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An Empirical Study of Efficiency and Accuracy of Probabilistic Graphical
Models

Jens Dalgaard Nielsen and Manfred Jaeger
Institut for Datalogi, Aalborg Universitet

Frederik Bajers Vej 7, 9220 Aalborg Ø, Denmark

Abstract

In this paper we compare Naı̈ve Bayes (NB) models, general Bayes Net (BN) models and Proba-
bilistic Decision Graph (PDG) models w.r.t. accuracy and efficiency. As the basis for our analysis
we use graphs of size vs. likelihood that show the theoretical capabilities of the models. We also
measure accuracy and efficiency empirically by running exact inference algorithms on randomly
generated queries. Our analysis supports previous results by showing good accuracy for NB mod-
els compared to both BN and PDG models. However, our results also shows that the advantage of
the low complexity inference provided by NB models is not as significant as assessed in a previous
study.

1 Introduction

Probabilistic graphical models (PGMs) have been
applied extensively in machine learning and data
mining research, and many studies have been dedi-
cated to the development of algorithms for learning
PGMs from data. Automatically learned PGMs are
typically used for inference, and therefore efficiency
and accuracy of the PGM w.r.t. inference are of in-
terest when evaluating a learned model.

Among some of the most commonly used PGMs
are the general Bayesian Network model (BN) and
the Naı̈ve Bayes model (NB). The BN model ef-
ficiently represents a joint probability distribution
over a domain of discrete random variables by a
factorization into independent local distributions.
The NB model contains a number of components
and models each discrete random variable as in-
dependent of all other variables within each com-
ponent; it represents a joint probability distribu-
tion over all variables as a mixture of the compo-
nent marginals.Exact inference has linear time com-
plexity in the size of the model when using NB
models. For the general BN model exact infer-
ence is NP-hard (Cooper, 1987), and known algo-
rithms for exact inference have (worst case) com-
plexity exponential in the size of the model (e.g.
the junction tree algorithm (Lauritzen and Spiegel-
halter, 1988)). Inference in BNs is therefore of-

ten solved approximately using loopy belief prop-
agation (Yedidia et al., 2000) or sampling methods
(Neal, 1993). A drawback common to both of these
methods is the fact that they may not converge in
reasonable time, and if stopped prematurely, the ap-
proximation can be very bad.

Model-selection algorithms for learning PGMs
typically uses some conventional score-metric,
searching for a model that optimizes the metric. Pe-
nalized likelihood metrics like BIC, AIC and MDL
(Hastie et al., 2001) are a weighted sum of model
accuracy and size. When the learned model is to
be used for general inference, including a measure
for inference complexity into the metric is rele-
vant. Neither BIC, AIC nor MDL explicitly takes
inference complexity into account when assessing a
given model. Recently, several authors have inde-
pendently emphasized the importance of consider-
ing inference complexity when applying learning in
a real domain.

Beygelzimer and Rish (2003) investigate the
tradeoff between model accuracy and efficiency.
They only consider BN models for a given target
distribution (in a learning setting, the target distri-
bution is the empirical distribution defined by the
data; more generally, the target distribution could
be any distribution one wants to represent). For BNs
treewidth is an adequate efficiency measure (defined



as k − 1, where k is the size of the largest clique in
an optimal junction tree). Tradeoff curves are intro-
duced that plot treewidth against the best possible
accuracy achievable with a given treewidth. These
tradeoff curves can be used to investigate the ap-
proximability of a target distribution, where approx-
imability is to be understood as the ability to rep-
resent close approximations by small and efficient
models.

As an example for a distribution not approx-
imable in this sense, Beygelzimer and Rish (2003)
mention the parity distribution, which represents the
parity function on n binary inputs. An accurate
representation of this distribution requires a BN of
treewidth n−1, and any BN with a smaller treewidth
can approximate the parity distribution only as well
as the empty network.

The non-approximability of the parity distribu-
tion (and hence the impossibility of accurate models
supporting efficient inference) only holds under the
restriction to BN models with nodes corresponding
exactly to the n input bits. The use of other PGMs,
or the use of latent variables in a BN representation,
can still lead to accurate and computationally effi-
cient representations of the parity distribution.

Motivated by some distributions refusal to be effi-
ciently approximated by BN models, the PGM lan-
guage of probabilistic decision graph (PDG) mod-
els was developed (Jaeger, 2004). In particular, the
parity distribution is representable by a PDG that
has inference complexity linear in n. In a recent
study an empirical analysis of the approximations
offered by BN and PDG models learned from real-
world data was conducted (Jaeger et al., 2006). Sim-
ilar to the tradeoff curves of (Beygelzimer and Rish,
2003), Jaeger et al. (2006) used graphs showing
likelihood of data vs. size of the model for the anal-
ysis of accuracy vs. complexity. The comparison of
PDGs vs. BNs did not produce a clear winner, and
the main lesson was that the models offer surpris-
ingly similar tradeoffs when learned from real data.

Also motivated by considerations of model accu-
racy and efficiency, Lowd and Domingos (2005) in
a recent study compared NB and BN models. NB
models are a very special kind of latent class model,
and can potentially offer accuracy-efficiency trade-
off behaviors that for some distributions differ from
those provided by standard BN representation (al-

though NBs do not include the latent class models
that allow an efficient representation of the parity
distribution). Lowd and Domingos (2005) deter-
mine inference complexity empirically by measur-
ing inference times on randomly generated queries.
The inferences are computed exactly for NB mod-
els, but for BN models approximate methods where
used (Gibbs sampling (Neal, 1993) and loopy be-
lief propagation (Yedidia et al., 2000)). Lowd and
Domingos (2005) concludes that NB models offer
approximations that are as accurate as those offered
by BN models, but in terms of inference complexity
the NB models are reported to be orders of magni-
tude faster than BN models.

Our present paper extends these previous works
in two ways. First, we conduct a comparative analy-
sis of accuracy vs. efficiency tradeoffs for three type
of PGMs: BN, NB and PDG models. Our results
show that in spite of theoretical differences BN,
NB and PDG models perform surprisingly similar
when learned from real data, and no single model
is consistently superior. Second, we investigate the
theoretical and empirical efficiency of exact infer-
ence for all models. This analysis somewhat differs
from the analysis in (Lowd and Domingos, 2005),
where only approximate inference was considered
for BNs. The latter approach can lead to somewhat
unfavorable results for BNs, because approximate
inference can be much slower than exact inference
for models still amenable to exact inference. Our re-
sults show that while NB models are still very com-
petitive w.r.t. accuracy, exact inference in BN mod-
els is often tractable and differences in empirically
measured run-times are typically not significant.

2 Probabilistic Graphical Models

In this section we introduce the three types of mod-
els that we will use in our experiments; the general
Bayesian Network (BN), the Naı̈ve Bayesian Net-
work (NB) and the Probabilistic Decision Graphs
(PDG).

2.1 Bayesian Network Models

BNs (Jensen, 2001; Pearl, 1988) is a class of proba-
bilistic graphical models that represent a joint prob-
ability distribution over a domain X of discrete ran-
dom variables through a factorization of indepen-



dent local distributions or factors. The structure of a
BN is a directed acyclic graph (DAG) G = (V,E)
of nodes V and directed edges E. Each random
variable Xi ∈ X is represented by a node Vi ∈
V, and the factorization

∏
Xi∈X

P (Xi|paG(Xi))
(where paG(Xi) is the set of random variables rep-
resented by parents of node Vi in DAG G) defines
the full joint probability distribution P (X) repre-
sented by the BN model. By size of a BN we under-
stand the size of the representation, i.e. the number
of independent parameters. Exact inference is usu-
ally performed by first constructing a junction tree
from the BN. Inference is then solvable in time lin-
ear in the size of the junction tree (Lauritzen and
Spiegelhalter, 1988), which may be exponential in
the size of the BN from which it was constructed.

2.2 Naı̈ve Bayes Models

The NB model represents a joint probability dis-
tribution over domain X by introducing an unob-
served, latent variable C . Each state of C is re-
ferred to as a component, and conditioned on C ,
each variable Xi ∈ X is assumed to be independent
of all other variables in X. This yields the simple
factorization: P (X, C) = P (C)

∏
Xi∈X

P (Xi|C).
Exact inference is computable in time linear in the
number of parameters, so the representation size of
the NB model is a theoretical measure of the infer-
ence complexity.

2.3 Probabilistic Decision Graph Models

PDGs is a fairly new language for probabilis-
tic graphical modeling (Jaeger, 2004; Bozga and
Maler, 1999). As BNs and NBs, PDGs represent
a joint probability distribution over a domain of dis-
crete random variables X through a factorization of
local distributions. However, the structure of the
factorization defined by a PDG is not based on a
variable level independence model but on a certain
kind of context specific independencies among the
variables. A PDG can be seen as a two-layer struc-
ture, 1) a forest of tree-structures over all mem-
bers of X, and 2) a set of rooted DAG structures
over parameter nodes, each holding a local distri-
bution over one random variable. Figure 1(a) shows
a forest F of tree-structures over binary variables
X = {X0, X1 . . . , X5}, and figure 1(b) shows an
example of a PDG structure based on F . For a com-

plete semantics of the PDG model and algorithms
for exact inference with linear complexity in the size
of the model, the reader is referred to (Jaeger, 2004).

X0

X1 X2

X3

X4

X5

(a)

X0

X1 X2

X3

X4

X5

(b)

0 1 0 1

0 1 01

0 1

Figure 1: Example PDG. Subfigure (a) shows the a
forest-structure F over binary 5 variables, and (b)
shows a full PDG structure based on F .

3 Elements of the Analysis

The goal of our analysis is to investigate the qual-
ity of PGMs learned from real data w.r.t. accu-
racy and inference efficiency. The appropriate no-
tion of accuracy depends on the intended tasks for
the model. Following (Jaeger et al., 2006; Lowd
and Domingos, 2005; Beygelzimer and Rish, 2003)
we use log-likelihood of the model given the data
(L(M,D)) as a “global” measure of accuracy. Log-
likelihood score is essentially equivalent to cross-
entropy (CE)1 between the empirical distribution
PD and the distribution P M represented in model
M :

CE(P D, P M ) = −H(P D) −
1

|D|
L(M,D), (1)

where H(·) is the entropy function. Observe that
when CE(P D, P M ) = 0 (when P D and P M are
equal), then L(M,D) = −|D| ·H(P D). Thus, data
entropy is an upper bound on the log-likelihood.

3.1 Theoretical complexity vs. accuracy:
SL-curves

We use SL-curves (Jaeger et al., 2006) in our analy-
sis of the theoretical performance of each PGM lan-
guage. SL-curves are plots of size vs. likelihood.
The size of model here has to be the effective size
for inference. For NB and PDG models this is the
size of the model itself. For BN models it is the size
of the junction tree constructed for inference. Size
could be any model complexity parameter, such that
inference has linear time complexity in this param-
eter.

1
CE is sometimes also referred to as Kullbach-Liebler

(KL) divergence or relative entropy (Cover and Thomas, 1991).



3.2 Empirical complexity and accuracy

The size measure used in the SL-curves described
in section 3.1 measures inference complexity only
up to a linear factor. Following Lowd and Domin-
gos (2005), we estimate the complexity of exact
inference also empirically by measuring execution
times for random queries. A query for model M

is solved by computing a conditional probability
PM (Q = q|E = e), where Q,E are disjoint
subsets of X, and q, e are instantiations of Q, re-
spectively E. Queries are randomly generated as
follows: first a random pair 〈Qi,Ei〉 of variable
subsets is drawn from X. Then, an instance di is
randomly drawn from the test data. The random
query then is P M (Q = di[Qi]|E = di[Ei]), where
di[Qi], di[Ei] are the instantiations of Q, respec-
tively E in di. The empirical complexity is sim-
ply the average execution time for random queries.
The empirical accuracy is measured by averaging
logP M (Q = di[Qi]|E = di[Ei]) over the random
queries. Compared to the global accuracy measure
L(M,D), this can be understood as a measure for
“local” accuracy, i.e. restricted to specific condi-
tional and marginal distributions of P M .

4 Learning

In this section we briefly describe the algorithms
we use for learning each type of PGM from data.
For our analysis we need to learn a range of models
with different efficiency vs. accuracy tradeoffs. For
score based learning a general λ-score will be used
(Jaeger et al., 2006):

Sλ(M,D) = λ · L(M,D) − (1 − λ)|M |, (2)

where 0 < λ < 1, and |M | is the size of model
M . Equation (2) is a general score metric, as it be-
comes equivalent to common metrics as BIC, AIC
and MDL for specific settings of λ (e.g. BIC cor-
responds to (2) with λ = log|D|

2+log |D| and AIC corre-

sponds to (2) with λ = 1
2
). By optimizing models

for different settings of λ we get a range of models
offering different tradeoffs between size and accu-
racy.

4.1 Learning Bayesian Networks

We use the KES algorithm for learning BN mod-
els (Nielsen et al., 2003). KES performs model-

selection in the space of equivalence classes of BN
structures using a semi-greedy heuristic. A param-
eter k ∈ [0 . . . 1] controls the level of greediness,
where a setting of 0 is maximally stochastic and 1
is maximally greedy. The algorithm is based on the
GES algorithm (Chickering, 2002). For producing
a range of different models, we configured KES to
use (2) with varying setting of λ as score metric.

The algorithm scores a BN by its own size, not
the size of its junction tree. In some cases this leads
to learning of models whose junction tree turns out
to be intractably large. Such models are not in-
cluded in our experimental results of section 6. Note
that this is not so much symptomatic of a problem
with BNs, but of not scoring BNs directly in terms
of the size of their junction trees in the learning pro-
cedure.

4.2 Learning Naı̈ve Bayes Net models

For learning NB models we have implemented a
version of the NBE algorithm (Lowd and Domin-
gos, 2005) for learning NB models. As the structure
of NB models is fixed, the task reduces to learning
the number of states in the latent variable C , and
the parameters of the model. Learning in the pres-
ence of the latent components is done by standard
Expectation Maximization (EM) approach, follow-
ing (Lowd and Domingos, 2005; Karciauskas et al.,
2004). Learning a range of models is done by incre-
mentally increasing the number of states of C , and
outputting the model learned for each cardinality. In
this way we obtain a range of models that offer dif-
ferent complexity vs. accuracy tradeoffs. Note that
no score function here is required.

4.3 Learning Probabilistic Decision Graphs

Learning of PDGs is done using the model-selection
algorithm presented in (Jaeger et al., 2006). Using
a score metric the algorithm searches for a structure
that is optimal w.r.t. the score. Again we use (2)
as score metric, and by varying the setting of λ we
produce a range of models with different tradeoff in
efficiency vs. accuracy.

5 Experiments

We have produced SL-curves and empirically mea-
sured inference times and accuracy, on 5 different
datasets (see table 1) publicly available at the UCI



repository2 . These five datasets are a representative
sample of the 50 datasets used in the extensive study
by Lowd and Domingos (2005).

We used the same versions of the datasets as used
by Lowd and Domingos (2005). Specifically, the
partitioning into training (90%) and test (10%) sets
was the same, continuous variables were discretized
into five equal frequency bins, and missing values
were interpreted as special states of the variables.

Table 1: Datasets used for experiments.
Dataset Vars train test
Poisonous Mushroom 23 7337 787
King, Rook vs. King 7 25188 2868
Pageblocks 11 4482 574
Abalone 9 3758 419
Image Segmentation 17 2047 263

For measuring the empirical efficiency and accu-
racy, we generated random queries as described in
3.2. consisting of 1 to 5 query variables Q and 0 to
5 evidence variables E.

For inference in BN and NB models we used
the junction-tree algorithm implemented in the in-
ference engine in Hugin3 through the Hugin Java
API. For inference in PDGs, the method described
in (Jaeger, 2004) was implemented in Java. Infer-
ences for BNs were performed on a standard laptop,
1.6GHz Pentium CPU with 512Mb RAM running
Linux. PDG inference were performed on a Sun
Fire280R, 900Mhz SPARC CPU with 4Gb RAM
running Solaris 9.

6 Results

Table 2 shows SL-curves for each dataset and PGM,
both for train (left column) and test sets (right col-
umn). The circle, triangle and square in each plot
marks the NB, BN and PDG model respectively that
maximizes BIC-score.

Lowd and Domingos (2005) based their compar-
ison on single BN and NB models. The NB models
were selected by maximizing likelihood on a hold-
out set. Crosses × in the right column of table 2
indicate the size-likelihood values obtained by the
models reported in (Lowd and Domingos, 2005).

2http://www.ics.uci.edu/˜mlearn
3http://www.hugin.com

The first observation we make from table 2 is
that no single model language consistently domi-
nates the others. The plots in the left column shows
that BN models have the lowest log-likelihood mea-
sured on training data consistently for models larger
than some small threshold. For Abalone and Image
Segmentation, this characteristic is mitigated in the
plots for the test-data, where especially PDGs seem
to overfit the training-data and accordingly receives
low log-likelihood score on the test-data.

The overall picture in table 2 is that in terms of ac-
curacy, BNs and NBs are often quite similar (King,
Rook vs. King is the only exception). This is con-
sistent with what Lowd and Domingos (2005) have
found. However, Lowd and Domingos (2005) re-
ported big differences in inference complexity when
comparing exact inference in NB to approximate
methods in BNs. We do not observe this tendency
when considering exact inference for both BNs and
NBs. Our results show that we can learn BNs that
are within reach of exact inference methods, and
that the theoretical inference complexity as mea-
sured by effective model size mostly is similar for
a given accuracy level for all three PGM languages.

Effective model size measures actual inference
time only up to a linear factor. In order to de-
termine whether there possibly are huge (orders of
magnitude) differences in these linear factors, we
measure the actual inference time on our random
queries. The left column of table 3 shows the av-
erage inference time for 1000 random queries with
4 query and 3 evidence variables (results for other
numbers of query and evidence variables were very
similar). We observe that this empirical complex-
ity behaves almost indistinguishably for BN and NB
models. This is not surprising, since both mod-
els use the Hugin inference engine. The results do
show, however, that the different structures of the
junction trees for BN and NB models do not have a
significant impact on runtime. The linear factor for
PDG inference in these experiments is about 4 times
larger than that for BN/NB inference. 4 Seeing

4This factor has to be viewed with caution, since PDG in-
ference was run on a machine with a slower CPU but more
main memory. When running PDG inference on the same ma-
chine as NB/BN inference, we observed overall a similar per-
formance, but more deviations from a strictly linear behavior
(in table 3 still visible to some degree for the Mushroom and
Abalone data). These deviations seem mostly attributable to



Table 2: SL-curves for train-sets (left column) and test-sets (right column). Circles, squares and triangles
marks the NB, BN, and PDG models that maximizes BIC-score. The crosses marks the NB models reported
by Lowd and Domingos (2005). −H(D) (minus data-entropy) is plotted as a horizontal line.
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Table 3: Empirical efficiency (left column) and accuracy (right column).
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that we use a proof-of-concept prototype Java im-
plementation for PDGs, and the commercial Hugin
inference engine for BNs and NBs, this indicates
that PDGs are competitive in practice, not only ac-
cording to theoretical complexity analyses.

The right column in table 3 shows the empirical
(local) accuracy obtained for 1000 random queries
with 4 query and 3 evidence variables. Overall, the
results are consistent with the global accuracy on
the test data (table 2, right column). The absolute
log-likelihood values are naturally higher, since the
queries only refer to a subset of the variables. The
differences observed for the different PGMs in ta-
ble 2 can also be seen in table 3, though the dis-
crepancies tend to become less pronounced on the
random queries as on global likelihood (particularly
for PDGs in the image segmentation data). One
possible explanation for this is that low global like-
lihood scores are mostly due to a few test cases
whose joint instantiation of the variables are given
low probability by a model, and that these isolated
low-probability configurations are seldom met with
in the random queries.

7 Conclusion

Motivated by several previous, independent studies
on the tradeoff between model accuracy and effi-
ciency in different PGM languages, we have inves-
tigated the performance of BN, NB, and PDG mod-
els. Our main findings are: 1) In contrast to po-
tentially widely different performance on artificial
examples (e.g. the parity distribution), we observe a
relatively uniform behavior of all three languages on
real-life data. 2) Our results confirm the conclusions
of Lowd and Domingos (2005) that the NB model
is a viable alternative to the BN model for gen-
eral purpose probabilistic modeling and inference.
However, the order-of-magnitude advantages in in-
ference complexity could not be confirmed when
comparing exact inference methods for both types
of models. 3) Previous theoretical complexity anal-
yses for inference in PDG models now have been
complemented with empirical results showing also
the practical competitiveness of PDGs.

the memory management in the Java runtime environment.
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