2

Lemma 3 Assume ESν+3 < ∞, for some ν ≥ 1 and G
satisfies Assumption 1. Let {U ′

n, n ≥ 1} be a sequence
of independent random variables uniformly distributed
on [0, 1− ρ]. Then the sequence of random variables

Un = G(Vn)1(Vn > 0) + U ′
n1(Vn = 0)

is stationary, associated, uniformly distributed on [0, 1]
and

Cov(U1, Un) = O(n−ν−ǫ)

for some ǫ > 0.
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Proof of Lemma 3 As {Vn, n ≥ 1} and {U ′
n, n ≥ 1}

are stationary, stationarity of {Un, n ≥ 1} is immedi-
ate. The uniform distribution of the Un’s, n ≥ 1 on
[0, 1] follows directly by stationarity and their defini-
tion.

Let f : R
n → R be a measurable increasing func-

tion, then for (u1, . . . , un−1) ≤ (v1, . . . , vn−1) compo-
nentwise, in the same way as the proof of Proposition
1

Ef([Un|U1 = u1, . . . , Un−1 = un−1])

= Ef([Un|Un−1 = un−1])

≤ Ef([Un|Un−1 = vn−1]).

Hence {Un, n ≥ 1} is SSI and by Lemma 1 associated.
For the covariance function consider

Cov(U1, Un) = Cov(G(V1)1(V1 > 0), G(Vn)1(Vn > 0))

+ Cov(G(V1)1(V1 > 0), U ′
n1(Vn = 0))

+ Cov(U ′
11(V1 = 0), G(Vn)1(Vn > 0))

+ Cov(U ′
11(V1 = 0), U ′

n1(Vn = 0))

= I + II + III + IV.

By use of Cuadras’ generalization (Cuadras 2002, The-
orem 1) of the Hoeffding identity, Abate and Whitt
(1994), the tail integration formula, Propositions 2 and
3 one obtains the following estimates

I = O(n−ν−ǫ)

II = O(n−ν−ǫ)

III = O(n−(ν+1)−ǫ)

IV = O(n−ν−ǫ).

for some ǫ > 0. Combining the estimates for I, II, III,
and IV yields the result of the stated lemma. 2

Proof of Theorem 1 Let {Un, n ≥ 1} be defined as
in Lemma 3. Let A be a tight element of D[0, 1], satisfy-
ing A(0) = A(1) = 0, whose marginal distributions are
zero-mean normal with a covariance function specified
by

Cov(A(t), A(s)) =
∞∑

k=1

Cov(I(U1 ≤ s), I(Uk ≤ t)).

Define the ecdf of {Ui, 1 ≤ i ≤ n} by

Hn(x) = n−1
n∑

i=1

I(Ui ≤ x), x ∈ [0, 1],

and finally its n’th empirical process by

αn(x) = n1/2(Hn(x)− x), x ∈ [0, 1].

Then from Lemma 3 the conditions of Louhichi (2000),
Theorem 1, are fulfilled for the sequence {Un, n ≥ 1}
and it follows that

αn →D A in D[0, 1].

If we define h : D[0, 1] → D[0,∞) by (hx)(t) = x(G(t))
and let Gn = h(Hn), the result follows from Corollary
1 to Theorem 5.1 in Billingsley (1968). 2

Proof of Theorem 2 Use the same construction
as in the proof of Theorem 1. Now, from Lemma 3
{Un, n ≥ 1} satisfies the conditions of Peligrad (1998),
Theorem 2.4). Again, as in the proof of Theorem 1
the result follows from Corollary 1 of Theorem 5.1 in
Billingsley (1968). 2
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