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Abstract: This paper presents an overview on the performance of hybrid data fusion 
and tracking algorithms evaluated in the WHERE consortium. The focus is on three 
scenarios. For the small scale indoor scenario with ultra wideband (UWB) 
complementing cellular communication systems, the accuracy can vary in time as a 
connectivity-dependent random process distributed over 3 orders of magnitude, from 
100m in the worst situation down to 0.1m in the most favourable one. In the mid 
scale scenario, time difference of arrival (TDOA) measurements from a cellular 
network can give wide-area coverage with limited accuracy, whereas the received 
signal strength measurements of Wi-Fi hotspots give more accurate results if 
coverage is available. Finally, for large scale outdoor scenarios, cellular TDOA 
measurements can support global navigation satellite systems (GNSSs) especially in 
critical scenarios, where only a few satellites are visible. This is even the case when 
the overall accuracy of stand-alone cellular positioning is lower than that for GNSS 
positioning under optimum conditions. 

Keywords: Positioning, hybrid data fusion, tracking, UWB, Wi-Fi, cellular 
communication systems, 3GPP-LTE, GNSS, TDOA, TOA, RSS, NLOS 

1. Introduction 
The main objective of the WHERE consortium [1] is to study radio positioning techniques 
using existing and future heterogeneous communication systems and to optimize the 
various layers of these systems, e.g., modulation, channel estimation and equalization, radio 
resource management, by exploiting the availability of reliable estimators for the position 
of mobile stations (MSs).  
 In order to provide reliable and accurate position information, the WHERE consortium 
researches hybrid data fusion (HDF) and tracking algorithms for positioning. For reliable 
positioning, it is necessary to exploit as much positioning information as possible. Typical 
measurements to compute the position of MSs include time of arrival (TOA), time-
difference of arrival (TDOA), angle of arrival (AOA), received signal strength (RSS), 
Doppler frequency, or fingerprinting. Furthermore, different heterogeneous systems provide 
these position based measurements, e.g., cellular mobile radio communication systems, 
short range communication systems, or global navigation satellite systems (GNSSs). 
Potentially, each additional available measurement can improve the accuracy, availability, 
and reliability of the overall position solution. 
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 In this paper, the WHERE consortium studies HDF and tracking algorithms to combine 
various measurements resulting in a single position solution. Additionally, we investigate 
tracking algorithms to improve the position accuracy and reliability of the MS, e.g., in 
point-to-point navigation.  

2. Environments, Scenarios, and Sensor Models 
For some environments, highly accurate positioning solutions are available already today. 
For instance, the positioning accuracy achieved by using the GNSS systems is in the range 
of a few meters in rural areas where several satellites can be seen line-of-sight (LOS) [2]. 
So, the focus in WHERE is on more challenging environments and scenarios [3]. 
 The first scenario T1 addresses small-scale situations mainly in indoor environments 
where short-range ultra-wideband (UWB) links locally complement cellular systems such 
as the 3rd Generation Partnership Project Long Term Evolution (3GPP-LTE). Here, we 
consider the HDF of UWB TOA and 3GPP-LTE RSS measurements. We also evaluate the 
influence of LOS and non-line-of-sight (NLOS) propagation. 
 The second scenario T2 is a medium-scale indoor scenario, typically in an office-
building. Here, RSS measurements of a Wi-Fi system complement TDOA measurements of 
a cellular 3GPP-LTE system. The indoor scenarios T1 and T2 have both in common that 
there is no GNSS available. 
 The third scenario T3 is a large-scale environment that considers GNSS, i.e., TOA 
measurements, and cellular 3GPP-LTE-based positioning, i.e., TDOA measurements, in 
urban canyon situations. Due to the availability of GNSS, the scenario T3 serves as a 
reference to compare the novel positioning methods developed in WHERE to already 
available approaches (cf. [4]). In all three scenarios, we assume pedestrian users. 
 In this paper, we consider RSS and timing based TOA and TDOA measurements: For 
the RSS sensor models (cf. [5], [6]), the RSS is usually modelled as a known constant 
transmit power multiplied by a random path loss, which accounts for the loss of signal 
strength due to the propagation from the transmitter to the receiver. Much effort has been 
devoted to the development of various path-loss models for communication purposes, 
especially with respect to the mobile radio channel. The path loss is commonly modelled as 
a stochastic variable with moments dependent on the distance. The randomness accounts 
for two effects: 1) the random propagation medium, and 2) the fading phenomena due to 
multipath propagation. However, when only few measurements are available, the RSS is 
sensitive towards especially small-scale fading. 
 For TOA models (cf. [7], [8], [9]) in free space, the TOA τ  is related to the propagation 
distance via the speed of light c  as ·d cτ= . Estimation errors occur due to, e.g., clock drift, 
noise, interference, and propagation in heterogeneous environments, where multipath 
propagation and propagation via penetration occur. 

3. HDF and Tracking Algorithms: Simulation Results 

3.1 Scenario T1 

The indoor location problem is far more unpredictable than that of outdoor GNSS where 
one can rely on a quasi deterministic underlying infrastructure. This remark is all the more 
valuable if considering positioning in mesh networks (e.g., impulse-radio UWB, as 
described in [5]) and when incorporating mobile-to-mobile range measurements. In the 
latter case, the positioning accuracy achievable at one mobile, even under HDF with 
cellular means, is indeed highly dependent on local connectivity with respect to other 
mobiles and/or anchor nodes (ANs), as well as on local mobility conditions. 
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Figure 3-1: Illustration of poor (red-circled nodes) and 

favourable (green-circled nodes) local 
connectivity/rigidity on ideal position accuracy  

 
Figure 3-2: Empirical CDF of minimum 2D positioning 

RMSE for different UWB/Cellular HDF strategies  

 For example in Figure 3-1, we consider positioning 20 mobile nodes with respect to 3 
ANs, in a 30m 30m×  2D area at the center of a cellular sector with a maximum 
transmission range of 10m and a standard deviation of the TOA measurements taken as a 
random variable uniformly distributed over [0, 0.3m] (e.g. [8]). The shadowing standard 
deviation of cellular measurements is constant and fixed at 8dB for all the nodes involved 
in the fusion procedure and incorporating the 3 strongest scanned RSSs with respect to 
available BS sectors. The shown curves are based on Monte Carlo realizations of the 
analytical conditional Cramer-Rao lower bound (CRLB) [5], [10]. 
 From the cumulative distribution function (CDF) of 2D positioning errors shown in 
Figure 3-2, a clear gain for HDF in terms of both the positioning accuracy and location 
success rate, i.e., the average ratio of localizable nodes per network realization, is visible 
compared to no fusion as represented by the blue and black curves for UWB only and 
cellular 3GPP-LTE only. This is the case even with selective HDF strategies, which do not 
concern all the nodes but just the nodes preliminary identified as “unrealizable”. Selective 
HDF means that the nodes requiring HDF are selected according either to the “sub-graph 
partial realizability” criterion (magenta curve) or “at least 3 neighbours” criterion (green 
curve) [5]. Exhaustive HDF means the fusion with 3 cellular RSSs is systematically applied 
to all the nodes, without any prior selection (red curve). This selective HDF suffers from 
very slight degradations in comparison with the exhaustive fusion. The performance 
degradation starts becoming more noticeable in the “large-errors” regime, i.e., beyond a 
minimum root mean square error of 10m. 
 In this example, the gain is significant whatever the targeted position accuracy and 
whatever the selective fusion criterion. The benefits from HDF are pretty clear in the “small 
errors” regime, for instance with 70% of the nodes suffering from errors better than 1m, 
versus 64% when using only UWB means. The gain is also still evident in the “large errors” 
regime. For instance, 20% of the nodes suffer from positioning errors beyond 10m, but are 
still better than that of a pure LTE-enabled system. When relying only on UWB means, this 
percentage reaches 30%, with errors that can be even worse than that of a pure LTE-
enabled positioning system. However, even if the positional accuracy available with HDF is 
always better than that of independent UWB or LTE systems, it might be more questionable 
for the initially claimed indoor environment, i.e., a 30m 30m×  area in the shown example. 
Indeed, at first sight, achieving a precision worse than the size of the explored geographic 
area where the mobile nodes are supposed to be located could look irrelevant. For this 
remaining portion of nodes that still enjoy errors worse than 10m even after HDF, it would 

Real Benefits  
from HDF  

Questionable  
HDF relevance  

(indoor environments) 
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be worth reconsidering alternate or complementary positioning strategies or enhancing the 
fusion process itself. Hence, in a more general and typical indoor situation, one can predict 
that the accuracy will vary in time, as a random process barely distributed over 3 orders of 
magnitude, from 100m in the worst situation down to 0.1m in the most favourable one, 
which is mainly depending on local short-range connectivity. 
 Compared to state-of-the art HDF, the rigidity-aided HDF rules for positioning in 
heterogeneous communication networks provide simple but robust and MS based criteria to 
selectively activate HDF for nodes that have too few connections within one network. 
Hence, we achieve better positioning accuracy and better localizability overall independent 
of the node density. 
 In the remainder of this section, we investigate the influence of NLOS propagation and 
mitigation on HDF. The main effect of NLOS is to introduce biases in measurements, and a 
number of techniques have been proposed to mitigate this effect. In this paper, our approach 
incorporates the NLOS biases as additional “nuisance” parameters to be estimated using the 
observations. For instance, if we adopt a non-linear least-squares (LS) approach using TOA 
measurements, the problem of jointly finding positions and biases can be formulated as a 
constrained optimization problem as NLOS biases are always positive. Different non-linear 
programming tools can be used for its solution [11]; however, the probable existence of 
local minima on the error surface implies that, in some cases, an adequate solution cannot 
be reached, unless sufficient accurate a-priori knowledge of the node position is available. 
 When the node to be located is moving, we need to track the variability of its space 
coordinates with time. The position is, thus, described as a stochastic process to be 
estimated from the observations using a Bayesian decision-theoretic framework, and the 
usual minimum mean-square error (MMSE) or maximum a posteriori (MAP) optimization 
criterions can be used [12]. In most realistic mobility situations, a state-space model for the 
evolution of the kinematic parameters (position and, possibly, velocity) of the node is 
assumed, and the measurement equation is formulated according to the available 
information, e.g., RSS, TOA, or TDOA. If the model for the motion parameters is 
Markovian, a recursive estimation of the state variables can be performed; nevertheless, the 
non-linear nature of the relationship between position and measurements, and the fact that 
the errors are frequently non-Gaussian, usually preclude the use of simple, linear solutions 
to the filtering problem such as the Kalman filter, and so one must resort to higher 
complexity approaches, like the extended Kalman filter (EKF) [12] or the Rao-
Blackwellized particle filter (RBPF) [13]. 
 We have adopted a scenario consisting of a square room of 40m 40m× , with N=6 ANs 
located at the points of coordinates (0, 0), (40, 0), (0, 40), (40, 40), (0, 20), and (40, 20), 
respectively, and an MS moving according to a “random waypoint” mobility model [14] 
within the room. We will further assume that the ANs perform TOA measurements, but 
some of them are under NLOS conditions. The model for the measurement noise is taken 
from [7], which was obtained via ray-tracing tools assuming a bandwidth of 100 MHz. For 
this model, the measurement noise is Gaussian distributed with zero mean for LOS 
propagation and exponentially distributed with non-zero mean for NLOS propagation. 
 Figure 3-3 represents the simulation results obtained after 100000 time instants with 
sample interval T=0.1 (thus 10000 s simulated time). For comparison purposes, we have 
also plotted in Figure 3-3 the CDF of the location error when no NLOS bias mitigation is 
used, i.e., when the state vector only comprises the mobile position and velocity. We can 
see how considerably higher estimation errors are expected in this case. 
 Figure 3-4 represents the simulation results obtained after 100000 time instants with 
sample interval T=0.1 (thus 10000 s simulated time) and 6 ANs. We can see that the RBPF 
performs better than the EKF, but the differences are not very high because of the 
assumption of Gaussian process and measurement noises in the prediction and update 
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stages of the RBPF. Nevertheless, the key advantage of the RBPF over other estimators is 
that, as soon as a more refined knowledge of the likelihood functions is available, it can be 
readily incorporated into the update step to improve the whole estimation process. 
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Figure 3-3: Distribution of the location error for EKF 

tracking 
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Figure 3-4: Distribution of the location error for EKF 

and RBPF tracking 

 Here, the inovation for NLOS mitigation is a reduced-complexity RBPF with NLOS 
bias tracking, in which we apply restrictions on the components of the particles. This 
substantially improves performance of RBPF over EKF. 

3.2 Scenario T2 

The Wi-Fi hotspots are randomly generated, where the noise for the RSS measurements is 
modelled as additive white Gaussian noise [5]. Figure 3-5 shows one generated 
environment with 200 hotspots/km² with a random coverage radius between 20m and 50m. 
Also depicted is a randomly generated MS track. Figure 3-6 shows the corresponding 
visibility of the hotspots depending on the MS position and the coverage of the hotspots. 
For this realization the number of visible hotspots varies between zero and four. For the 
cellular network coverage, we assume that the MS always receives signals from three BSs. 

 

Figure 3-5: Scenario for positioning with Wi-Fi and 
cellular network 

 

Figure 3-6: Number of visible sources (Wi-Fi hotspots 
and BSs) vs. time 

 The navigation equation is solved for a static MS using Wi-Fi hotspots, cellular BSs, or 
a combination of both with the Gauss-Newton algorithm [15]. Figure 3-7 and Figure 3-8 
show the results for a density of 200 hotspots/km² and 100 hotspots/km². Considering Wi-Fi 
only positioning, it is usually required that the MS is in the coverage area of at least three 
hotspots. However, in case that less hotspots are visible to the MS the following procedure 
is applied: If no Wi-Fi hotspot is visible, no position solution can be provided. If one Wi-Fi 
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hotspot is visible, the estimate of the MS position is the position of the hotspot. If two Wi-
Fi hotspots are visible, the two intersections of the two circles are determined. The estimate 
of the MS position is one of them (randomly chosen). 

 

Figure 3-7: CDF for hybrid positioning using Wi-Fi 
and cellular network, Wi-Fi density of 200 

hotspots/km² 

 

Figure 3-8: CDF for hybrid positioning using Wi-Fi 
and cellular network, Wi-Fi density of 100 

hotspots/km² 

 This limits the position error to the Wi-Fi hotspot coverage area when at least one 
hotspot is visible. We observe that in around 24% of the situations no position can be 
provided for 200 hotspots/km². For 100 hotspots/km² this increases to 48%. However, when 
the MS is in the coverage area the position estimates are better than 50m, which reflects the 
maximum coverage range. The cellular network based TDOA measurements are also 
shown in these plots. The 90%-error is at around 23m for a standard deviation of 10m, at 
around 110m for a standard deviation of 50m, and at more than 200m for a standard 
deviation of 100m. However, the cellular network can provide a much better “global” 
coverage, and hence, availability than the Wi-Fi hotspots. Therefore, the hybrid solution 
combining Wi-Fi and cellular approaches can provide both reliability and availability.  

System CEP95 CEP90 CEP67 
Wi-Fi Not achievable Not achievable 43m 
TDOA (100m) 263m 215m 138m 
TDOA (50m) 135m 109m 70m 
TDOA (10m) 25m 20m 14m 
Wi-Fi+TDOA (100m) 180m 140m 74m 
Wi-Fi+TDOA (50m) 88m 72m 40m 
Wi-Fi+TDOA (10m) 21m 17m 11m 

Table 3.1: CEPs for different systems in T2 scenario using static solution; hotspot density of 200 hotspots/km² 

 For Scenario T2, the main results for a hotspot density of 200 hotspots/km² are 
summarized in Table 3.1. Whereas accuracy requirements on the position information exist 
for emergency calls, e.g., the CGALIES E-112 report [16] and the FCC E-911 requirements 
[17] in terms of %x  circular error probability (CEPx), there are no such requirements in the 
literature for exploiting position information in communications systems [18]. In Scenario 
T2, the achievable accuracy for different systems using the static solution is shown for 
CEP95, CEP90, and CEP67. We observe that the TDOA measurements from a cellular 
network can give wide-area coverage with limited accuracy, whereas the RSS 
measurements of Wi-Fi hotspots give more accurate results if coverage is available. 

3.3 Scenario T3 

In this scenario, we consider dynamic MSs, whose signals are fused and tracked with an 
EKF to obtain the position estimates [15]. For the dynamic MSs, we use a visibility model 
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of the satellites according to [5], [9]. In that model, the number of visible satellites changes 
every 10 time-steps according to (x = all visible, 4, 3, 2, 1, 0, 1, 2, 3, 4, all, 4, 3, etc.). The 
corresponding plot is shown in Figure 3-9. To evaluate the algorithms, different policies are 
possible to select the used satellites. We apply the highest elevation selection, i.e., the x 
satellites with the highest elevation are selected for positioning.  

 

Figure 3-9: Number of visible GNSS satellites vs. time 

 

Figure 3-10: CDF for hybrid positioning using EKF 

 The HDF and EKF tracking curves where GNSS is combined with the cellular network 
are plotted in Figure 3-10 in terms of the CDF of the position error. We observe that 
depending on the quality of the TDOA estimates the average error can be reduced 
remarkably, especially in the critical situations. For instance, the 90%-error can be reduced 
from 32m (GPS) and 27m (GPS+Galileo) to around 22.5m (standard deviation 100m), 17m 
(standard deviation 50m), and 7.5m (standard deviation 10m). 

System/environment Free space Urban canyon 
 CEP95 CEP90 CEP67 CEP95 CEP90 CEP67 
GPS 5.9m 5.0m 3.5m 45m 32m 11m 
GPS+Galileo 4.1m 3.0m 2.4m 37m 27m 11m 
TDOA (100m)    65m 54m 36m 
TDOA (50m)    38m 32m 22m 
TDOA (10m)    11m 9m 6m 
GPS+Galileo+TDOA (100m)    28m 22m 11m 
GPS+Galileo+TDOA (50m)    22m 16m 9m 
GPS+Galileo+TDOA (10m)    9m 8m 5m 

Table 3.2: CEPs for different systems in T3 scenario using EKF tracking 

 For Scenario T3, the main results for EKF tracking are summarized in Table 3.2  for 
CEP95, CEP90, and CEP67. We see that cellular TDOA measurements can support GNSS 
especially in critical scenarios even if the overall accuracy of stand-alone cellular 
positioning is lower than for GNSS positioning under optimum conditions. 

4. Conclusions 
To conclude, this paper presents an overview on results for three scenarios. In the T1 
Scenario, the position accuracy achieved with UWB TOA measurements complementing 
cellular 3GPP-LTE RSS measurements can vary from 100m in the worst case down to 0.1m 
in the best case. Despite the very inaccurate cellular RSS measurements, the HDF of UWB 
TOA and 3GPP-LTE RSS measurements can provide 10% more succesful measurements 
with an accuracy of 10m or better. Compared to state-of-the art HDF, the rigidity-aided 
HDF rules for positioning in heterogeneous communication networks provide simple but 
robust and MS based criteria to selectively activate HDF for nodes that have too few 
connections within one network. Hence, we achieve better positioning accuracy and better 
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localizability overall independent of the node density. Further, NLOS estimation and 
mitigation in the T1 Scenario for the UWB TOA measurements yield a performance gain of 
20% in terms of position estimates with a position error smaller than 5m. Here, the 
inovation for NLOS mitigation is a reduced-complexity RBPF with NLOS bias tracking, in 
which we apply restrictions on the components of the particles. This substantially improves 
performance of RBPF over EKF. In the T2 Scenario, cellular 3GPP-LTE-based TDOA 
measurements can provide wide-area coverage with limited accuracy, whereas the RSS 
measurements of Wi-Fi hotspots give more accurate results if coverage is available. Finally, 
for the T3 Scenario, cellular 3GPP-LTE-based TDOA measurements can support GNSS 
especially in urban canyons, where only a few satellites are visible. This is even the case 
when the overall accuracy of stand-alone cellular positioning is lower than that for GNSS 
positioning under optimum conditions. 
For more details on current and future work of the WHERE project, we refer to [1] and [5]. 
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