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ABSTRACT

A single-degree-of-freedom hysteretic model is formulated for a subsoil
layer subjected to earthquake excitation, using a Bouc-Wen model for
the incremental constitutive equation of the hysteretic shear stress. The
horizontal earthquake acceleration process at bedrock level is modelled as a
non-stationary white noise, filtered through a time-invariant linear second
order filter. Liquefaction is studied in triaxial tests, and is considered as
a failure event. By cyclic loads it is shown that liquefaction takes place,
when the accumulated mechanical energy dissipated per unit volume of the
soil exceeds a critical value. This quantity is then introduced as damage
indicator. The state variables of the integrated dynamic system of the soil
sublayer, auxiliary filter and damage indicator then make up a Markov
vector. An equivalent linearization technique is used for the constitutive
equation of the shear stress, whereas a cubic polynomial expansion is
used for the damage indicator equation. The resulting infinite hierarchy
of statistical moment equations is closed by a cumulant neglect closure
scheme. The expectations appearing in the equations for the coefficients of
the equivalent polynomia are calculated by a 2-dimensional Gram-Charlier
expansion. The analytical results obtained are compared to those obtained
by Monte-Carlo simulation.

INTRODUCTION

Based on cyclic triaxial tests, formulas for the pore pressure built up have
been developed, [16]. The constitutive equations for the hysteretic stress-
strain curves have been studied, [7], and a modified Bouc-Wen model. [§],
has been set up. The accumulated mechanical energy dissipated in the
soil is used as a damage indicator. It is a non-linear response quantity
with non-decreasing sample curves. and it is a measure at a macroscopic
scale of the strength and stiffness deterioration of the soil during hysteretic



deformations. Failure is defined to take place at the first passage of the
damage indicator at a predefined critical level, at which the soil is assumed
to lose all its strength and stiffness.

In accordance with common practice in earthquake engineering the ex-
citation process at bedrock level is modelled by a linear filtering of a
Gaussian white noise through a shaping filter, [1, 2|.

The constitutive equation for the hysteretic shear stress is non-linear
and non-analytic. Therefore an equivalent system is introduced, for which
this equation is given by a linear expression with coefficients determined
via a least-square procedure. For the damage indicator differential equa-
tion an equivalent cubic expansion is formulated based on a Taylor-ex-
pansion. Joint statistical moments of the non-zero mean Markov vector
process are then determined from the equivalent polynomial system. This
approach is considered a generalization of the equivalent linearization tech-
nique, for which the non-zero mean formulation is due to Spanos (3] and
Baber [4]. Equivalent polynomial expansion techniques were formulated
by Nielsen et al. [5] for the zero mean problem, and by Merk [6] for the
non-zero mean problem.

The main objective of the present study is to develop and verify the in-
dicated approximate analytical technique to the considered problem. All
analytical results are compared to those obtained by numerical simula-
tion. A generalization of the indicated method to multi-layer subsails is
straightforward, modelling the subsoil layer by a multi-degree-of-freedom
system.

SOIL SUBLAYER
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Figure 1. Displacement of subsoil layer subjected to earthquake.

A saturated sand layer of thickness h is assumed to cover a rock sur-
face, as shown in fig. 1. During an earthquake shear waves (SH-waves)
propagate from bedrock upwards through the sand laver. The horizontal
displacements of the bedrock u,(t) and of the sandlayer u(z'.t) are as-



sumed to occur under plane strain conditions. z' is a vertical coordinate
measured from the bedrock surface towards the free surface.

A sand element at the coordinate z' is consolidated under Kj-conditions
prior to the earthquake. The effective mean normal stress p' is then

!

1
b= (1+2K,) o, (1)

where o, is the effective overburden pressure. During an earthquake shear
stresses act on horizontal planes with irregularly varying sign and magni-
tude.
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Figure 2. Mohr's circles for strains and stresses in a soil element during
an earthquake.

The relation between in situ stresses and strains. and those existing in
a triaxial test can be established as follows. In the horizontal or vertical
planes no elongation takes place, and the volume changes €, = €, +¢, =0
due to undrained circumstances and the absence of compression waves.
The Mohr circles for the strains and stresses as shown in fig. 2 then give

Yozt = €

U,:r:‘ ZO';, (2)

T =3 (01 -03) =734

where ¢ is the deviatoric stress.

The dissipated effect per unit volume of soil is given by

E — O'IJéIJ—f-O'zJéza +2TI'::'§/I'Z" — qfl (3)

Field conditions still deviate from those developed during triaxial test-
ings. The principal stresses rotate during an earthquake but are fixed



during cyclic loading, [13]. Further, in the field the soil behaves as a hys-
teretic material, but no permanent horizontal movements are developed in
a systematic way. It is difficult to avoid irreversibilities in triaxial testing.

Cyclic Triaxial Tests

Test specimens: Vestbjerg Sand Lund No. 0
Mean diameter d (mm): 0.11 0.40
Uniformity U: 3.6 1.7

Void ratio e: 0.62 0.63
Density index I: 0.77 0.70

Table 1. Properties of test sands.

Cyclic triaxial tests with constant amplitude have been carried out on
two sorts of sand, specified in table 1. The specimens have been fully
saturated, using a total vacuum. which causes an isotropic preconsolida-
tion pressure of 100 kPa. The test series and test results are described in
further detail in ref. (7).
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Figure 3. Cyclic triaxial tests. a) With initial, effective deviatoric stresses
and irreversible strains. b) With reversible strain. Definition of mobiliza-
tion factor z.

After consolidation at the initial stress state (pj, go), the drains were
closed and the specimens subjected to shear stresses with constant ampli-
tudes, as shown in fig. 3a. During a single loading the mean normal stress
p' varies only a little, corresponding to a small, but systematic increment
in pore pressure. During a number of loadings the effective stress state
then changes. If the Coulomb failure criterion is satisfied even once (point
L in fig. 3a), the maximum shear stress decreases rapidly causing the sand
to flow. The test equipment then loses control with the stress variation.

According to Casagrande [14: liquefaction is defined to take place if the
stress state reaches the point L. The stress states may develop further



until strain amplitudes above 20% are reached. This state is designated
complete liquefaction, Castro [15]. Only the development of stresses and
strains until the point L is of practical interest, because even in this stress
state the movements in a sand layer will damage all structures on its

surface.

Mobilization Factor
The deviatoric stress ¢ can be normalized by introducing a mobilization

factor

=L se(-1,1) (4)

where gy is the numerical maximum value of ¢ at the actual mean normal
stress p’.

The Coulomb failure criterion for a purely frictional material can be writ-
ten

3—sin ¢

__ 6sin ¢’ s
9 = mae i (extension)

(8)

g = Ssin¢’ (compression) }

If the same deviatoric stress ¢ is applied to compression and extension,
corresponding to the initial mobilization factor zy = 0, large permanent
deformations are developed in extension, a phenomenon called necking. In
the field only hysteretic strains develop. The corresponding shear stresses
in triaxial tests should occur simultaneously in compression and extension.
From eq. (5) and fig. 3b it follows that zq € [0, z»], where z, = sinp’/(3 -

sing’).

Pore Pressure Build Up

The pore pressure build up causes a reduction in p’ and g5. Fig. 3b shows
that the amplitude 2z, then increases from its initial value 2 to unity at
point L. In [16] a formula has been developed for different values of the
initial mobilization factor z5. For zy = 0 this formula reads

za = 2o (14+ Rr(N)) (6)

where R is a constant. and .\ is the number of cyclic loadings. r(N) =10
for V =0, increasing monotonically to r(N) =1 for N = .



Hysteretic Behaviour
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Figure 4. Hysteretic curves estimated from eq. (7), (8), (9), and measured
in triaxial tests.

Figure 4a shows two test results. The behaviour of the sand is strongly
hysteretic, but no irreversibility occurs. g¢ and the elastic shear modulus
o of the sand decrease from initial values gfo and pg,o with the number
of cycles as the pore pressure builds up. Simultaneously the development
of the mobilization factor can be specified by the following modified Bouc-

Wen formula, (8]

£ = klz.2)d (7)

k(z,2) = 1 — asign(2)|z|""'z — B |z|" (8)

Iz = ‘#_O’Yz'z’ (9)
a5

Since z is restricted to the interval (-1,1), it 1s nescessary that a+3 =1

in (8).

For all tests it has been found that yy and g5 deteriorate proportionally,
i.e. the fraction pg/qs is constant with time. In equations (8),(9) it was
found for all tests and even for different sorts of sand. that 1g,/q50 = 900
with & = 1.0, 8 =0.0. n. = 0.5.



Damage Indicator
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Figure 5. Energy dissipation per unit volume for z = 0.98, ¢’ = 38°, p' =
25 kPa. (ef = 0.2p" sine'/(3 —sinyp')).

The dissipated accumulated energy under cyclic loading can be calcu-
lated from equations (3), (6), (7), (8), (9). At failure it turns out to be
nearly constant, see fig. 5. This quantity is supposed to be constant even
when the amplitude varies, and can then be used as a damage indicator.
The accumulated dissipated energy will be normalized with respect to
the quantity iqu'o /0.0, which can be interpreted as the strain energy per
unit volume, if elastic deformations were present up to the maximum shear
stress $qgo. Using the time-invariance of ug(D)/qs(D) = po,0/qf,0, and
introducing the non-dimensional stress and strains defined by (4) and (9)
in (3), the differential equation specifying the development of the damage
indicator can be written

D=4 f(D) z& (10)
where the following non-dimensional function is introduced
D D
H0,0 45,0

Under complete liquefaction the maximum shear stress vanishes. This is
assumed to take place when the damage indicator exceeds a critical value
ds. An appropriate assumption for the unknown function f(D) then is

(- (&)) . pes

0 , D>d;

f(D) =



Equation (12) does not describe the test results in every detail, and the
value of m has to be estimated by experience. m seems to vary in the
range 0.5-2.0.

STOCHASTIC DIFFERENTIAL EQUATIONS FOR HYSTE-
RETIC SUBLAYER UNDER FILTERED WHITE-NOISE EX-
CITATION

Sublayer
The equation of motion relating the shear stress ,:,+(t) and the shear
strain 4,.(t) just above the surface of the bedrock (z' = 0) can be written,

see appendix A

. TIJ '] ﬁ
Ferzr +wh FOZD =—ao 3" (13)

wo 1s the first cyclic eigenfrequency of the sublayer at zero damage, and ag
is a non-dimensional constant dependent on the mode shape. Based on an
approximate analysis expressions for these have been given in appendix
A, assuming the mass density p to be constant in space and time.

The shear modulus at linear elastic deformations u(z', D) at the damage
state D is assumed to increase linearly from a minimum value (D) at
the free surface to a maximum value po(D) at the surface of the bedrock

plz'. D) = wo(D) (1- (1- %) %) (14)

po(D) and py(D) decrease with time from initial values po o and g1,0
as the damage develops. The fraction p;(D)/pe(D) = p1,0/pe,0 is as-
sumed to be constant at all damage states, i.e. the stiffness deteriorates
proportionally in top and bottom of the sublayer.

Using (4). (9), (11) equation (13) can be written
T
x+;w§f(D)z = —wiv (15)

where f(D) is given by (12) and

ag  Ho,o .
= (16)
u.-'gh q_f,{) g

The Bedrock Acceleration
Models for the bedrock acceleration ti4(t), obtained by a linear filtering



of Gaussian shot noise, is well established in the literature, [1, 2]. In the
following it is assumed that the frequency response function H(w) of the
shaping filter can be approximated with sufficient accuracy by a rational
function, i.e.

_ P(iw)

= Qi) T

H{w)

where P(z) and Q(z) are polynomies of the degrees p and ¢, 0 < p < q.
The roots of Q(z) have all negative real parts to ensure the stability and
causality of the filter. (17) implies that the shaping filter is equivalent to a
system of ordinary linear differential equations. In order to illustrate the
method the following simple 2nd order filter (p = 0, ¢ = 2) will be applied

. d . . d
27 st 2(Qo ity + Q2 i, = I(t) - W(t) (18)

¢ is the damping ratio, and g is the undamped cyclic eigenfrequency
of the filter.

{W(t),t > 0} is a unit intensity Wiener process which is a Gaussian
process with the following incremental properties

EldW®)] =0 , E[dW(t,)dW(t,)] = {gt g i; (19)

I(t) is a deterministic modulation function specifying the intensity of
the white noise excitation process. It is assumed to be given by the fol-
lowing expression suggested by Saragoni and Hart, [9]

1) = I exp(—b(% - ln-;Tﬂ ~1)) (20)

Ip = \/4(Q} o}, (21)

T, is the time of maximum intensity. The specification (21) ensures
that the stationary standard deviation of iy, in the case of stationary
excitation with the intensity ly. is equal to agg.

Introducing the non-dimensional acceleration v defined by (16), equa-
tion (18) can be written
d? d d

—_ 2 — 20— - ;
e u+HCQOdtt + Q51 ](t)dt W(t) (

[ S]
[EV]
—



. O 3 50 YL T
J{t)= T e 4(Qp oz, exp( b(To II:LT0 1)) (23)

Ito-Differential Equations
The state vector is made up of the state variables z, z, z of the sublayer,
the damage indicator D, and the state variables v, ¥ of the shaping filter.
The integrated dynamical system as specified by (7,), (8), (10), (15), (22)
can then be formulated by the following system of equivalent first order
It6-differential equations, [10].

dX(t) = d(X)dt + e(t)dW(t) , t>to , X(to)=Xo (24)

d(X) = A(X)X (24a)
-x- - D -
i 0

X(t) = 5 e(t) = 8 (24b)
v 0
[ 5 LJ(t) ]
01 0 0 0 0 -
0 0 —1wif(D) 0 —wi 0
0 k(z.z 0 0 0 0

AX)= 1o 4}(171 0o 0 0 0 (24c)
0 0 0 0 0 1
Lo 0 0 0 —Q2 —200Q,.

The system is assumed to be undamaged before the earthquake excita-
tion. The initial conditions are then Xg = 0.

RELIABILITY ANALYSIS
The probability of failure in the interval [0,t] becomes

Ps([0,t]) = 1= P( sup D(r) <dy)
r€[0,1)

=1-P(D(t) <dj) =1— Fp(y(dy) (25)

In the last statement of (25) it has been used that the sample curves
of D(t) are non-decreasing. Consequently, the probability of failure can
be specified if the first order distribution function Fp()(d) of D(t) can



be determined. The lower order statistical moments of this quantity are
estimated below.

EQUATIONS FOR JOINT CENTRAL MOMENTS FOR
ORIGINAL AND EQUIVALENT SYSTEMS

Let g(X(t),t) be an arbitrary function of the state vector X(¢) and ¢.
Making use of the Ito-differential rule, and taking the expectation, the
following differential equation for the expectation E[g(X,t)] can be de-
rived, [10]

2 El(X,0)] = B2 o(X, )
62

s——g(X, ) (26)

0 1
+E[d,-(X)63—:“g(X,t)] -+ 561'31'}3[

In (26) and below the summation convention is used for dummy indices.
d; and e; signify components of the drift-vector d(X) and of the diffusion-
vector e. Let

glA) = {§¥2 Xe L m> i (27)
where [X1, Xy, X3, X4, X5, Xs] = [z,2,2,D,v,79) and
Xf =X =g (28)
pi = E[X] (29)
Then

fii = Eldi] (30a)
i = E[d; X7 + E[d; X[] + eie; (30b)
fik = EIdEX2XE] + EIdSXEXE] + Elds XX (30¢)
it = EldEXSXEXE) + Bl XEXEXF)

BT XXX+ Bl X XK

teiejpp + ejeppjr + etk + €jertil + ejerftie + exeqpi; (30d)

where

d5(X) = di(X) — E[di(X)] (31)



Biy iy = E[XE -+ XE ] (32)

Instead of the centralized drift vector of the original system, given by
(31), an equivalent non-linear system is considered for which the central-
ized drift vector is given in terms of a quadratic expansion in the central-
ized state variables

df oo(X) = Ai + Bin X1, + Cimn X0 X7 + Dimnp X X7 X7 (33)

The differential equations for the joint central moments of the equivalent
system follow by inserting (33) into (30b)-(30d)

flij = Bimlumj + Bjm)umi + C:’mn.umnj + ijn#mni

Dimnp#mnpj + Djmnpru'mnpi + €i€; (343')

Bijk = Aipjk + Ajpic + Axpti; + Bimpimik + Bjmimik + Bimfimij
+Cimnbimnjk + Cimnpmnik + Chmnbmnij

+Dimnplmnpit + Dimnplmnpik + Demnptimnpis (34b)
Pijer = Aipjrn + Ajpin + Arpie + Arpije

+Bimpmiki + Bimpmikt + Bimtimiji + Bimmijk

+Dimnptimnpikl + Dimnphmapikt + Dikmnptimnpiji + Dimnptimnpijk

+eie ikl + eiep il + ei€ipjk + €jerfhi + €j€1ftix + exeifhi; (34c)

The system of differential equations (34) is not closed, because non-
available joint central moments of the 5th and 6th order enter the right
hand sides of (34b) and (34c). In the present case the differential equations
will be closed using the cumulant neglect closure technique, assuming that
the joint cumulants above the 4th order are negligible. This results in the
following relationships for the joint central moments of the 5th and 6th
order, [11]

Bigkva = 10| s fowins s (35)

Eiiktmn = 1545 85mn e + 104t Mmn o <= S0{ptis 000 0mn }s  (36)



The symbol {-}, indicates a symmetry operation producing the arithmetic
mean of all terms similar to those indicated, obtained by permuting all
free indices.

For the non-analytical function f(D) as given by (12) the following
equivalent linearization, based on a Taylor-expansion from the mean value
p(D) = E[D], is used

f(D) = f(up) + f'(up)D°, D°=D—up (37)

(37) is used in the 4th equation of (24). For the 2th equation the
approximation f(D) = f(up) is used. From (24) the following tensor
components in the equivalent system can then be obtained

B3 = ~%wé’ f(#D)
Ay = -4 f(up) E[2z) — 4 f'(up) E[z2D°]  Cu2s =4 f(up) (38)
D234 =4 f'(pp)

Ay is obtained from the requirement E[d5 ,,] = 0. The remaining com-
ponents of A;, Cimn and Dimn, are all zero.

From eq. (7) the following symmetry property is obtained

k(z,z) = k(—z,—2z) (39)

(39) is known as the zero mean condition for white noise excited sys-
tems. In case of the initial conditions Xy = O the implication is that
E{z] = E[z] = 0, with the further implication that £ E[:] = E[f] =
Bl s, 2)z| =0,

In agreement with the zero mean condition the following equivalent
linear expansion is assumed for the constitutive equation

k(i‘,Z) P = B32 T -+ B33 Z (40)

The coefficients of the equivalent system are determined from the re-
quirement that the expected value of the squared error ¢ = k(z,z) —
B3sz — B3zz is at a minimum. The minimum conditions %E[ez] =
= 333 E[€?] = 0 result in the following linear equations for the determina-

tion of the expansion coefficients

[E[ﬂ E[iz]] [BzzJ _ [E[kiz]] (41)

E(zz] El[z?] B3, E[kzz]



The expectations on the right hand side of (41) are performed utilizing
an approximate p.d.f. f;.(z,z). This is assumed in the form of a truncated
2-dimensional Gram-Charlier expansion, [12]

o) 9(&) v
fiz(2,2) = "0—2 73" Y cijHi(€2)H;(&) (42)
* Z i4j=0
where
T z
62 == = N 63 = (43)
&g o,
4] ~ i12-e
)= 3 (1 aat ™ oo = (0
a=0
o LE[H .f. H_(_:_)}
C‘J_i!j! . t(q‘x) J'CT:
1 41 (4] o E[#i-2ei zi-2a4)

©(+) is the frequency function of a standardized normal variable, and
H(-) is the Hermite polynomium of the i:th degree. For the expansion
coefficients ¢;; it follows that veceo = 1,¢10 = c20 = co1 = ¢cp2 = 0. More-
over ¢;; = 0,7 + j is odd. The remaining coefficients follow from (45).
The expectations on the right hand side of (41) can all be reduced to
1-dimensional quadratures.

The remaining components of B;,, are equal to the linear components
of matrix the A, given by (24c).

NUMERICAL EXAMPLE

The following data in agreement with test results have been used in the
numerical study

wo =11.06s"1 | ap =1.180 o =305 m

p=1850 kg/m® | poo=2.18-108 Pa , p3=2.18-10" Pa

o= 1.0 , 3=0.0 ; qf,0=2.42-105 Pa .n=05
b=0.2 , To=1s 5 agg = 4.5 m/s?

Qp =15.56 57! | ¢ =0.458 . 0 =B , dy =119

To check the validity of the approximate analytical technique. response
moments have been obtained from Monte-Carlo simulation based on av-
eraging over 1000 independent sample curves, each obtained by numerical
integration of eq. (24).

(46)
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In the figures 7-11 time dependent response statistics for z, z and D
have been shown. Curve a corresponds to simulation and curve b corre-
sponds to equivalent polynomial expansion. The time has been normalized

with respect to the period of linear eigenvibrations T = -f;:'—

In fig. 7 the time dependence on the standard deviation of z has been
shown. Because po/gs is constant, z is proportional to the shear strain
vz, cf. (9). As seen the method provides a slight underestimation of the
variance response of z.

In fig. 8 the standard deviation of z is shown. An acceptable agreement
between simulated and analytically predicted results has been obtained.
z is the shear stress in proportion to the deteriorating maximum stress,
cf. (4). Due to this normalization, the decrease of the latter quantity is
not displayed in the variance response of z. The slight decrease of z with
time for ¢/Ty > 2 should rather be asigned to the decreasing intensity of
the excitation process, cf. (23).

Figures 9-11 show the time dependence on the mean value, standard
deviation and skewness coefficient of the damage indicator D. The latter
quantity is defined as Sk[D] = E[(D — up)®]/o3},. The severe earthquake
considered with o5, = 4.5 m/s? results in mean damage values exceeding
119 at the end of the interval considered, indicating a high risk for lique-
faction. A good agreement between analytical and simulated results has
been obtained for the mean value and for the standarddeviation, whereas
the analytical values for the skewness are only acceptable for ¢t/T; > 8.

However. the analysis shows. that the lower-order moments of D can
be calculated by the indicated method, forming a basis for a succeeding
reliability analysis. -

CONCLUSIONS

A reliability analysis due to liquefaction of a hysteretic soil sublayer under
earthquake excitation has been performed based on a Markov approach.
A Bouc-Wen model is suggested as constitutive equation for the hysteretic
shear stress. formulated in suitable normalized variables. Based on some
promising cyclic triaxial tests the accumulated hysteretic energy dissipated
in the soil is suggested as damage indicator. In the analytical approach an
equivalent linearization technique is applied to the constitutive equation,
and a cubic polynomial expansion based on a Taylor-expansion for the
differential equation of the damage indicator. From the numerical example
considered it is concluded. that the lower order statistical moments of
the damage indicator can be estimated with sufficient accuracy by the
indicated method.



Appendix A: Derivation of Eq. (13)
The equation of motion for a unit volume of the sublayer is

ar,:,: 6211.
o0 P e (A1)

The shear modulus is assumed to be given by the distribution in eq.
(14). For the shear stress 7.+,(z',t) and the shear strain v,.(z',t) the
following single mode expansions are assumed

rogN H1,0 ' _z
ree(@ ) =rewa) (1= (1-E2) 6) 0, =% (42
Yoo (23 t) = Yero 0(t) ¢'(€) (A3)

g(&) is a non-dimensional shape function, and ¢'(€) signifies the deriva-
tive with respect to £. g(£) fulfils the boundary conditions ¢g(0) = ¢'(1) =
0. Further g(£) is normalized, so that ¢'(0) = 1. 740 0(t) and vz 2 o(t)
can then be interpreted as the shear stress and shear strain at the surface

of the bedrock.

Integrating (A3), the following expression is obtained for the total dis-
placement u(z',t)

u(xf-,t) = ug(t) + ‘:"J:’z’.[](t) h g(f) (A4)

(A1) is multiplied by a virtual displacement éu(z',t). Partial integra-
tion and application of the boundary conditions at ' = 0 and z' = A
provides

h h
-/ Torgt 0Ygry dr' = / p t du dz’ =
0 0

:fz'z".[) + wg T:L’(:fo.o = —aqag Ehi (‘,.15)
2 fol (1 B (1 B %%)f) (g'(f))z d Hooo on H0.0Y, .
w2 = - w7 = (1620 25 )46)

Jo 9%(&) d¢ P £
1
_ he©d o (AT)
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In the main text the index 0 on 7./, 9 and ¥;s;s ¢ has been omitted. As
shape function the first eigenvibration mode is used, fulfilling the eigen-
value problem

La-(1-22)0Le0) + ,;%jwég(a} 58
9(0)=4'(1)=0 , ¢'(0)=1

The solution to w? and ay for ﬁ—;*% = 0.1 has been given in the paren-

theses of (A6) and (A7).
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