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Active absorption of irregular gravity waves in BEM-
models

M. Brorsen and P. Frigaard

Department of Civil Engineering, Aalborg University,
Denmark

ABSTRACT

The boundary element method is applied to the computation of irregu-
lar gravity waves. The boundary conditions at the open boundaries are
obtained by a digital filtering technique, where surface elevations in front
of the open boundary are filtered numerically yielding the velocity to be
prescribed at the boundary. By numerical examples it is shown that well
designed filters can reduce the wave reflection to a few per cent over a fre-
quency range corresponding to a Jonswap spectrum.

INTRODUCTION

One of the major difficulties with the calculations of water waves is the
formulation of open-boundary conditions. In earlier computations with
BEM-models, the boundary conditions have been either periodic in space,
Longuet-Higgins and Cokelet [9] and Dold and Peregrine [4], or the Som-
merfeld radiation has been used, see e.g. Lennon et al. [8] and Brorsen and
Larsen [3].

The Sommerfeld radiation condition allows waves of permanent form to
leave the domain without any reflection, if the phase velocity of the waves
in the model is coinciding with the phase velocity used in the radiation con-
dition. If not so, partial reflection takes place and the reflection increases
with increasing difference between the actual phase velocity and phase ve-
locity used in the radiation condition. The Sommerfeld radiation condition
can be used in case of irregular linear shallow water waves, because all waves
propagate with the same phase velocity, but in general this boundary con-
dition is inadequate even if the phase velocity in the boundary condition
corresponds to the peak period of the surface elevation spectrum.



In the paper of Larsen and Dancy (7] another approach to the treatment
of open boundaries was put forward. The incident waves are generated in-
side the boundary and all outgoing waves (internally generated as well as
scattered) are absorbed on the open boundaries by use of sponge layers. In
that paper a finite-difference model based on the Boussinesq equations was
used.

Internally generated waves were used in BEM-modelling by Brorsen and
Larsen [3] but the absorption of outgoing waves at the open boundary was,
however, achieved by use of a Sommerfeld radiation condition. The sponge
layer technique was dropped because the work done by Baker et al. [1] and
own preliminary tests too showed that the width of the sponge layer should
be at least one wavelength in order to obtain a satisfactory low reflection
coefficient. Linear irregular waves can, however, be regarded as the sum of
regular waves with different frequency and wavelength, and consequently
the width of the sponge layer must be comparable to the largest wavelength
of the regular waves. This demands a computational domain so large that
it cannot be used in practice due to the necessary amount of computational
effort.

It is shown in this paper that these problems can be reduced conside-
rably by a new approach, where the boundary condition at an open bound-
ary is provided by a filtering technique. The surface elevation in front of
the boundary is filtered numerically to yield the velocity component with
respect to the normal to the boundary. The approach with a boundary
condition based on measurements in the domain is in this paper denoted
active absorption.

MATHEMATICAL FORMULATION

Governing equations
We consider an inviscid irrotational 2-D flow described by a velocity poten-
tial ¢, and the velocity field is given by

U=V = (v,w) (1)

where V = (0 [0z , 8 [/3z) is the 2-D gradient operator.
If we also assume incompressible fluid, the continuity equation becomes a
Laplace equation for ¢,

Vi =0 in A 2)

The sea bed, Sg, is assumed horizontal and impervious, and the waves
are in this paper generated by a piston wavemaker.
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Figure 1. Sketch of the region used in the numerical model, Definition of
parameters.

On the open boundary, Sp, the waves shall be allowed to pass without
being reflected.

By use of Green’s 2. identity the boundary value problem is transformed

to a boundary integral equation, and the potential at point P positioned at
point T is given by

- 0G (3, . Op (€
a(f)-w(f)=/s(¢(£)—(:g-;f—)—G(f,§) “"ag))m 3)

where S is the boundary of the computational domain A, f-. is the position
vector of a point on the boundary, G (5:', £ ) is a Green’s function and « (7
is a coefficient depending on the position of P and the geometry of the
boundary. The unit outward normal vector is denoted i, see Figure 1.

In case of constant water depth we use in 2-D models

G(7,€) =l |f - 7 +1n | - &

where a = 7 if Z is situated on the boundary, and 7, is the position vector
of the point which is the reflection of point P into the sea bed. See Fig. 1.
Given the necessary boundary conditions, solving of equation (3) gives the
variation along the boundary of ¢ and Op/dn. The applied time stepping
method is close to the method described in Dold and Peregrine [4], but the
boundary of the computational domain is not moved. This time stepping
method requires, however, knowledge of both 1 = Op/dt and Hyp;/On on
the boundary.



Differentiation of equation (2) with respect to time, gives the Laplace
equation for ¢,

Vg(p, =0 (4)

which is transformed to the corresponding boundary integral equation for
Pe:

. 0G (2, - Op: (€
0@-wi@= [ ((6) 2D (2 il o

Solving of equation (5) yields the variation of ¢y and Oy /0n along the
boundary.

General boundary conditions for ¢ and ¢, linear waves

Since we only consider linear waves, the position of the boundary of the
computational domain is not changed.

On the free surface, Sp, ¢ satisfies the linearized kinematic and dynamic
boundary conditions, respectively,

op 0

B = -a—i on Sg (6)
and

pr=—g7 on Sp (7)

where g is the acceleration due to gravity.
On the stationary sea bed, Sg, ¢ and ¢; satisfies

9

o= on Sp (8)
and

dpy

B =10 on S B (9)
At the Wavemak_er the boundary conditions in case of linear waves read

a g

% =~y (t) on So (10)
and

d ..

b—% = —&,(t) on Sp (11)

where z,, is the position of the wavemaker.




Active absorption, boundary conditions

On the open boundary, Sp, the boundary conditions read

3, = Un on Sp (12)
and

0 Ovp,

o on S0 (13)

where the velocity component after the normal, v, is obtained by numerical
filtering of a time series of surface elevation observed the distance Az in front
of the open boundary, see Fig. 1. If the N coefficients of the numerical filter
are denoted A7, j = —(N —1)/2, ... , (N — 1)/2 and N is an odd integer,
vE+! is calculated by

=M .
U:+1 - Z R nk+1~M+.7 (14)
=M
where M = (N —1)/2 and superscripts denote the no. of time step and filter
coefficient, respectively. Thus the velocity can be interpreted as a special
mean value of the preceeding N values of the surface elevation.

As stated in e.g. Karl [6], A7 is the impulse response of the filter. If the
input to the filter is a unit impulse, i.e. only one n-value (of magnitude 1)
is different from zero, the output from the filter is, according to equation
(14), equal to the filter coefficients. This type of filter is normally called
a FIR-filter, due to the Finite duration of the Impulse Response of the filter.

According to the theory of 1. order Stokes waves (linear waves) the
relation between surface elevation and horizontal particle velocity measured
in the same vertical is
cosh k(z + h)

simhkh (18)
where k = 2x/L is the wave number, L is the wavelength, f = 2r/T,
is the frequency, T is the wave period, and h is the water depth. See
e.g. Svendsen and Jonsson [10]. From equation (15) the magnitude of the
frequency response of the filter, |H (f)], is seen to be

B cosh k(z + h)
B ()] = 2rf 2EE L A) (16)

and the phase shift, 0(f), is zero at all frequencies. Note, however, that
0(f) # 0, if 7 and u are separated the horizontal distance Ag.

u=2xf

The complex frequency response, H (f), can be calculated by
H(f) = |H(f)|e™**® (17)

where 1 is the imaginary unit.




In case of a linear, time invariant system, the complex frequency re-
sponse is the Fourier transform of the real valued impulse response, h(t).
Consequently, k(t) is calculated by an inverse Fourier transformation of
H(f), see e.g. Karl [6].

NUMERICAL FORMULATION

The boundary integral equations for ¢ and ¢, are solved by the Boundary
Element Method described in Brebbia and Walker [2]. Constant elements
are used and each integral in the equations (3) and (5) is transformed into
a sum of integrals over each boundary element. Non-singular integrals are
calculated by a standard 4. order Gauss quadrature rule, and the singular
integrals are calculated analytically.

The variation of the variables with time is found by a time stepping
technique. Superscript k denotes the value of a variable at the time t = k-At
or time step k. In the following all variables are supposed to be known at
time step k, and the task is to compute the corresponding values at time
step k£ + 1.

General boundary conditions

The expansion of ¢ and 7 in Taylor series up to second order yields together
with equation (6) and (7):

1 (8p\*
cpk"l'l — (pk — gnk At — 59’ (5%) N on Sp (18)
and
ap\* WEIAY
nk'H = nk + (5‘;—:-) At + 5 (5(%:) At? on Sp (19)
The boundary condition for ¢ is
gt = —gn*t! on Sg (20)

At the wavemaker the boundary conditions at timestep k + 1 are

Bcp k+1

and

k+1
(%‘%) = —i, ((k+1) At) on So (22)



Although the position of the wavemaker in principle can be varied arbitrary
in time, only sinusoidal motion or motion corresponding to a sum of sines
are applied in this paper. The amplitude of the wavemaker is calculated
according to Biesels theory.

Active absorption, boundary conditions

In this case the horizontal velocity component on the boundary is found
by equation (14). The impulse response of the filter is found by an inverse
discrete Fourier transformation, which means that only NV discrete values of
the complex frequency response are used in the transformation, see Fig. 2.
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Figure 2. Magnitude gain, of the frequency response. z = —2.5 m,
h =40m, N = 41, Atsiye. = 0.65 secs.

This gives an impulse response of finite duration, i.e. the impulse re-
sponse or filter coefficients are found by

; L j2mrd N -1
i = EH,-& N WhereM:T,r-———M,...,+M (23)
r=—M

and H, is the frequency response at the frequency f =r - Af.

The frequency increment, Af, in the frequency response is found by

1
N 28 gorpes

where At gier is the time increment of the filter.

Af= (24)

The price paid for handling only N frequencies in the transformation,
is a minor (hopefully) inaccuracy in the performance of the filter for input
frequencies, which do not coincide with one of the frequencies in the inverse
discrete transformation.

If the length of the filter is increased, more frequencies are included,
and in principle the overall accuracy of the filter is improved. In practice,
however, there is a limit beyond which the accuracy of the filter starts to
decrease due to other effects in the model.



Let us first notice a few characteristics of the behaviour of FIR-filters, see
e.g. Karl [6].

If 9(f) = 0 (~ the distance Az = 0) and if a time delay of (N —1)/2
time steps are accepted, the filter is symmetrical about j = 0 or the
middle of the filter. In principle the delaying effect of a symmetrical
filter is shown in Figure 3. See also Figure 5.

If all filter coeflicients are shifted towards increasing j-values in the
filter the result is a reduction of the delay caused by the filter. For
example the filter in Figure 4, where the filter coefficient is shifted
(N—1)/2 positions to the right, causes no delay. In practice, however,
a total removal of the filter delay is not possible. The filter coefficients
are periodic, A"~V = b7, and if N > 1, the result is the appearance
of filter coeflicients of considerable sizes at the ‘left hand side’ of the
filter. See Figure 6. In most cases the performance of such a filter is
poor.
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Figure 5. A filter causing a delay of (N — 1)/2 steps. Az = 0,
z2=-25m, h = 40m, N = {1, Atgiuer = 0.65 secs.
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Figure 6. A filter causing no delay. Az = 0, 2z = —2.5 m, h = 40 m,
N = 41, Atﬁue, = (.65 secs.
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Figure 7. A filter causing no delay. Az = 7.6 m, z = —2.5 m,
h=40m, N =41, Atsine, = 0.65 secs.
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Figure 8. A filter causing no delay. Az = 57.5 m, z=-7.5 m,
h = 40 m, N =41, Atﬁuﬂ = 0.65 secs.

To avoid the side effects of a total removal of the delay caused by the
filter itself, the input is chosen to be the surface elevation registered at the
distance Az in front of the open boundary. In this case the filter must delay
the output at frequency f corresponding to the time it takes for that waves
to propagate the distance Az. The effect of this on the filter is a ‘shift’
to the left of the filter coefficients, but it should be noted that this phase
shift is frequency dependent, and it destroys the symmetri of the filter. A
‘tail’ is created to the left of the central part of the filter, see Figure 7 and 8.

In order to keep zero time delay in this situation, the filter must therefore
produce the total phase shift at frequency f:

0(f) =2 (% RUEL- At) (25)

In the design of the filter the following rules of thumb can be set up:

—  the width of the filter must be so large that the filter coefficients have
decayed near the two ends of the filter.

_ Az must be so large that the needed ‘shift’ to the left of the filter
coefficients can be established.

— Az must be so small that the phase error, caused by the difference
between the phase velocity of the waves in the numerical model and
1. order waves, is unimportant.

It is of course desirable to obtain more specific guidelines for the design
of the filter, but in the present study the design was an trial and error-
procedure based on the rules of thumb mentioned above.



The performance of each filter is assessed by comparing theoretical ve-
locities (1. order theory) with velocities obtained by filtering of the corre-
sponding theoretical surface elevations. The surface elevation is the sum of
4 sine waves with frequencies which are not coinciding with the frequencies
of the discret frequency response.

NUMERICAL EXAMPLES

All simulations are made with a wave channel, 190 m long. Waves are
generated by a piston type wavemaker at the left hand boundary, and the
waves are absorbed at the open boundary, see Figure 1. The water depth is
h = 40 m and the boundary is dicretized into 5 m long elements. The time
increment is in all simulations At = 0.13 seconds. The shortest wavelength
is approx. 55 m corresponding to T' =6 secs, so the resolutions are at least
11 elements per wavelength and 46 time steps per wave period.

The reflection coefficent is defined as the ratio between reflected and
incoming wave height at a given frequency, and in case of irregular waves
an overall reflection coefficient is defined as the square root of the ratio be-
tween the reflected and the incoming wave energy.

Reflection coefficients are in all cases estimated by the method described
in Goda and Suzuki [5]. In order to avoid spectral leakage in case of regular
waves, the necessary FFT-analysis is made with 64 data corresponding to
exactly one wave period. This is obtained by interpolation of the simulated
time series.

In all simulations with active absorption, a filter is designed for each
boundary element on the open boundary. Preliminary tests showed, how-
ever, that acceptable filters could not be designed, if the same surface eleva-
tion time series was used as input to all the filters. Instead Az is optimized
(trial and error!) for each filter. Note, however, that it is only necessary to
demand Atfiier = p- At, where p is an integer. In this way the necessary
resolution of the frequency response is achieved with fewer filter coefficients,
but equation (14) must be changed a little in order to filter the correct sur-
face elevations.

All simulations are started with the fluid at rest. The theoretical motion
of the wavemaker is multiplied with a factor varying linearly from 0 to
1 during the first wave period in order to create a smooth start of the
simulation. Tests showed, however, that a longer starting period has only
insignificant influence on the results.



Active absorption, regular waves

The wave periods are varied from 6 to 16 seconds in order to get results,
which can be compared with results from irregular waves with a spectrum
covering the range 0.07-0.16 Hz. This range corresponds approx. to the
range of a Jonswap spectrum with a peak period of 9 seconds (0.111 Hz).
The results of the ‘optimization’ of the filters are: N = 41, At fitter = DAL
= 0.65 second giving Af = 0.038 Hz in H(f) and the optimum distances
are shown in Table 1.

z (m) -2.5 | -756|-125 | —-175 | —22.5 | —=27.5 | —32.5 | —37.5

Az (m) | 75 | 575 | 675 | 725 | 825 | 87.5 | 925 | 925

Table 1. Horizontal distances between open boundary and position of wave
gauge. z is the level of the boundary element mode.

It is seen that Az is increasing with the distance below the surface, but
note that Az/L., < 0.32, where L,,,, = 284 m corresponds to 7' =16
seconds. The large difference between the values of Az corresponding to
z = —2.5 m is a bit surprising. The performance of the filters is, however,
changing rather slowly with Az, and the result could have been different, if
the filters during the design phase had been tested with other wave periods
than T =7, 9, 11, and 13 seconds.

From the Figure 9 is seen that the active absorption is giving reflection
coefficients smaller than 3% for frequencies ranging from approx. 0.06 - 0.13
Hz. At the higher frequencies the reflection coefficient is increasing, most
likely due to the decreasing resolution in time and space. The reason why
the reflection coefficient is increasing at the lower frequencies needs further
research.

The reflection coefficients created by active absorption can be compared
with the reflection coefficients obtained with two types of Sommerfelds ra-
.diation condition, either variable phase velocity, ¢ = ¢(f), or constant phase
velocity, ¢ = constant. See Figure 9. The active absorption is giving results
very close to the best obtainable (Sommerfeld, ¢ = ¢(f)), and the reflection
coefficients in a model with active absorption are for all frequencies smaller
than the reflection coefficients calculated in a model, where Sommerfelds
radiation condition is used with a constant phase velocity corresponding to

Ff=0l111 Hz.
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Figure 9. Reflection coefficients. Regular waves, h = 40 m. The constant
phase velocity corresponds to f = 0.111 Hz.
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Figure 10.  Reflection coefficients. Irregular waves, b = 40 m. The con-
stant phase velocity corresponds to f = 0.111 Hz.



Irregular waves

Each simulation is 1400 time steps long. The necessary FFT-analysis is
based on time series containing 1024 data, which are cosine-tapered to min-
imize spectral leakage. In order to improve the accuracy further, the re-
flection coefficients are estimated as the mean values from 10 simulations.
The wavemaker variance spectrum is in all cases corresponding to a surface
elevation composed of 10 sine waves, all having the same wave height. The
phases are, however, selected randomly. The frequency range is from 0.07-
0.15 Hz. In order to compare the results from the simulation with active
absorption and the Sommerfeld condition (¢ = constant), the same 10 time
series of the motion of the wavemaker are used in both series of simulations.

The results are shown in Figure 10. In general both methods of absorp-
tion create somewhat larger reflection coefficients than seen in the simu-
lations with regular waves. This increase is not believed to be caused by
random errors caused by the analysis of a finite time series, because the
increase is nearly the same at all frequencies, and the wave heights of the
incoming waves are estimated with an error less than 10%.

Except at one single frequency the active absorption is giving the smallest
reflection coefficients, and near the ends of the frequency interval the active
absorption is clearly the best approach.

We find Royerann = 5.1% if active absorption is used, and Ryyeran = 8.0%
if Sommerfelds radiation condition (¢ = constant) is used. This difference
between the two metods is expected to decrease if the elevation spectrum

is a Jonswap spectrum.

Similar simulations made with a water depth of 20 m show the same
trends. As expected the only significant change in the results is that the
Sommerfeld condition (¢ = constant) created smaller reflection coefficients

than in case of h = 40 m.

CONCLUSION

With active absorption based on FIR-filters, it is possible to reduce the
reflection of irregular waves at the open boundaries in BEM-models to an
acceptable degree. On medium or large water depths the computational
area in which the waves are absorbed can be reduced to approx. 1/3 in
comparison with e.g. sponge layers, and the frequency range with acceptable
reflection coefficients is approx. 2-3 times the range obtained with e.g.
Sommerfelds radiation condition. Active absorption is rather simple to
implement in the computer code, and the direct computational costs are
small. At present, however, the insuffient guidelines in the design of the
numerical filter and the assumption of linear waves are limiting factors in

the applicability of the approach.
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