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Abstract

The Hawkes process is a practically and theoretically important class
of point processes, but parameter-estimation for such a process can pose
various problems. In this paper we explore and compare two approaches
to Bayesian inference. The first approach is based on the so-called con-
ditional intensity function, while the second approach is based on an un-
derlying clustering and branching structure in the Hawkes process. For
practical use, MCMC (Markov chain Monte Carlo) methods are employed.
The two approaches are compared numerically using three examples of the
Hawkes process.

Keywords: Bayesian inference, cluster process, Hawkes process, Markov chain
Monte Carlo, missing data, point process

1 Introduction

The (marked) Hawkes process (or self-exciting process) is an important class
of marked point processes (Hawkes, 1971a,b, 1972; Hawkes and Oakes, 1974).
It has seen many applications so far, primarily in seismology (e.g. Hawkes and
Adamopoulos (1973); Ogata (1988, 1998)), but also in other areas such as neu-
rophysiology (Chornoboy et al., 2002), criminology (Mohler et al., 2011) and
biology (Balderama et al., 2010). Thus it is of great importance to have ef-
ficient and precise estimation procedures for the fitting the parameters of the
Hawkes process to real data.

As was pointed out in Hawkes and Oakes (1974), the Hawkes process can be
defined in two equivalent ways: either using the so-called conditional intensity
function or as a Poisson cluster process with a certain branching structure (see
Sections 2.1 and 2.2). The definition using the conditional intensity function
immediately leads to an expression for the likelihood function, and although it
cannot be maximized analytically, it is possible to make numerical procedures
for maximizing this function. However, it is observed in Veen and Schoenberg
(2008) that such approximative maximum likelihood estimation can be numer-
ically unstable. The definition using the Poisson cluster process formulation
defines the Hawkes process using an (in practice unobserved) clustering and
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branching structure. In Veen and Schoenberg (2008) this is used to make an al-
ternative maximum likelihood estimation procedure using the EM (expectation-
maximization) algorithm, which they observe is more numerically stable.

In the present paper we will explore two approaches to Bayesian inference,
each based on one of the two definitions. The first approach simply uses the
conditional intensity function to define the likelihood function, and then approx-
imates the posterior distribution of the parameters using an MCMC approach.
In the second approach the clustering and branching structure is regarded as
missing data, and the Hawkes process is separated into a number of Poisson
processes. Again MCMC is used for estimation, but in this case the parameters
and the missing data are estimated simultaneously.

The outline of the paper is as follows: Section 2 states the two definitions
of the Hawkes process, and gives three examples. In Sections 3 and 4, Bayesian
inference based on the conditional intensity function and based on the clustering
and branching structure are described. In Section 5, the two approaches are
compared using the three examples of Section 2, and Section 6 concludes the
paper with possible extensions of the methods.

2 Two definitions of the Hawkes process

In this section the Hawkes process is defined in two equivalent ways and exam-
plified.

2.1 Definition using conditional intensity function

Let X = {(ti, κi)} be a marked point process on the time line, where ti ∈ R
denotes the points (or events) of the point process, and κi ∈ M denotes the
marks, where M is a measurable space called the mark space. Furthermore let
N be its corresponding counting measure, i.e. N(B) is the number of points
falling in an arbitrary Borel set B ⊆ R. See Daley and Vere-Jones (2003) for
more details on point processes.

One way of defining a marked point process is by specifying its conditional
intensity function and mark distribution. The conditional intensity function is
defined as

λ∗(t) =
E(N(dt)|{(ti, κi)}ti<t)

dt
.

The intuitive interpretation of the conditional intensity function is that λ∗(t)dt
is the mean number of points falling in an infinitesimal interval around t given
the knowledge about all points in the past and their marks. Note that the
dependence on the past is suppressed in the notation λ∗(t); here the notation of
Daley and Vere-Jones (2003) has been adopted, where ∗ is supposed to remind
us of the fact that this function is allowed to depend on the past points and
marks, i.e. {(ti, κi)}ti<t. The mark distribution is most conveniently described
by its density function (with respect to some reference measure on M) given the
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past and the time of the point

γ∗(κ|t) = γ(κ|t, {(ti, κi)}ti<t)

again using the ∗ notation to represent the past.
The Hawkes process can now be defined using a particular form of the con-

ditional intensity function. Firstly we need to define the following functions,
where the choice of names and the interpretations of the functions should be
clear in Section 2.2:

• Immigrant intensity: µ(t) is a non-negative function on R with parameter
vector µ = (µ1, . . . , µnµ

).

• Total offspring intensity: α(κ) is a non-negative function on M with pa-
rameter vector α = (α1, . . . , αnα

).

• Normalised offspring intensity: β(t, κ) is a density function on [0,∞) with
parameter vector β = (β1, . . . , βnβ

) which is allowed to depend on the
mark κ.

• Mark density: γ∗(κ|t) is a density function on M depending on t and the
past before time t (although we will restrict this dependence somewhat in
Section 2.2) with a parameter vector γ = (γ1, . . . , γnγ

).

The product α(κ)β(t, κ) is called the offspring intensity. Using these functions
we can define the Hawkes process as the point process with the conditional
intensity function

λ∗(t) = µ(t) +
∑

ti<t

α(κi)β(t− ti, κi), (1)

where t ∈ R.

2.2 Definition as a Poisson cluster process

An alternative way of defining the Hawkes process is to define it as a marked
Poisson cluster process, where the clusters are generated by a certain branching
structure. Here we distinguish between two types of points - immigrants and
offspring - and have the following definition:

1. The immigrants I follow a Poisson process with intensity µ(t).

2. Each immigrant ti ∈ I has an associated mark κi with density function
γ(κi|ti).

3. Each immigrant ti ∈ I generates a cluster Ci, and these clusters are inde-
pendent.
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4. A cluster Ci consists of points of generations of order n = 0, 1, . . . with
the following branching structure: Generation 0 consists simply of the
immigrant and its mark (ti, κi). Recursively, given the 0, . . . , n generations
in Ci, each tj of generation n generates a Poisson process Oj of offspring of
generation n+1 with intensity function α(κj)β(t− tj , κj). Each offspring
tk ∈ Oj has an associated mark κk with density function γ(κk|tk, (tj , κj)).

5. Finally, X consists of the union of all clusters.

If tj ∈ Oi, we say that tj is the child (or first order offspring) of ti or that
ti is the parent (or first order ancestor) of tj . We also denote the index of the
parent ti of tj by i = pa(j). The collection of relations between all points and
their parents (if any), we call the branching structure. The branching structure
is conveniently represented as Y = {yj}, where yj = i if tj ∈ Oi or yj = 0 if tj is
an immigrant. The names used for µ(·), α(·) and β(·) in Section 2.1 should make
sense when viewed in connection with the definition given in this section; note
that β(t, κ) is the density function for the length of the time interval between a
child and its parent, while α(κ) is the mean number of children of a point with
mark κ.

One important thing to notice is that this definition is a restriction of the
definition in Section 2.1, since the mark is not allowed to depend on the whole
past, but only the time and mark of the parent (or nothing in the case of an
immigrant). Since the definition in Section 2.1 does not distinguish between
point types, the γ∗ used there becomes a mixture distribution with mixture
weights proportional to the intensities of being different types of points, i.e.

γ∗(κ|t) = 1

λ∗(t)

(
µ(t)γ(κ|t) +

∑

ti<t

α(κi)β(t− ti, κi)γ(κ|t, (ti, κi))

)
. (2)

Note that in the case of i.i.d. (independent and identically distributed) marks
this simplifies to γ∗(κ|t) = γ(κ|t) = γ(κ|t, (ti, κi)).

2.3 Examples

We will consider three examples in this paper. These are chosen to test whether
the methods in this paper work on examples of the following the cases: an
unmarked Hawkes process, a marked Hawkes process with independent marks,
and a marked Hawkes process with dependent marks.

Example 1 is one of the most simple cases of a Hawkes process: an unmarked
process with exponentially decaying offspring intensity. More precisely,

µ(t) = µ11(t ≥ 0),

α(κ) = α1,

β(t, κ) = β1e
−β1t.

Here 1(·) denotes the indicator function. Note that the term 1(t ≥ 0) ensures
that there are no points before time 0; this is done to avoid dealing with so-
called edge-effects which is outside the scope of this paper (see Section 6 for
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more details). Also note that the unmarked Hawkes process is a special case
of the marked Hawkes process, and all formulas in this paper apply simply by
removing γ∗(·) or γ(·) if present.

Example 2 can be thought of as a simple model for a reproducing popula-
tion with exponential survival times, where the individuals reproduce uniformly
throughout their survival times. This example is defined by

µ(t) = µ11(t ≥ 0),

α(κ) = α1κ,

β(t, κ) = 1(t ∈ (0, κ))/κ,

γ∗(κ|t) = γ1e
−γ1κ.

Note that γ1 is the inverse mean survival time and α1/γ1 is the mean number
of children of any point.

Example 3 is an example of the ETAS (epidemic type aftershock sequences)
model, commonly used for modeling the times, magnitudes and sometimes po-
sitions of earthquakes. A lot of research has gone into modelling earthquakes,
but since the main reason for including the model in this paper is illustration of
the methods, it will be kept fairly simple here in order to focus on how well the
methods handle dependent marks. The ETAS model used in this paper includes
the mark κ = (m,x, y), i.e. magnitude m ∈ (0,∞) and coordinates (x, y) ∈ W
of the epicenter of an earthquake, where W is some observation window of the
positions. It is defined by the functions

µ(t) = µ11(t ≥ 0),

α(κ) = α1e
α2m,

β(t, κ) =
β2

β1

(
1 +

t

β1

)−β2−1

,

the mark density for the immigrants

γ(κ|t) = γ1e
−γ1m

1((x, y) ∈ W )

|W | ,

and the mark density for the offspring

γ(κ|t, (tpa, κpa)) = γ1e
−γ1m

1

2πγ2
2

exp

(
−‖(x, y)− (xpa, ypa)‖2

2γ2
2

)
,

where the index pa denotes the parent. Note that this means that the mag-
nitudes are i.i.d. exponential variables, and the positions follow a uniform dis-
tribution for the main earthquakes and a normal distribution centered on the
parent for the aftershocks.
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3 Bayesian inference based on the conditional
intensity function

In this section we define one approach to Bayesian inference for the Hawkes
process based on the definition using the conditional intensity function in Sec-
tion 2.1. We will call this the conditional intensity based method.

3.1 Likelihood, prior and posterior

Assume we have observed a dataset of points given by a marked point pattern
x = {(t1, κ), . . . , (tn, κn)} on [0, T )×M for some fixed time T > 0, and no points
have occurred before 0. Then by Proposition 7.3.III in Daley and Vere-Jones
(2003), the likelihood function is given by

p(x|µ, α, β, γ) =
(

n∏

i=1

λ∗(ti)γ
∗(κi|ti)

)
exp(−Λ∗(T )), (3)

where

Λ∗(t) =
∫ t

0

λ∗(s)ds = M(t) +
∑

ti<t

α(κi)B(t− ti, κi), M(t) =

∫ t

0

µ(s)ds

and B is the distribution function corresponding to the density function β.
If we denote the prior by p(µ, α, β, γ), we get the posterior

p(µ, α, β, γ|x) ∝ p(µ, α, β, γ)p(x|µ, α, β, γ). (4)

3.2 Markov chain Monte Carlo

The posterior (4) is not on a form that allows us to find the maximum or mean of
the posterior for the parameters analytically, so instead we turn to MCMC. More
specifically, we use a Metropolis-within-Gibbs algorithm where each parameter
is updated one at a time. As proposal distributions we use normal distributions.

For updating µk for k = 1, . . . , nµ we draw µ̃k from a normal distribution
with the current parameter value µk as mean and some fixed standard deviation
σµk

. Similar updates are used for the other parameters, but with σαk
, σβk

, and
σγk

as standard deviations. From (4) we immediately get the Hastings ratios for
these updates; for example, the Hastings ratio for updating µk to the proposed
value µ̃k is given by

Hµk
=

p(µ̃, α, β, γ)

p(µ, α, β, γ)

p(µ̃, α, β, γ|x)
p(µ, α, β, γ|x)

=
p(µ̃, α, β, γ)

p(µ, α, β, γ)

(
n∏

i=1

µ̃(ti) +
∑

j<i α(κj)β(ti − tj |κi)

µ(ti) +
∑

j<i α(κj)β(ti − tj |κi)

)
exp

(
M(t)− M̃(t)

)

where µ̃, µ̃(·) and M̃(·) denotes µ, µ(·) and M(·) with the proposed value
µ̃k inserted instead of µk and all other parameters are left unchanged. Similar
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expressions can easily be obtained for the Hastings ratios for updating the other
parameters.

4 Bayesian inference based on the clustering and
branching structure

In this section we define another approach to Bayesian inference. This is based
on the definition of the Hawkes process as a Poisson cluster process in Sec-
tion 2.2. We call this the cluster based method.

4.1 Bayesian inference with missing data

As in Section 3.1 we assume that we have a dataset of marked points given
by x = {(t1, κ), . . . , (tn, κn)} in [0, T ) × M. If we want to base an estimation
approach on the Poisson cluster process formulation, we run into the problem
that the branching structure Y is unobserved. Treating this as missing data,
we simultaneously have to estimate the missing data Y and the parameters
(µ, α, β, γ). For this we need the conditional distributions of both the parameters
given the missing data and the missing data given the parameters. These are
used for setting up a Gibbs sampler in Section 4.2.

Knowing the branching structure, we can separate the dataset into a number
of independent marked Poisson processes: I is the process of marked immigrants
and Oj is the process of marked children of tj for j = 1, . . . , n. It follows from
Section 2.2 that these processes have intensity functions

λI(t) = µ(t) and λOj
(t) = α(κj)β(t− tj , κj), (5)

and mark densities

γI(κ|t) = γ(κ|t) and γOj
(t) = γ(κ|t, (tj , κj)). (6)

If we condition on the branching structure Y = y, the independence means
that we get the following conditional likelihood

p(x|y, µ, α, β, γ) = p(I|y, µ, γ)
n∏

j=1

p(Oj|y, α, β, γ).

Working with the term for the immigrants first, we get from (3), (5) and (6)
that

p(I|y, µ, γ) =
(∏

ti∈I

µ(ti)γ(κi|ti)
)
exp(−M(T )). (7)

For offspring process Oj , again using (3), (5) and (6), we get that

p(Oj |y, α, β, γ) =


 ∏

ti∈Oj

α(κj)β(ti − tj , κj)γ(κi|ti, (tj , κj))


×

exp (−α(κj)B(T − tj , κj)) .
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Since the offspring processes are independent, we can multiply these to get the
joint likelihood for the offspring processes

p(O|y, α, β, γ) =

(∏

ti∈O

(α(κpa(i))β(ti − tpa(i), κpa(i))γ(κi|ti, (tpa(i), κpa(i)))

)
×

exp


−

∑

tj∈x

α(κj)B(T − tj)


 , (8)

where O = (O1, . . . , On) denotes the collection of offspring processes.

4.2 Markov chain Monte Carlo

Again we have to use a Metropolis-within-Gibbs algorithm, where we update
each of the parameters and some of the yi in the branching structure. Actually
in some simple cases the conditional distributions of some of the parameters are
well-known distributions, so we can update these parameters without employing
a Metropolis update; e.g. in Example 1 the conditional distribution of µ1 is a
Gamma distribution. However, this is the exception rather than the rule, so we
will ignore this simplification and instead focus on the general case.

For the parameter updates we again use normally distributed proposals, and
from (7) and (8) we get the Hastings ratios for each type of updates

Hµk
=

p(µ̃, α, β, γ)

p(µ, α, β, γ)

∏

ti∈I

(
µ̃(ti)

µ(ti)

)
exp

(
M(T )− M̃(T )

)

Hαk
=

p(µ, α̃, β, γ)

p(µ, α, β, γ)

∏

ti∈O

(
α̃(κpa(i))

α(κpa(i))

)
exp


∑

tj∈x

(α(κj)− α̃(κj))B(T − tj , κj)




Hβk
=

p(µ, α, β̃, γ)

p(µ, α, β, γ)

∏

ti∈O

(
β̃(ti − tpa(i), κpa(i))

β(ti − tpa(i), κpa(i))

)

exp


∑

tj∈x

α(κj)
(
B(T − tj , κj)− B̃(T − tj , κj)

)



Hγk
=

p(µ, α, β, γ̃)

p(µ, α, β, γ)

∏

ti∈I

(
γ̃(κi|ti)
γ(κi|ti)

) ∏

ti∈O

(
γ̃(κi|ti, (tpa(i), κpa(i)))

γ(κi|ti, (tpa(i), κpa(i)))

)
,

where µ̃(·), etc. denotes µ(·), etc. with the proposed values inserted.
For the missing data, we use three types of updates: changing an immigrant

to an offspring, changing an offspring to an immigrant, and changing the parent
of an offspring. The first two updates are handled together: we change an
immigrant to an offspring with probability pIO and an offspring to an immigrant
with probability 1−pIO. If we choose to change an immigrant into an offspring,
we draw the immigrant ti from a uniform distribution on all the immigrants,
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and choose its new parent tj from a uniform distribution on all points before ti.
If we choose to change an offspring into an immigrant, we draw the offspring ti
from a uniform distribution on all the offspring, and we denote its current parent
by tj . In either case we denote the new immigrant and offspring process by Ĩ

and Õ. From (7) and (8) we get the Hastings ratio for changing an immigrant
into an offspring given by

HI→O =
p(Ĩ|y, µ, γ)p(Õ|y, α, β, γ)
p(I|y, µ, γ)p(O|y, α, β, γ) ×

(1− pIO)
1

nO+1

pIO
1
nI

1
i−1

=
α(κj)β(ti − tj , κj)γ(κi|ti, (tj , κj))(1− pIO)nI(i− 1)

µ(ti)γ(κi|ti)pIO(nO + 1)
,

where nI denotes the number of immigrants and nO denotes the number of
offsprings. Similarly, the Hastings ratio for changing an offspring into an immi-
grant is given by

HO→I =
µ(ti)γ(κi|ti)pIOnO

α(κj)β(ti − tj , κj)γ(κi|ti, (tk, κj))(1− pIO)(nI + 1)(i− 1)
.

This combined update is referred to as a type I ↔ O update.
When we update the parent of an offspring, we pick a random offspring

ti uniformly from all the offspring, and afterwards we pick a random point
tj̃ < ti as its new parent, denoting the current parent by tj . Letting Õ denote

the collection of offspring processes when pa(i) = j̃ instead of j, we get the
Hastings ratio

HO =
p(Õ|y, α, β, γ)
p(O|y, α, β, γ)

1
nO

1
i−1

1
nO

1
i−1

=
α(κj̃)β(ti − tj̃ , κj̃)γ(κi|ti, (tj̃ , κj̃))

α(κj)β(ti − tj , κj)γ(κi|ti, (tj , κj))

This update is refered to as a type O update.
We use a Gibbs sample to combine all of these updates, where in each step

we go through each parameter one at a time, and then we repeat the type I ↔ O
and type O a number of times.

5 Comparison

In this section we make simulations of the examples defined in Section 2.3 and
compare how well the two methods work in each case. The reason for using
simulated data rather than real data is that with simulated data we know what
the algorithms are supposed to produce, and this gives a better foundation for
comparing the algorithms. The simulations can be made using either one of
the definitions, but it is easiest to simulate it as a combination of indepen-
dent Poisson processes as given in the definition in Section 2.2; see e.g. Møller
and Rasmussen (2005, 2006) for details on how to simulate a Hawkes process,
or Ogata (1981) for a general, but slower, algorithm for simulating any point
process specified by a conditional intensity.
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5.1 Example 1

We start by generating a simulation of the model given by Example 1 in Sec-
tion 2.3 and try to estimate the posterior distribution of the parameters using
both methods for MCMC-based Bayesian inference in order to compare the two
approaches. We generate a point pattern on the time interval [0, 10) using the
parameters (µ1, α1, β1) = (0.5, 0.9, 10). This point pattern is shown in Figure 1.
Here we can clearly see that this process is indeed a model for clustered point
patterns (but note that the clusters visible in the point pattern may actually
contain multiple clusters from the definition of clusters in Section 2.2). Three
points, t14, t19, and t49, have been marked with arrows for later use.

0 2 4 6 8 10

0.
0

0.
4

0.
8

Time

Figure 1: A simulated point pattern with 50 points. Points number 14, 19 and
49 have been marked with arrows.

In order to estimate the posterior distribution of the parameters, we need to
equip the model with a prior distribution, and since there is no actual data, we
have no information to put into this prior. It is tempting to use an improper
uniform prior p(µ1, α1, β1) ∝ 1[µ1, α1, β1 > 0], but this does not yield a proper
posterior. To see this, consider the likelihood function given by (3), fix µ1 and
α1, and let β1 tend to infinity. Inserting the expression for the model of this
example, we get that

lim
β1→∞

p(x|µ1, α1, β1) = µn
1 exp(−µ1T − α1n) > 0.

Since the posterior does not even tend to 0 when β1 tends to infinity, it can-
not be a proper posterior, so instead we need some proper priors. Here we
use independent exponential priors for the three parameters (µ1, α1, β1) with
hyperparameters (0.01, 0.01, 0.01). These priors are very flat and influence the
results little.

To estimate the posterior distributions we use both the conditional inten-
sity based method and the cluster based method. For both cases, the proposal
parameters (σµ1

, σα1
, σβ1

) = (1, 0.5, 5) have been adjusted to give average accep-
tance probabilities roughly around 0.25 (Roberts et al., 1997). For the cluster
based method, we have adopted 10 updates of Y (both type I ↔ O and type
O updates) for each step in the algorithm. For both methods 20000 steps have
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been used, where the first 500 steps have been discarded as burnin. Trace plots
(not shown here) for the three parameters (µ1, α1, β1), and also nI for the cluster
based method, reveal good mixing with no discernible patterns, and furthermore
shows that 500 steps seem to be an appropriate burnin. The marginal poste-
rior distributions approximated by both methods are shown in Figure 2. From
these histograms we can see that the marginal posteriors are almost equal for
the two methods, which suggests that both of the methods work equally well in
estimating the parameters. The approximated posterior means for the condi-
tional intensity based method is given by (µ̂1, α̂1, β̂1) = (0.794, 0.883, 13.08) and

for the cluster based method by (µ̂1, α̂1, β̂1) = (0.792, 0.881, 12.24). Comparing
with the original parameters used in the simulation, (µ1, α1, β1) = (0.5, 0.9, 10),
these agree somewhat well; however, we should not put too much value into a
comparison with the original parameters, since the particular simulation used
may well be atypical (indeed the Hawkes process produces point patterns that
are highly varying due to the high variation in the number of points in a cluster),
and furthermore the prior also incorporates some information into the example.

ν1

0.0 1.0 2.0 3.0

0.
0

0.
4

0.
8

1.
2

α1

0.4 0.8 1.2 1.6
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0

β1

5 10 15 20 25 30
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β1
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00

0.
04

0.
08
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12

Figure 2: Histograms of marginal posterior distributions of (µ1, α1, β1). The
upper row shows the result from the conditional intensity based method and
the lower row the cluster based method.

So far in the cluster based method, we have considered the missing data
Y as a set of nuisance parameters, which only have been estimated in order
to estimate the model parameters. However, estimating Y may be a relevant
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problem all by itself. For example, if the Hawkes process was used to model
the spread of a disease, estimating Y may tell likely paths that the disease
has taken, thus providing valuable information on how to stop such a disease.
In other words, we might as well enjoy the benefits of having used the time
to estimate these. From the MCMC runs with the cluster based method, we
can estimate the posterior distribution of the missing data by considering how
often a particular point ti has been an immigrant and how often it has been an
offspring of point tj for all j = 1, . . . , i− 1. We call the distribution of pa(i) on
{0, . . . , i− 1} the (marginal) posterior parent distribution of ti, where the value
0 represents the point being an immigrant, while the values j = 1, . . . , i − 1
represents the point being an offspring of tj . Note that occasionally it is more
convenient to use the value i for ti being an immigrant (this is done in Figures 4,
7 and 10).

Figure 3 shows histograms approximating the marginal posterior parent dis-
tributions of points t14, t19, and t49. The three points have been marked with
arrows in Figure 1. Comparing the histograms with the placement of the point,
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Figure 3: Histograms showing the marginal posterior parent distributions for
t14, t19 and t49.

we see that these posterior distributions fit nicely with intuition:

• Point 14 is located in the middle of a cluster with many points close
before it. This is reflected in the posterior distribution, since there are
high probabilities that t14 is an offspring of any of the points just before it
(in particular t13), and only a small probability that t14 is an immigrant.

• Point 19 is located fairly isolated with no points located close before it.
The posterior distribution shows that it is an immigrant with a probability
close to 1.

• Point 49 is located at the end of a cluster just slightly separated from the
points before it. The posterior distribution shows a probability around
0.15 that this point is an immigrant, but a larger probability that it is an
offspring of one of the 15 closest points before it.
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Note that the marginal posterior parent distributions are monotonously increas-
ing (disregarding the probability of pa(i) = 0). The reason for this is that the
offspring intensity is monotonously decreasing in this example, so the most likely
parent of point ti is always ti−1.

Next we try to visualise all the marginal posterior parent distributions to-
gether. Figure 4 shows these distributions in a grey scale image: the columns
corresponds to the posterior distributions where bright colours show high prob-
abilities. The probability of being an immigrant has now been placed at the
diagonal rather than 0 since this is more convenient in this figure. The fig-
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Figure 4: Marginal posterior parent distributions; see the text for a detailed
description.

ure shows the separation into the three large clusters also seen in the data in
Figure 1, as well as points which are clearly immigrant (bright dots on the diag-
onal). In other words, the missing data seem to have been well estimated. The
dotted look in the plot is an artifact; if we had run the algorithm of the cluster
based method for more steps, or had used more than 10 updates for Y for each
step, this would have been smoothed out.

Finally, we should note that the above conclusions is not specific to the
one simulation considered here. Other simulations with the same parameters
show similar conclusions. The conclusions are also the same for other parame-
ter settings, unless the clustering becomes washed-out: this for example often
happens for the parameter setting (µ1, α1, β1) = (0.5, 0.9, 1) where the points of
each cluster are more spread out making it hard to discern any clustering, both
visually and for the algorithms. Note that this applies both to both methods
(since the conditional intensity based method relies on the clustering indirectly
through the conditional intensity function), which both fluctuates wildly rather
than converging. Note that in practice an informative prior (if available) might
remedy this, but for the simulated examples in this paper with uninformative
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priors both algorithms fails.

5.2 Example 2

For the second example a simulation of the model with parameters (µ1, α1, γ1) =
(0.5, 0.9, 1) is generated on [0, 10]× [0,∞). The simulated data, which consists
of 22 times of events and associated survival times, is shown in Figure 5. Note
that three of the survival times extend beyond the observation time interval
[0, 10]; we will assume here that these survival times are known, although in
practice we might have to deal with some sort of right censoring here.
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Figure 5: Times and marks (survival times) of a simulated dataset; x and y
coordinates shows the time and index number of each point, while the line
segment shows the survival times.

We now estimate the three parameters using both methods again equipping
the model with independent exponential priors with inverse mean 0.01 for each
parameter. The estimated marginal posterior distributions of the parameters
are shown in Figure 6 using the cluster structure based method (the estimated
marginal posteriors are very similar for the conditional intensity based method).
The posterior means are estimated to be (µ̂1, α̂1, γ̂1) = (1.04, 0.827, 1.34). The
first parameter µ̂1 is much higher than the one used in the simulation, while α̂1

is a bit lower; note that these two parameters are negatively correlated since µ1

controls how many points are immigrants, while α1 controls how many points
are offspring, which may partly explain this. The slightly high γ̂1 is easily
explained by the fact that this parameter is the inverse mean survival times,
and the survival times happens to be low in the simulation.

Figure 7 shows the marginal posterior parent distribution in the same man-
ner as in Figure 4. Comparing Figure 7 with Figure 4, we see some structural
differences. Figure 7 is characterised by long lines of bright squares; the reason
for this is that some events have long survival times, thus being plausible parents
for many later events, while other events are have died out earlier. Furthermore,
comparing the colors vertically (disregarding the diagonal and the dark grey ele-
ments), we see that they are almost the same for all of the possible parents; this
is explained by the fact that any living event produces offspring processes with
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Figure 6: Histograms of the marginal posterior distributions of (µ1, α1, γ1).

the same intensity in the model. In short, the estimated branching structure
corresponds closely to what we might expect.
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Figure 7: Marginal posterior parent distributions.

5.3 Example 3

For the last example, we generate a simulation of data from the model in Exam-
ple 3 using the parameters µ1 = 0.5, (α1, α2) = (0.4, 0.5), (β1, β2) = (0.1, 2) and
(γ1, γ2) = (1, 1), and with W = [0, 10]× [0, 10]; this is shown in Figure 8. Note
that these parameters are not chosen to be realistic, but merely to generate a
dataset to test the algorithms; the primary reason for choosing this example is
to test how well the methods work in the case of dependent marks (the position
of an aftershock depends on the position of the parent) and not to provide a
statistical analysis of an earthquake dataset - this has been studied in many
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works for more realistic models than the one given here. To focus on this we
will simplify the inference a bit further: We assume that β2 = 2 is a known pa-
rameter not to be estimated (estimating β1 and β2 simultaneously in the present
model gives certain approximate non-identifiability issues, which we will not go
into here), and we ignore edge effects both in time and space (earthquakes may
appear as aftershocks from earthquakes before time 0 or outside W ).
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Figure 8: Left: Times and magnitudes of earthquakes. Right: Positions of
earthquakes, where the dark colors represent early earthquakes and light colors
represent later ones.

Again using MCMC we estimate the marginal posterior distributions of the
parameters using both methods. These are shown in Figure 9 for the cluster
based method (they are not visibly different for the other method). The pos-

terior means are given by µ̂1 = 1.027, (α̂1, α̂2) = (0.729, 0.0116), β̂1 = 0.0760
and (γ̂1, γ̂2) = (0.934, 0.937). Comparing to the simulation parameters, we can

see that β̂1, γ̂1, and γ̂2 are fairly close. The immigrant intensity µ1 is about
twice that of the parameter used in the simulation, but as we will see later, this
could be explained by the fact that there are more than the expected number of
clusters in the data. The α parameters are somewhat off, though it is unclear
why this happened for this particular simulation.

The estimated posterior distribution of the missing data is shown in Fig-
ure 10. The left plot shows the marginal posterior parent distributions. Com-
pared to Figure 3, the clusters are less well-defined in this plot. The explanation
for this is that the spatial proximity is also relevant for estimating which events
are the parents of which events. The right plot shows an estimate of the branch-
ing structure viewed spatially. Here for each point i, the mode of the marginal
distribution of pa(i) is shown by adding an arrow going from (xp̃a(i), yp̃a(i)) to
(xi, yi) where p̃a(i) is the estimated mode of the marginal posterior parent dis-
tribution (if the mode is 0, there is no arrow). Visually the clusters are clearly
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Figure 9: Histograms of marginal posterior distributions of µ1, α1, α2, β1, γ1,
and γ2.

marked in his plot, and they seem to fit well with intuition. Also note that there
are more than 5 clusters (the expected number of clusters using the parameters
in this example is µ1T = 5), which may explain the high estimate of µ1 as
mentioned earlier.

5.4 Summary of comparison

The question is now, which of the methods performed the best. We will compare
them with respect to various measures.

• Estimates: In all three examples the estimated posterior distributions of
the parameters have been indistinguishable.

• Running time: The running time measured in seconds for the particular
implementations used in this paper various much depending on the model.
For Example 1 and 2, the MCMC runs are faster for the cluster based
method roughly by a factor of 2. For Example 3, the difference is much
more pronounced; here there is a factor of 100, and part of the reason is
that the dependent marks in this model means that (2) has to be used
in conditional intensity based method. Although (2) seems harmless, it
appears many times each time a Hastings ratio needs to be evaluated.
Of course these conclusions depend on the actual implementations of the
algorithms, but this indicates that the cluster based method is faster.
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Figure 10: Left: Marginal posterior parent distributions. Right: modes of these
distribution represented spatially by arrows.

• Complexity: From a theoretical point of view, the number of terms in the
Hastings ratios for the parameter updates in the cluster based method
grows linearly with the number of points, while the number of terms for
the missing data updates are independent of the number of points (but
here it seems reasonable to let the number of missing data updates grow
linearly with the number of points to get good mixing). As a comparison,
the number of terms in the Hastings ratios grows quadratically for the
conditional intensity based approach, so for sufficiently large datasets, we
would expect that the cluster based method should be the fastest method
for large datasets as was observed in the running times.

• Missing data: One distinct advantage of using the cluster based method is
that this provides an estimate of the branching structure, which the other
method does not. Obviously this is only an advantage if the branching
structure has any interest in the particular data modelled by the Hawkes
process. Alternatively viewing the estimates of the branching structure
could be used to check the mixing of the MCMC algorithms or as a model
check to see if the Hawkes process produce a reasonable fit to the branching
structure.

6 Extensions

This section discusses some extensions and modifications the methods presented
in this paper.

In Møller and Torrisi (2007) the spatial Hawkes process is defined using a
similar definition as in Section 2.2. The term spatial here refers to the fact
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that the points are defined in a region of space rather than the time line, and no
reference to the time of a point is given. A consequence of this is that there is no
natural order of the points. The idea of considering the branching structure as
missing data that can be estimated using MCMC together with the parameters
can be immediately transfered to this setup; however, the actual implementation
of the updates for the missing data will need some modifications since the data
is not ordered anymore and thus any point can potentially be a child of any
other point. Not being careful, we may thus encounter such absurd cases as
several points being the parents of each other in a chain (e.g. point 1 is the
parent of point 2, point 2 is the parent of point 3, and point 3 is the parent of
point 1), something we never encounter when the points are ordered in time.
Thus it may take some work to obtain efficient MCMC-based Bayesian inference
procedures for the spatial Hawkes processes using ideas similar to the cluster
based method.

Another issue that was completely ignored in the present paper is the prob-
lem of edge-effects. Here we assumed that the immigrant intensity was zero
before time zero, but in practice we rarely observe data for the Hawkes process
from its beginning. Thus there might be unobserved points before time zero
causing offspring inside the dataset. In such cases the cluster based method
will misclassify such points as immigrants or offsprings of points in the observed
data, thus leading to biased estimates of the parameters; typically µ(t) will be
estimated too high, and α(κ) will be too low, while it depends on the choice
of model how β(t, κ) is influenced. For large datasets such effects are negli-
gible, but for small datasets this may influence the estimates, in particular if
β(t, κ) is heavy tailed. The conditional intensity based method also suffers from
this, since it implicitely depends on the branching structure. It would be an
interesting and practically relevant extension of the algorithms to include this.

In this paper Gibbs samplers have been applied in all cases of MCMC. While
it is implementationally easy and computationally fast to use updates for one
parameter at a time, it may not be optimal. For example µ(t) and α(κ) is typ-
ically negatively correlated, and if the correlation is strong, the Gibbs sampler
may have problems exploring the parameter space. Other MCMC approaches
may well perform better.
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