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Abstract-In this paper, a conceptual multi-zone model for 
climate control of a live stock building is elaborated. The main 
challenge of this research is to estimate the parameters of a 
nonlinear hybrid model. A recursive estimation algorithm, the 
Extended Kalman Filter (EKF) is implemented for estimation. 
Since the EKF is sensitive to the initial guess, in the following the 
estimation process is split up into simple parts and approximate 
parameters are found with a non recursive least squares method 
in order to provide good initial values. Results based on 
experiments from a real life stable facility are presented at the 
end. 

I. INTRODUCTION 

In order to improve live-stock production performance, 
modern stables are equipped with advanced controllers and 
equipments for providing a convenient indoor climate. 
Consequently, the failure detection of components and 
controllers are of crucial importance, as component failures 
may lead to unacceptable loss of animal productions. Besides, 
replacing the failed components is time consuming and costly 
for the farmer. The majority of failure detection methods are 
model-based, because detection of a fault or failure is easy 
and reliant on fault free in comparison with faulty model. 
Overall, there are two methods for modeling, the first one 
relies on analyzing input and output data and the second one 
is mathematical modeling which uses physical laws for the 
system. In [1] it is discussed how to perform a dynamic 
temperature modeling based on input and output data. In [2], 
a steady state indoor climate model for pig stable is 
presented. However; it must be noted that [3, 4] shows a third 
method which is a combination of the two main ideas such 
that at first physical laws is utilized to derive a model and 
thereafter its parameters are estimated by analyzing the input 
and output data. This is known as grey box modeling in the 
literature[13]. 

In reality the airspace inside a large livestock building is 
incompletely mixed, and this concept has fostered the idea of 
multi zone climate modeling. Where models separate into 
non-interacting [5] or interacting zone models [6]. 

The aim of the work presented here is to derive a model for 
active fault detection and isolation of the pig stable 
ventilation system which is validated by a laboratory as a 
typical equipped stable. The model is an extension of 
previous research in this laboratory [3, 4] aiming at a more 

representative model of the real systems. In fact, both 
previous works were conducted with control objective in 
mind, where robust control designs allow for less accurate 
modeling. In addition, standard control design tools restricts 
the model domain, while performance of fault detection 
mechanism depends on model accuracy and small 
improvement on an absolute linear scale may reduce the 
detection error rate by orders of magnitude. In both [3, 4], the 
experiment data for estimation of inlets and outlets is 
provided from manufacturer data sheets, therefore the 
simulated model do not fit well with the stable measurements. 
During the research presented here, it is tried to define the 
model parameters according to the laboratory experiments 
and rely on a nonlinear estimation method. In [4], the 
pressure for the entire stable is assumed constant and 
consequently the stationary flow between zones is considered 
insignificant in comparison with the incoming and outcoming 
flows and thus neglected. Whereas, the pressures of zones of 
the stable are allowed to differ in [3], approximations are 
introduced by linearization, which reducing model accuracy. 

In the present work, the pressure is defined by more precise 
equations and consequently the stationary flows between 
zonal borders are included. Due to the indoor and outdoor 
conditions, the airflow direction varies between any adjacent 
zones. Therefore, the system behavior is represented with 
different discrete dynamic equations (piecewise equation). In 
the literature, these kinds of systems with behavior expressed 
by piecewise equations are classified as hybrid systems [10]. 

Multi-zone hybrid models are generally not linear in their 
parameters and their estimation is one of the challenges for 
this research. The parameters are estimated by a recursive 
estimation algorithm, the extended kalman filter (EKF), as it 
is able to converge precisely to the parameters of the 
nonlinear hybrid models. Furthermore, the EKF is sensitive to 
the parameter changes which are useful for online or active 
fault detection. A data set is acquired from a real scale pig 
stable. The verification of the prediction and measurement 
output validates the performance of the simulated model.  

The paper is organized as follows: in section 2 descriptions 
of the mathematical modeling are given. Thereafter the 
suggested estimation algorithm is presented in section 3. 
Section 4 represents the experiments setup, and the 
accomplishments of EKF and modeling by presenting 
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experimental results are described in section 5. Finally the 
conclusion and remarks are presented in section 6. 

II. MODEL DESCRIPTION 

The airspace inside the stable is incompletely mixed, so it 
is divided into three conceptually homogeneous parts which 
is called multi-zone climate modeling. Due to the indoor and 
outdoor conditions, the airflow direction varies between 
adjacent zones. Therefore, the system behavior is represented 
with different discrete dynamic equations. In more details, 
each flow direction depends on its relevant condition 
(invariant condition) and as long as the condition is met by 
the states, the system behavior is expressed according to the 
appropriate dynamic equations. Once the states violates the 
invariant condition and satisfies a new one, the system 
behavior is defined with a new equation. A schematic 
diagram of the stable system is illustrated in Fig. 1, and 
general information of the facility of laboratory is given in 
[4]. More details about the relevant condition for the airflow 
direction are illustrated in Fig. 2 and their relevant equations 
are given: 

ିଵ,௦௧ ൌݍ  ݉ଵሺ ܲିଵ െ ܲሻ   (1) 
,ାଵ௦௧ ൌݍ  ݉ଶሺ ܲ െ ܲାଵሻ   (2) 
 

where P୧ is pressure inside zone ݅, which is calculated by the 
mass balance equation of (10) for every zone. mଵand mଶ are 
constant coefficients, and q୧ିଵ,୧ୱ୲ and   q୧,୧ାଵୱ୲  are stationary 
flows. 

ିଵ,௦௧ ൌݍ  ሾݍିଵ,௦௧ ሿା െ ሾݍିଵ,௦௧ ሿି  (3) 
 

the use of square brackets is defined as: 
ିଵ,௦௧ ൧ାݍൣ  ൌ maxሺ0,  ିଵ,௦௧ ሻ   (4)ݍ

 ሾݍିଵ,௦௧ ሿି ൌ min ሺ0, ିଵ,௦௧ݍ ሻ   (5) 
 

A. Mathematical Modeling 
The model is intended to be a realistic representation of 

internal temperatures for all multi-zone types of livestock 
buildings. It is divided into subsystems as follows: Inlet 
model for both windward and leeward, outlet model, and 
stable heating system, and finally the dynamic model of 
temperature based on the heat balance equation. 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

1. Inlet Model 
An inlet is basically built into an opening in the wall and it 

consists of a hinged flap for adjusting amount and direction of 
the incoming air. Compared to the results in [3, 4], the 
following approximated model for airflow q୧୬ሾmଷ sൗ ሿ into the 
zone is suggested. 
ݍ  ൌ ݇ሺߙ  ݈݁ܽ݇ሻ∆ ܲ௧   (6) 

 ∆ ܲ௧ ൌ ߩܥ0.5 ܸଶ െ ܲ  ݃ߩ ቀ1 െ ܶ ܶൗ ቁ ሺܪே െ ௧ሻܪ
      (7) 

where k୧ and leak are constants, α is the opening angle of the 
inlets, ∆P୧୬୪ୣ୲ ሺpaሻ is the pressure difference across the 
opening area and interfered from thermal buoyancy and wind 
effect, ρ is the outside air density,  V୰ୣ  is the wind speed, CP stands for the wind pressure coefficient. H stands for 
height and HNLP is the neutral pressure level which is 
calculated from mass balance equation [12]. 

2. Outlets Model 
The outlet is a chimney with an electrically controlled fan 

and plate inside. The following simple linear model is 
presented according to [3, 4]: 

ݍ  ൌ ܿݑ െ ݀∆ ܲ௨௧௧   (8) 
 

with defining ∆ ܲ௨௧௧  as [11]: 
 ∆ ܲ௨௧௧ ൌ భమܥߩ௨௧௧ ܸଶ െ ܲ  ݃ߩ ்ೠି்் ൫ܪ െ ௨௧௧൯ܪ

      (9) ∑ ߩݍ ∆|∆|  ∑ ߩ௨௧ݍ ൌ 0  (10) 
 

where c and d are constants and u is fan voltage.  

3. Stable Heating Model 
The overall stable heating model is taken from [8] and 

represented by the equations: 
 ሶܳ ௧ ൌ ଵሺܥ ܶ െ ௪ܶሻܥଶ  (11) 
ଵܥ  ൌ ሶ݉ ௧ܿ௪௧    (12) 
ଶܥ  ൌ ݔ݁  ିೌೝሶ ೌೝೢೌೝ൨ െ 1  (13) 

 
Fig. 1.  Schematic diagram of the test stable 

 
Fig. 2.  Illustration flow for zone i 
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where mሶ ୦ୣୟ୲ୣ୰   is the mass flow rate of heating system, the 
heat capacity is presented by c୮୵ୟ୲ୣ୰, T୧୬ and T୵୧୬are 
temperature inside and outside the stable and incoming flow 
of the heating system, ܷ௧  is the overall average heat 
transfer coefficient and ܣ is the cross area of the pipe. In 
order to derive a more precise stable heating model, Cଶ is 
estimated from the laboratory experiments. 

4. Modeling Climate Dynamics 
The following formulation for temperature for each zone 

inside the stable is driven by thermodynamic laws and given 
by. 

ܿ,ܯ  ௗ்ௗ௧ ൌ ܳିଵ,  ܳ,ିଵ  ܳ,ାଵ  ܳାଵ,  ܳ, ܳ௨௧,  ܳ௩,  ܳ௦௨,   (15) 
    ܳ ൌ ሶ݉ . ܿ. ܶ    ܳିଵ, ൌ .ିଵ,௦௧ ൧ାݍൣ .ߩ ܿ. ܶିଵ, ܳ,ିଵ ൌ ሾݍିଵ,௦௧ ሿି. .ߩ ܿ. ܶ    (16) 
 
where Q୧୬,୧, Q୭୳୲,୧represent the heat transfer by mass flow 
through inlet and outlet, Q୧ିଵ,୧ denotes heat exchange from 
zone i-1 to zone i and Q୧,୧ିଵ presents the heat exchange from 
zone i to i-1 and vice versa for Q୧,୧ାଵ and Q୧ାଵ,୧ which cause 
by stationary flow between zones. Qୡ୭୬୴is the convective heat 
loss through the building envelope and described as UA୵ୟ୪୪ሺT୧ െ T୭ሻ, Qୱ୭୳୰ୡୣ ,୧ is the heat source and consists of 
animal heat production and heating system, and finally mሶ  is 
the mass flow rate . 

As seen in Fig. 3, there are four different directions for the 
stationary flow in the stable based on defined invariant 
conditions by pressure as (1-4), which yields four piecewise 
smooth equations for the indoor temperature of each zone.  

In the following the model is presented as hybrid state 
space equations: 

 

ەۖۖ
۔ۖۖ
ۓ ௗ்ௗ௧ ൌ ݂ሺܶ, ,ݑ ݍ,ሻݍ ൌ ݄ଷሺܶ, ܲ, ሻݑ ൌ   ௨௧ ଵ…ଷ൩ݍ௦௧ ଵ,ଶݍ ଵ ..ଷݍ

ݑ ൌ  ܽୀଵ….ݑୀଵ..ଷܳ௧ ௦௧൩   (17) 

 
 
 
 
 
 
 
 
 
 
 
 

൜ ݖ ൌ ݄ଵሺܶ, ,ሻ݄ଶሺܲݑ ܶ, ሻݑ ൌ 0   (17) 

 
where ݂ represents the hybrid state space equation for 
dynamics of the temperature, and flow equations are 
comprised in ݄ଷ. ݑ is input, ܲ denote the vector of pressures 
insides each zone and output of the system is given by ݖ,  and 
the ݄ଶ function comprises the mass balance equation of (10). 

III. PARAMETER ESTIMATION 

In order to identify the model parameters by EKF, the state 
space model must be augmented by parameter variation 
dynamics: 

 

۔ۖەۖ
ۓ ሶܺ ൌ   ሶܶܥሶ൨ ൌ ݂ሺܶ, ,ݑ ሻݍ  0ൈଵݒ ൨ݍ ൌ ݄ଷሺܺ, ܲ, ,ሻ݄ଶሺܲݑ ܺ, ሻݑ ൌ ݖ,0 ൌ ݄ଵܺ   (18)     ,ݓ

 
where ܥ is the coefficient matrix with zero dynamics, ݓ is the 
measurement noise and consequently will be defined from 
sensor errors and is assumed to be zero mean. ݒ is the process 
noise and can be estimated from variance error of the 
actuators and other equipments of the ventilation system. A 
discrete model is given as: 
 

۔ۖەۖ
ሺ݇ሻܺۓ ൌ ݂ሺ ܶିଵ, ,ିଵݑ ିଵሻݍ  ቂݒିଵ0ൈଵ ቃݖିଵ ൌ ݄ଵሺܺିଵሻ  ିଵݍିଵݓ ൌ ݄ଷሺݔିଵ, ܲିଵ, ିଵሻ݄ଶሺݑ ܲିଵ, ܺିଵ, ିଵሻݑ ൌ 0  (19) 

 

ܥ ൌ
ێێۏ
ێێێ
ۍێێ

݉ଵ݉ଶܷ݈݈ܽݓܣୀଵ..ଷ݇ଵୀଵ..ଷܥଵୀଵ..ଷܥௗ݈݁ܽ݇ܿ݀ ۑۑے
ۑۑۑ
ېۑۑ
  (20) 

After extension of the space model with parameters, the 
next step in the EKF for achieving the estimation step is to 
linearizing the non-linear discrete equation (19) using a first 
order Taylor series expansion around the estimate  
 ܺିଵሺെሻ,   ܺ ؆ ݂ሺܺିଵሺെሻሻ  ߮ିଵ൫ܺିଵ െ ܺିଵሺെሻ൯ ቂݒିଵ0ൈଵ ቃ,       (21) 
where ߮ is the Jacobian matrix of ݂ with respect to ܺ. Since ݂ is a function of X, u, q and their relations are implicit, the 
chain rule for several variable hypothesis is used to find the 
Jacobian matrix: 
 ߮ ൌ డሺ,௨,ሻడ ൌ ݂ሺܺ, ,ݑ ሻݍ డడ  ݂ሺܺ, ,ݑ ሻݍ డሺ,௨,ሻడ  (22)   

Figure 3.  Four piecewise nonlinear models defined by different 
direction of the flow based on indoor pressure. 
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డሺ,௨,ሻడ ൌ ݄ଷ௫ሺܺ, ,ݑ ܲሻ డడ  ݄ଷሺܺ, ,ݑ ܲሻ డడ  (23) 
 
according to Eq. 19: 
 ߲݄ଶሺܺ, ,ݑ ܲሻ߲ܺ ൌ 0 ൌ ݄ଶሺܺ, ,ݑ ܲሻ ߲߲ܲܺ  ݄ଶݔሺܺ, ,ݑ ܲሻ ߲߲ܺܺ   ֜ ݄ଶሺܺ, ,ݑ ܲሻ ߲߲ܲܺ ൌ െ݄ଶݔሺܺ, ,ݑ ܲሻ 
 
with respect that ݄ଶሺܺ, ,ݑ ܲሻ is a square matrix, and 
multiplying the both side of equation with ሺ݄ଶሺܺ, ,ݑ ܲሻሻିଵit 
can be written as:  
 డడ ൌ ሺ݄ଶሺܺ, ,ݑ ܲሻሻିଵ݄ଶݔሺܺ, ,ݑ ܲሻ  (24) 
 
and finally with substituting the equation of (23) and (24)in 
(22) and implementing the appropriate invariant condition 
due to the equations of (1-4), the Jacobian matrix for the 
hybrid model will be defined. 

The discrete extended kalman algorithm which consists of 
two steps is presented as follows: 

1. Prediction stage: ܺሺെሻ ൌ ݂ିଵ ቀ ܺିଵሺሻቁ   (25) ܲሺെሻ ൌ ߮ିଵ ܲିଵሺሻ߮ିଵ்  ܳିଵ (26) 
 

2. Update stage ܭഥ ൌ ܲሺെሻܪ் ሾܪ ܲሺെሻܪ்  ܴሿିଵ (27) ܺሺሻ ൌ ܺሺെሻ  ݖഥሺܭ െ ሻ,  (28) ܲሺሻݖ̂ ൌ ሼ1 െ ሽܪഥܭ ܲሺെሻ  (29) 
 

where ܳ ൌ ܧ ൬ቂݒିଵ0ൈଵ ቃ ቂݒିଵ0ൈଵ ቃ்൰ is the covariance matrix of the 

process noise, and ܴ ൌ ିଵ்ݓିଵݓሾܧ ሿ is the covariance 
matrix of the measurement noise. ܭഥ is the Kalman gain at 
time ݐ, ܺሺሻ the expected value of ܺ given the ݇ measurements, ܺሺെሻ is the predicted estate estimation and ܪ ൎ డೖడ |ୀೖሺିሻ. 
 ܺሺሻ ൌ ሺܺܧ ⁄,ݖ     ݅ ൌ 1, … . . , ݇  1ሻ, (30) 

 ܲሺെሻ is the covariance matrix of the prediction error  
 ܲሺെሻ ൌ ሺܺൣܧ െ ܺሺെሻሻሺܺ െ ܺሺെሻሻ் ݅ ,ݖ ൌ 1, … . , ݇⁄ ൧,

      (31) ܲሺሻ is the covariance matrix of the estimation error 
 ܲሺሻ ൌ ሺܺൣܧ െ ܺሺሻሻሺܺ െ ܺሺሻሻ் ݅ ,ݖ ൌ 1, … . , ݇⁄ ൧,

      (32) 

IV. EXPERIMENT OUTLINE  

The experimental data were collected form a real large 
scale live-stock building with slow dynamic behavior with 
time constants around 10 minutes. The actuator settings 

(control signals) for ventilation systems are a Pseudo-
Random Digital Signal (PRDS) with time granularity of 10 
minutes and an amplitude variation. In fact, in order to excite 
the dynamic of the system, the amplitude of the control 
signals vary with multi-rate, for example voltage of the fan 
(substitute inside the chimney) changes between 0-2 volt and 
after 2 hours it turns to 5-8 volt and so on. There is also a 
similar scenario for the inlets. Temperature of the stable 
heating systems is held at 40 degrees with small oscillation; 
while, the flow of the heating system is fixed. For further 
information about the experiment design; see [4]. The system 
was running totally around 7 hours with a two minutes 
sampling period. The two-third of experiments is 
implemented for parameter estimation or in other word for 
constructing the appropriate model and the remaining is 
utilized for model validation. The experiment was conducted 
during spring when the deviation of wind is large and this 
additional disturbance cause more model uncertainty.  

In the following, the signals for different inputs are 
illustrated, as it is shown in Fig. 4.a and b, the ventilation 
systems changed considerably in order to obtain more 
temperature deviation for precise validation. The stable 
heating systems are constant; Fig. 4.c and d 

V. RESULTS AND DISCUSSION 

The results are divided in two parts, the EKF result and 
model validation.  

A. EKF estimation: 
 In according to the literature [12], the EKF algorithm is 

highly depended on prior knowledge of the system and tuning 
factors, such as initial value of the parameters, process and 
measurements noise and  covariance matrix. In order to find 
rough estimates of the parameters, the modeling task is 
divided into several parts. At first a model with single input 
and output (SISO) is defined, then the results are 
implemented for a modified model as a multi input-output 
(MIMO) system and finally the multi-zone system is obtained 
relying on previous results. The preliminary estimation and 
parameters of inlet and outlets for the simplified SISO model 
are conducted by standard least square. 

The EKF algorithm is used to estimate 14 parameters. The 
state and measurement for the EKF are: 

ݔ  ൌ ሾ ଵܶ, ଶܶ, ଷܶ, ݉ଵ, ݉ଶ, ,௪ଵܣܷ ,௪ଶܣܷ ,௪ଷܣܷ ݇ଵଵ, ݇ଵଶ , ݇ଵଷ, ,ଵଵܥ ,ଵଶܥ ,ଵଷܥ ଵܸ, ଶܸ, ଷܸሿ 
 ܼ ൌ ሾ ଵܶ, ଶܶ, ଷܶ, ܳ௨௧ଵ, ܳ௨௧ଶ, ܳ௨௧ଷ, ∆ ܲଵ, ∆ ܲଶ, ∆ ܲଷሿ 
 

The initial and final values of the parameters are given in 
Table I and the result of EKF are illustrated in Fig. 5. The 
figure illustrates the results of prediction error by the constant 
predictor and the EKF according to the following equations: 

ߝ  ൌ ඥ∑ሺyିଵ െ ாிߝ ሻଶ   (33)ݕ ൌ ඥ∑ሺݕො െ  ሻଶ   (34)ݕ
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where ݕො is estimated state and ݕ  is the measurement. As it 
is clearly seen from Fig. 5, the EKF estimation error is less 
than the constant prediction error. So, it illustrates the 
benefits of the recursive estimations algorithm for the case of 
nonlinear parameter estimation. 

B. Model validation 
As it was mentioned in the previous part, the dynamic 

model for the indoor temperature of the stable is derived in 
multi-steps. At first the approximated parameters of the inlet 
and outlet are derived from SISO modeling, and thereafter the 
relevant equations for the stationary flows are analyzed and 
rough approximation of the parameters of the dynamic 
temperature equation are defined according to MIMO 
modeling. Finally the entire relevant parameters are estimated 
by the EKF. 
The result not only yields consistent positive estimation of the 
parameters value, but also confirms the performance of 
simulated model in comparison with the measurement. 
However, the model of the inlet is a simple linear model, the 
Fig. 6 for the prediction and measurement flow, illustrates 
that the model quite fits the measurements except for the peak 
of the graph, where there is a small discrepancy. In Fig. 7, the 
surface demonstrates the characteristic of the fan with 
pressure-voltage-flow data for the prediction and 
measurement data. As it is clearly seen, the linear model 
almost fits the real data except for the 0 and 10 voltages. This 
discrepancy yields that the linear model cannot represent well 
the nonlinear characteristic of the fan for those of points.  

The validation is carried out for open loop and with the 
inputs signals which were not used in the estimation process. 
Then the simulation output was compared with the 
measurements. Fig. 8 presents the measurement and predicted  
 

TABLE I 
VALUES OF THE MODEL COEFFICIENTS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
data of the indoor temperature of the stable for every zone. It 
illustrates, that there is non neglectable discrepancy attributed 
to modeling error. The modeling error can be contributed to 
several factors such as sharp deviation of wind which  

Coefficients Initial values The EKF Values ݉ଵ 1 2.5 ݉ଶ 1 2.5 ܷܣ௪ଵ 1000 893.194 ܷܣ௪ଶ 100000 136969.76 ܷܣ௪ଷ 10000 12580.385 ݇ଵଵ 500 8.99877620e+002 ݇ଵଶ 500 9.01644600e+002 ݇ଵଷ 500 8.99897274e+002 ܥଵଵ 1 -0.02560 ܥଵଶ 1 -3.96949 ܥଵଷ 1 -0.17612 ܥௗ 0.01 0.03705 ݈݁ܽ݇ 0.01 0.0254097 ܿ 0.1 0.6479337 ݀ 0.01 0.0499638 ଵܸ 10000 10687.91 ଶܸ 100000 377403.62 ଷܸ 10000 65461.13 

(b) 

 

 

 
 

 
Fig. 4. (a) voltage of fan, (b) the angle of inlets, (c) Ball-valve position for 

animal and stable heating systems, (d) Hot water flow rate in stable and 
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mentioned before, heat capacity of the construction material, 
the latent heat loose through evaporation, the degree of air 
mixing, building leakage and large scale livestock building 
which cause high uncertainty. 

VI. CONCLUSION 

A conceptual multi zone model for the indoor climate of a 
live-stock building was derived. The model was nonlinear in 
its parameters. An Extended Kalman Filter (EKF) was used 
because it is able to converge to the parameters of the 
nonlinear hybrid models; besides, the next aim of this 
research is active fault detection, and recursive estimation 
methods are well suited for such problems. It must be noted 
that, the EKF depends on the initial values and tuning factors, 
hereby a prior knowledge of the system is required. An 
experiment confirmed the performance of the EKF and  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
generally the multi-zone model, which tracks the trace of real 
data; however, some discrepancy between predicted and 
measurement values were observed.  The model uncertainty 
is an unavoidable aspect of model identification and here 
related to undesirable environment disturbances. 

Future work will address open questions for using 
analytical input-output modeling instead of grey box. 
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 Fig. 5.  The prediction error by constant and EKF predictor 
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Fig. 6.  Graph for measurement and predicted flow for inlet 
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Fig. 7.  (a) Graph for predicted data. (b)  Graph for measurement data 
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Fig. 8.  Indoor temperature for every zone 
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