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Summary

Development of dynamic wind flow models for wind farms is part of the resear Euro-
pean research FP7 project AEOLUS. The objective of this report isaaige decentralized
dynamic wind flow models with parameters. The report presents a structudedentralized
flow models with inputs from a set of spatially distributed measurements from twibthes.
The information has to be communicated only within neighboring wind turbiness Wit
both reduce the calculation load by distributing them on all turbines and makditagtructure
more robust against faults and uncertainties. Moreover, the predtoviethodel is formulated
such that it is able to update the parameters in an adaptive on-line precddce report also
investigates the effect of wind direction changes on the flow model anmbpes a fusion algo-
rithm which improves the wind predictions by fusing the predictions of availacle models.
The results of this report are especially useful, but not limited, to desigrtantdralized wind
farm controller, since in centralized controller design one can also usadtel and update it
in a central computing node.
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Chapter 1

Introduction

This report is deliverable 2.3 of the European FP7 prdpstributed Control of Large-Scale
Offshore Wind Farmwith the acronymAeolus Part of the research in Aeolus deals with devel-
opment of models that allow real-time predictions of flows and incorporateurerasnts from

a set of spatially distributed sensor devices. In Aeolus we use the flowriafn as a basis
for new control paradigms that acknowledges the uncertainty in the modeiéhdysamically
manages the flow resource in order to optimize specific control objectives.

Work package 2 of Aeolus aims to provide dynamic models based on the usatodl en-
gineering methods such as parameter estimation. To support the distribatenl epproach,
distributed estimation methods are developed where only local measurenmeepte@essed at
each turbine and only limited information is communicated with neighbors. Thistrepo-
tributes to two tasks of WP2 in Aeolus:

e T2.2 Methodology for decentralized dynamic modeling Selection of the model struc-
ture with input from network of sensor information and output relevanttfe control. A
nonlinear time-varying state-space model is a candidate for the model s¢ruttusup-
port the decentralized control paradigm a distributed estimation and predmgthod-
ology is investigated where only limited information is exchanged between raigigb
turbines. Most of the data processing is then located at the single turbiok provides
scalability.

e T2.3 Parameter estimation using simulated and farm measurementsA method for
adaptive parameter estimation must be developed or chosen. The methiwtiisblde
uncertainty. The estimation must eventually be based on real farm dataihittaiy
based on a simulation model.

The works presented in this report aim to complete the recent reldpudéen and Soltani
2009 on the above tasks. IrKAudsen and SoltanR009, data from OWEZ wind farm has
been used to obtain a dynamic flow model from an upwind to a downwind tisliffective

Wind Speed (EWS). EWS is the wind speed averages over the rotor@stergaard et al.
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2007 Leithead 1992). The presented model is then useful when the turbines are opera#ing at
fixed power reference (Power reference in single turbine operats®t i® nominal power). In
this report it is also investigated how the change of power referencefieititahe downwind
turbine operation. In fact, the model has been improved for a wind fariohwik subject to
changes by power reference from the wind farm controller (Contribtitiar2.2).

The flow model is adaptive. This means that if the wind and/or turbine clegistecs changes
due to some uncertainties in the system, then the model parameters will be updatbdkve
the best predictions in the new situation (Contribution to T2.3).

Furthermore, the model is improved so that it provide a online fusion of thd speed pre-
dictions at downwind turbines. This is useful in many cases even if the dimdrturbine is
not located in the wake of upwind turbines but still is able to predict the wieedpsing the
measurements of the neighboring upwind turbines (Contribution to Aeolus).

The models are finally obtained based on the Aeolus simulation model $sdtar(i et al.
2009) where the Aeolus benchmark isdltani et al. 2010 has been used as the layout of
the wind farm when the decentralized wind flow model is obtained (ContributioR 18).

This report is organized as follows: chapter 2 formulates the problethdatecentralized wind
flow model with parameter estimation. Both online and off-line wind flow modelp@sented
in chapter 3. The predictions from on-line models have been fused to gitadiiction of

wind at downwind turbines in chapter 4 where the Aeolus decentralizechbeark model is
presented and chapter 5 brings the conclusions of this report.



Chapter 2

Problem Formulation

This report is part of the work package 2 in Aeolus which provides ohyoanodels of wind
flow in wind farms. The results of this report are formulated in a way whiehuseful for
decentralized wind farm control design in work package 4. In fact, timel \ilow dynamic
model has to be formulated in a decentralized way which exploits that eachtwinide is
affected by itsupwindneighboring wind turbines. Thus the wind flow will be modeled locally
from turbine to turbine. The resulting wind flow model has the following ctiaristics:

e Model parameters are updated in an adaptive on-line procedure. D fiact that the
wind flow model changes due to different low frequency effects sachean wind speed
and mean wind direction, these parameters have to be adapted to the newrsitsiziip
an on-line parameter estimation algorithm.

e Since the wind experienced by the upwind turbines, to some extend, willdegierced
by the downwind turbines, the output of the model can be used for pradiutitne wind
at downwind turbines.

e For each turbine inside the wind farm, several turbines might be laterallybditstd
around the upwind direction. Hence, the wind speed could be predicdaddach of
the upwind turbines. Then a sensor fusion algorithm is able to use all tredietipns to
provide a more precise prediction in many situations. These situations grdegmrndent
on the layout of the wind farm and the mean wind direction. For example, i tisean
upwind turbine exactly against the mean wind direction, then the predictionmsdther
laterally distributed turbines are not so useful in sensor fusion, but ifrsan wind is
blowing in between two turbines toward the downwind turbine, then the séusion
algorithm can provide more precise predictions of wind.



2.1 Online Parameter Estimation

Assume the discrete time AutoRegressive with eXternal input (ARX) modsl frpwind tur-
bine’s Effective Wind Spee(EWS) and power referencg..; to a downwind turbine EWS is
given by
2
Alg)y(t) =D q ™ Bi(q)ui(t) + e(t), (2.1)
i=1
where ¢! is the delay operator; is a sample timep,, is the number of delay samples,
A(q) and B;(q), i = 1,2. are polynomials of;~! with orders ofn, andn, — 1 and pa-
rameters ofl, ai, as,...,an, andb, bi1, bia,...,bin, —1 respectivelyy(t) is the EWS
at downwind turbine (EWS is estimated at turbine using Extended Kalman Filkdf) (B
(Knudsen and Soltan2009), ¢(¢) is white noise, and; (t) = ugws(t) is EWS at upwind
turbine andus () = uprey(t) is the power reference at upwind turbine.

An on-line parameter estimation algorithm fér= [a;, a2,...,apn,, bio, bi1, bio,...
s biny, -1, bao, bat, bQQ,...,bznb2_1] can be formulated by (Sekjing, 1999)

X(t) =H(X(t = 1), y(t),u(t),?) (2.2)
0(t) = h(X (1)), |

where X is the information state vectorH andh specify the state-space representation of
the recursive parameter estimation algorithm, éftd is the vector of the updated parameters
(coefficient vector ofA and B polynomials) at time.

2.2 Prediction and Fusion

The one-step ahead predictor f@c1) corresponds to
2
It —1) = —ary(t — 1) —as(t = 2) — ... — an,y(t —na) + Y g " Bi(q)uq(t)
=1 (2.3)

2
= (1—A(@)yt) + > q ™ Bi(q)ui(t).
=1

In the same manner, the k-step ahead predictor can be obtained by asshiatitite mea-
surements are only available until time- k. Thus the predictions af should be used from
timet — k + 1 to timet — 1. These predictions can be obtained recursively starting from
y(t — k + 1|t — k). Then thek-step ahead prediction will be given by

Gl — k) = —arf(t — 1t — k) — agi(t — 2/t — k) — .. — ag_1d(t — k + 1]t — k)
2
» (2.4)
—apy(t —k) — ... — an,y(t — na) + Zq % Bi(q)ui(t).

i=1



It is also worth to mention that in the wind flow model, traveling of the flow from inglto
turbine causes a delay on the observation of the wind from upwind turbitie tdownwind
turbine. This delay can then be used for k-step ahead prediction of Windevk represents the
delay.

In the case that there are several upwind neighboring turbines wteclatarally distributed
against the wind direction, we might have different predictions of EWSeatittwnwind tur-
bine. It is then possible to fuse the predictions from each model. The fasgmmithm can
then update a gain on the predictions of each model according to the prediotis of each
model. A straight-forward fusion algorithm is simply to take the variance weighterage
of predicted EWSs and obtain the global prediction. To make the weightings adaptive,
fusing is simply done by using recursive algorithm. The main advantagessadproach is
simplicity. Moreover, the effect of wind direction is inherently included in tredghtings. The
local EWS estimates are assumed as inputs of dynamical model whose ogjmitasEWS
estimate at considered wind turbine. This model is updated by using the yseawdoursive
algorithm. The fusion algorithm can then be formulated as

N
yg(k+ 1) + agyg(klk — 1) =Y " bsgi(k + 1]k) + e(t) (2.5)
=1

where N is the number of neighboring upwind turbings,is the local EWS prediction using
ith wind turbine data ang, is the global EWS prediction at considered downwind turbis),

is the error term, which is assumed to be white noise,andndb, are fusion parameters to
be updated recursively.



Chapter 3

Local Wind Flow Model

This chapter continues the previous work in WP2 of Aeolus where the nfimaelupwind to
downwind effective wind speed was obtained. It is investigated how to implethe model
based on on-line parameter estimation and then the effect of the variatitwesugwind turbine
power reference is used to improve the predictability of the model. The magatbtined for
two different situations regarding wind direction. They are developsédan the generated
data from the Aeolus simulation model where there are only two turbines aviedipnd one
downwind. Compare with section 4.2 where the results from simulation of aewebines
are explained. The wind field generated for these simulations includedemnceuand wake
meandering. However, it also relies on the hypothesis of frozen turteilevhich makes it not
entirely realistic.

3.1 Downwind EWS model

In (Knudsen and Soltan009, the SISO model from an upwind to downwind turbine wind
speed have been analyzed. The results show that the models whicHacsieesfvind speed
have higher fithess and lower prediction error norm compared to the molils use nacelle
wind speeds as input-outputs. This certainly concurs with the followingigddyfact.

“The nacelle measurement averages the wind speed on a small accthare-

fore is highly affected by the high frequency content of the wind speedhidihe
frequency contents of the wind are less correlated when the distance betveee
measurement points is long, e.g., distance between wind turbines in a wind far
The effective wind speed, instead, is an average of the wind speed otaihdisc.

The effective wind speed estimator acts like a large scale anemometer totestima
the wind speed avraged on a broad area of turbine rotor disc. It indutie low
frequency content of the wind speed and therefore the effective windisspfetevo
points within long distances in wind farm are highly correlated. ”



Two general and simple cases have to be analyzed at this stage. Cdwsidarbines in a
wind farm and consider that in one experiment the wind direction is in line withirtes, i.e.,
wind direction is parallel to the wind turbine row (See fig3:&-A). In the other experiment,
the wind direction hits the turbine row with constant anglas shown in figure3.1-B. The
goal here is to obtain a SISO model from EWS at upwind turbine to the dovantwitine in
each case based on the simulated data from Aeolus simulation nSmledr( et al. 2009 .
The distance between two turbines is 600 meters in the first experiment andeiérs in the
second one while is 0 and 59 degrees respectively. Average wind speedsdlid turbulence
intensity is 10%. In the following, it is explained how these models are achievax offline
and online manner.

(A) (B)
Win
VT WT, = WTy

600m

Figure 3.1: Layout of the experiments: (A) parallel to the wind direction@)dvith angle~.

3.1.1 Off-line LTI models and prediction

Consider the LTI models described ir(udsen and Soltan2009? by

y(t) = Glg~ ult — i) + H(g He(t) . e(t) € 1D(0,0%)

4y B(g™ 4y C(g™h (3.1)
“ = Fre ) D)

!Notice that the experiments are done on the modified wind field generatiere\tie coherence between lateral
channels has been scaled. At the time of writing there is ongoing investigatitine most appropriate coherence
between lateral channels. Consequently there is some uncertainty tel#teccoherence used here.

2Notice that in the current report the order of the polynonfitéd) is n, — 1 which is different than the notation
in the reference. This modification is to support The System Identificatiotbdx in Matlab
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where ID denotes independent distribution, and

ny—1

B(g ') =bo+big 4+ bny1g =D big
1=0

Clg )= cqg’, c=1 (3.2)
=0

ng

D(q™") = Zdz‘qﬂ, do=1
i=0

Fg ) =) dig", fo=1
i=0

Table 3.1 shows the model order as well as fithess and the norm of predictionferrdif-
ferent identified models corresponding to the experiment (A). The follpwindels are used
for identification: Output Error (OE), AutoRegressive (AR), AutoRegive with eXternal in-
put (ARX), Box-Jenkins(BJ)and persistence (Per). These modelsell explained inljung,
1999 and specially in this case iKnudsen and Soltar{009. The first half of data sets are
used for obtaining the models and the second half used for validation otifgtandard predic-
tion error estimate (RMS). A model order of 3 is used for all model strustdigcussed above.
The reasons are that third order models can improve the fitness betterdtsmtdmnd order and
there seems to be no substantial improvement from using higher order mathelsielay is
assumed to be fixed. It could be defined by calculating the time which takes drewansd to
travel between turbines.

The best results are achieved using ARX and BJ models with delay (AexieeBJDel) which
confirms the propagation of wind toward downwind turbine in the simulationrprog The
prediction errors for 40sec horizon in both models are limited to lessit3&m /s correspond-
ing to the 95% significance level &f0.64 which is small compared to the mean wind speed of
15m/s. For 20sec predictions, the BJDel model shows slightly higher fittdgo] and lower
prediction error0.25m /s compared to the ArxDel modeB{% and 0.28m/s respectively).
However, for prediction horizons more than 20sec, the fit value for tHzeBmodel decreases
and prediction error estimate increases while the ArxDel model shows alh@osame fit and
RMS for longer prediction horizons. The infinite prediction horizon giggsure simulation
from the input only. It means that the prediction of the output does nocamgénformation of
the past outputs, i.e. there is no correction from the measurement of the.outp

Table3.2corresponds to the experiment (B) for system identification. The b&astseare again
obtained from delay augmented models (ArxDel and BJDel) where thécprddvalues for
the horizon of 20 sécare about 71% and 73% respectively and the prediction error doesn’t

3The reason to look at prediction horizon of 20 sec is that in the experifBgtie delay for the wind to travel
between two turbines is 20 sec which is due to the different direction of the win

11



Models

OE Arx ArxDel BJDel Ar Per
Ng 0 3 3 0 3 1
ny 3 3 3 3 - -
e 0 0 0 3 0 0
ng 0 0 0 3 0 0
ny 3 0 0 3 - -
ng 0 0 40 40 - -

Fit (%)

Pred. hor.
1 sec. 22.019 51526 94.005 94.796 50.974 50.905

20 sec. 22.019 -7.665 81.435 83.547 -29.301 -30.560
40 sec. 22.019 -5.331 81.418 78.753 -39.722 -38.,904

00 22.019 -4.129 81.418 -1.918 - -
RMS (m/s)

Pred. hor.

1 sec. 1.166 0.725 0.089 0.077 0.733 0.734

20 sec. 1.166 1.610 0.277 0.246 1.933 1.952

40 sec. 1.166 1.575 0.277 0.317 2.089 2.077

00 1.166 1.557 0.277 1.524 - -

Table 3.1: Downwind EWS predictability in the experiment (A) using LTI models apwind
turbine EWS data. The model structures marked with “del” includes the 4@iskxy.

Fit (%)
Pred. hor. OE Arx ArxDel BJDel Ar Per
1 sec. 16.8012 52.138 78.386 79.189 50.974 50/905

10 sec. 16.8012 6.794 71.419 74.165 -14.096 -15.649
20 sec. 16.8012 11.946 71.342 73.185 -29.301 -30)560

00 16.8012 15.404 71.341 72.399 - -
RMS (m/s)

Pred. hor.

1 sec. 1.2444 0.7159 0.3233 0.3112 0.7332 0.7343

10 sec. 1.2444 1.3940 0.4275 0.3864 1.7065 1.7297

20 sec. 1.2444 1.3170 0.4286 0.4010 1.9339 1.9527

00 1.2444 1.2653 0.4286 0.4128 - -

Table 3.2: Downwind EWS predictability in the experiment (B) using LTI modats @pwind
turbine EWS data.
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exceed).43m/s corresponding to significance level ©).86 which is also small compared to
the mean wind speed &bm/s.

The comparison of the results in taldd and table3.2 shows that the models in the experiment
(A) can better describe the flow between two turbines, i.e., the predictidBd/& have higher
fit and lower norm of prediction error. This is also according to what eeted sincéthe
downwind turbine in the experiment (A) would certainly experience nfasieowind experi-
enced by the upwind turbine”.

3.1.2 Online LTI model and prediction

Many real-world applications, such as adaptive control, adaptive filteaimgj adaptive predic-
tion, require a model of the system to be available on-line while the system igiata@mn. Due

to the time varying properties of the wind, using recursive identification methadiapt the

model parameter at each time step is likely to be relevant. In recursive madetiragneter

estimates are computed recursively in time. In this regard, some algorithmastiehKalman

Filter (KF), recursive least square with forgetting factor (RLS), amdtienean square (LMS)
can be used. The last two may be viewed as special cases of thgutlg @nd Gunnarssen
1990.

The general recursive identification algorithm is given by the followingadign:

0(t) = 0(t —1) + K(t)(y(t) — 5(t)) (3.3)

0(t) is the parameter estimate at timey(t) is the observed output at timeand(¢) is the
prediction ofy(t) based on observations up to time- 1. The gain,K (t), determines how
much the current prediction errg(t) — y(t) affects the update of the parameter estimate. The
estimation algorithms minimize the prediction-eryét)—y(¢) term. The gain has the following
general form:

K(t) = Q()(t) (3.4)

The recursive algorithms differ based on different approacheshoosing the form of) ()
and computing)(t), wherew(t) represents the gradient of the predicted model oujpti®)
with respect to the parameters. The simplest way to visualize the role of ttiemtra(¢) of
the parameters, is to consider models with a linear-regression form:

y(t) = 7 ()00 (t) + e(t) (3.5)

In this equationg)(t) is theregression vectothat is computed based on previous values of
measured inputs and outputk(t) represents the true parameter§.) is the noise source (in-
novations), which is assumed to be white nois@rg, 1999. For linear regression equations,
the predicted output is given by the following equation:

g(t) =0T ()0t — 1) (3.6)

13



The well-known Kalman Filter (KF) algorithm is used to defi@ét). It is assumed that the
true parameters are described by a random walk. It is a default diémeripr the parameter
variation when no specific information at hand. It could be formulated lasyfe:

Oo(t) = Op(t — 1) + w(t) (3.7)

wherew(t) is Gaussian white noise with the covariance maffix This covariance matrix
determines the rate of changes in parameters. The following set of equationmarizes the
Kalman filter adaptation algorithm:

0(t) = 0(t — 1) + K(t)(y(t) — (1)) (3.8a)

G(t) =T ()0t — 1) (3.8b)

K(t) = Q(t)y(t) (3.8¢)
Pt —1)

YO BT PG- e (689

P(t) — P(t _ 1) + Ry — P(t — 1)¢(t)¢T(t)P(t — 1) (3.86)

Ry + 9T (1) P(t — 1)3b(t)

whereR; is the variance of the innovation§t). It can be shown that iR, andR» are chosen as
below then this special case of the KF will be equivalent to RLS with forgeféicipr | A(¢)| < 1
(Ljung and Gunnarssei990.

Na Pl Dl (P - 1)
‘<A<t ) [“ D= 0T T (0P — 1)) (3.92)
_ ) (3.9b)

Now assume that the model structure has the following form:
y(t)+ary(t—1)+ ...+ an, y(t —ng) = bru(t —ng) + ...+ by, u(t —np —ng) +e(t) (3.10)

wheree(t) denotes an equation error, which can describe disturbances or wiedalynamics.
For the sake of simplicity single input single output (SISO) model is assunred Tiee model
(3.10 can be equivalently expressed as the linear regression g Bnwith:

VT(t) = [—y(t —1)... —y(t —na) w(t —ng)..u(t —ny —ng)]

Oo(t) = [a1...an, b1...bp,]" (3.11)

The parameter vectdy (t) is computed at each step by using the KF algorithm, and then model
(3.10 could be updated.

The above algorithm is applied to both experiment. The model which updatesieely is of
the form @3.10 with n, = n, = 3. The forgetting factor\ is 0.996 and the input delays are
40 and 20 for experiment (A) and (B) respectively. The results aveshin table3.3and table
3.4

14



Pred. hor.

1sec. 20sec. 40 sec.

Fit (%)
RMS (m/s)

94.007 81.185 80.73
0.089 0.279 0.28

3
5

Table 3.3: Downwind EWS predictability in the experiment (A) using online LTdels and

upwind turbine EWS data.

Pred. hor.

1sec. 10sec. 20 sec.

Fit (%)
RMS (m/s)

78.260 71.838 71.52
0.322 0417 042

o

2

Table 3.4: Downwind EWS predictability in the experiment (B) using online LTHeis and

upwind turbine EWS data.

The comparison of table3.3 and 3.4 and corresponding offline results in tablg4 and 3.2
shows that the recursive method gives similar accuracy. Notice that thtecliaracteristics
such as mean wind speed would potentially have significant effect on mpacdeheters, how-
ever, in these experiments, the variations of the wind is limited to high frequeroylences
and therefore variations of the parameters in online model are negligil@difftree3.2). Con-
sequently, this will result in similar accuracy of the model for both online dfich® methods.

15



15F

|
}f
|
g
(

Model parameters
7
|

I
o
3
T
|

Figure 3.2: Model parameters in the experiment (A) using recursive Imode

3.2 Downwind power reference/EWS model

The models presented in the last section are useful when the turbinesr&iegwvith a fixed

power reference. The operating points of wind turbine could be detedntipeknowing the

mean wind speed and the power reference. Assuming that the mean wenkdispenstant dur-
ing simulation/experiment, the power reference would change the turbin@sthteerefore the
wake behind the turbine. This implies the model to be different when the winddantroller

changes the power reference. The model then should be able to sheffeitteof the change
in power reference at downwind turbine.

To identify such model, we have to excite the power reference at the upwibicie. The test
signal for power reference has to be persistently exciting which meanhghtéhanput has to
be informative in a way that it include enough different frequencies lwhight be seen as
eigenvalues of the system.

In the experiments, the power reference input signal is generatedaaslann binary signal
which is scaled and biased to obtain a value of either LMW or 5MW with the ¢diteofuency
of 0.1H z as shown in figur&.3-(b).

16
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3.2.1 Offline LTI models and prediction

Table3.5shows the results of predictions using different models and both EW®andiata
from the upwind turbine. The best result obtained from the ArxDel aedBBDel models
where the fit values for prediction horizon of 40 sec are about 90%®©2a4l corresponding
to the prediction error norm df.15m /s and0.114m/s respectively. The BJDel model has a
higher fit and lower prediction error at 40 sec horizon compared to tkBé&lrmodel, but its
fitting drops for longer prediction horizons while the ArxDel model seemsdayp at the same
level of fitting for infinity horizon.

Fit (%)
Pred. hor. OE Arx ArxDel BJDel Ar Per
1 sec. 22.706 51.499 94.793 95.402 50.975 50,905

20 sec. 22.706 -7.600 89.939 92.357 -29.302 -30.560
40 sec. 22.706 -5.152 89.942 92.351 -39.722 -38,904

0 22.706 -3.933 89.942 18.064 - -
RMS (m/s)

Pred. hor.

1 sec. 1.156 0.725 0.078 0.069 0.733 0.734

20 sec. 1.156 1.609 0.150 0.114 1.934 1.953

40 sec. 1.156 1.573 0.150 0.114 2.090 2.078

00 1.156 1.554 0.150 1.225 - -

Table 3.5: Downwind EWS predictability in the experiment (A) using LTI modeals apwind
turbine EWS and’,. s data.

A comparison of the ArxDel model in tabB1 and table3.5shows that inclusion oF,.; has
a significant effect on achieving a model with higher degree of explanakor example, the
fitting level for prediction horizon of 40 sec has been increased frovh ®labout 90% as the
prediction error has been decreased ff@2v7m /s t0 0.15m/s.

Table 3.6 shows the results of predictions for different models while the upwind terisimot

in line with the downwind turbine regarding the wind direction. The best reauitobtained
using the ArxDel and the BJDel models for a prediction horizon of 20A@amparison of the
results of this table to the results of tald& shows that inclusion oF,. in this case did not
make any significant change in the predictability of EWS at downwind turbiihes complies
with the physical fact thatwhen the downwind turbine is not in the wake of upwind turbine,
the change in the power reference at upwind turbine will not contribute taihe experienced
at downwind turbine. The EWS at upwind turbine instead can be useddiziiiee wind since
effective wind speeds at neighboring turbines are highly correlated.”
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Fit (%)

Pred. hor. OE Arx ArxDel BJDel Ar Per
1 sec. 15.049 52.133 78.371 79.157 50.975 50,905
10 sec. 15.049 6.775 71.452 74114 -14.096 -15.649
20 sec. 15.049 11.883 71.376 73.192 -29.302 -30.560
00 15.049 15.316 71.375 72.438 - -

RMS (m/s)
Pred. hor.
1 sec. 1.271 0.716 0.324 0.312 0.733 0.734
10 sec. 1.271 1.394 0.427 0.387 1.706 1.730
20 sec. 1.271 1.318 0.428 0.401 1.934 1.953
00 1.271  1.267 0.428 0.412 - -

Table 3.6: Downwind EWS predictability in the experiment (B) using LTI modat$ @pwind
turbine EWS and’,.; data.

3.2.2 Online LTI model and prediction

The presented algorithm in secti8ri.2for SISO model could be easily extended to multi input
single output (MISO) model with online parameter estimation. It is assumed tts%® Mhodel
has following form:

y(t) + a1yt — 1) + ... + any(t — ng) = byur (t — ng) + ... + bpur (t — np — ng) + ...
diug(t —ng) + ... + dp u2(t — ng — ng) + e(t)
(3.12)

The delay is considered on the inputs. The coefficient and previoussvalunew input then
has to be added to parameter vector and regression vector respeasivaiow:

() = [—y(t = 1)... —y(t —na) ur(t — ng).ur(t —ny — ng) us(t — ng)..ug(t — ng — ny)]
0o(t) = [a1...an, b1..by, di...dy,)"
(3.13)

Tables3.7and3.8show the results of using the recursive algorithm for experiment (AYBhd
respectively with inclusion of’,.. ;. The model which updated recursively is of the foi3ri@)
with n, = ny, = ng = 3. The results are again similar to the offline ArxDel model shown in
table3.5and3.6.
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Pred. hor. 1sec. 20sec. 40 sec.
Fit (%) 94.761 89.774 89.593
RMS (m/s) 0.078 0.151 0.154

Table 3.7: Downwind EWS predictability in the experiment (A) using online LTdels and
upwind turbine EWS and’,..; data.

Pred. hor. 1sec. 10sec. 20 sec.
Fit (%) 78.151 71504 71.030
RMS (m/s) 0.324 0.422 0.42P

Table 3.8: Downwind EWS predictability in the experiment (B) using online LTteis and
upwind turbine EWS and,..; data.
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Chapter 4

Decentralized Wind Flow Model and
Prediction

This chapter consists of two parts. First, a fusion algorithm is suggestedddictions of wind
speed at local turbines in which the set of turbines are considered talénateast three tur-
bines, i.e., two upwind turbines and one downwind turbine. A structure isttgosed for the
decentralized model for the Aeolus benchmark where the local modelsdeedsubsystems
of the dynamic decentralized flow model in this wind farm.

4.1 Fusion of on-line predictions

4.1.1 Effect of wind direction on performance of model identiication

In order to address the direction issue and its effect on identificatioorpesthce, the measure-
ment data from OWEZ wind farm are used. The OWEZ wind farm seen ingdgy consists of
large modern wind turbines. Measurements are available from a set oflsines surrounded
by the red box.

Variation of the wind direction is shown in figude2 . For the first 4-hour data, the direction

of wind is approximatelyl 38° from north geographic, which is aligned with wind turbines row
consisting WTG04, WTGO03, WTGO02 or WTG16, WTG15, WTG14. The Aekinodel is
identified for this segment of data iKifudsen and Soltan2009. The effective wind speed

of WTGO3 is used as input and that of WTGO02 as output. This model is d@edlti@re for 20
hours data and percentage of fitness is calculated for each 4-hanesegsing both offline

and recursive algorithms. Results are shown in figu8e It can be concluded that when wind
direction degrades fron88°, the fitness percentage decreases in both online and offline models,
however, online/recursive model shows slightly higher fitting.

This analysis shows that, also in reality, the models are highly affected byitttedivection
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Figure 4.1: OWEZ wind farm layout.

and therefore we should choose a strategy to improve the predictionstbade variations.

Now consider that generally there are two upwind neighboring turbirresnip turbine in the
wind farm (except the front row with respect to wind direction) at a time. didal algorithm
can be easily implemented on each turbine to find these two upwind turbines atragianging
the wind farm layout, wind turbine location, and wind direction.

The wind direction then is either such that the wind blows from between twaéngpiurbines
toward the downwind turbine, or it is exactly aligned with one upwind-dowawimbine con-
necting line. The fusion algorithm should subsequently be used to improyeetetions in
the former situation while it gives the same results as using the models in s8@ionthe
latter situation.

22



Direction (deg)

0 . 15
Time (hour)
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Figure 4.3: Comparison of fithess percentage of the delayed ARX modekantsive algo-
rithm with prediction horizon of 60sec.

4.1.2 Fusion of Predictions

In a single sensor system one sensor is selected to monitor the system awitmding envi-
ronment. A multi-sensor system employs several sensors to obtain inforrraticieal world
environment full of uncertainty and change. This means various typssnsiors and different
sensor technologies are employed, where some of these sensorséidapmng measurement
domains. Multiple sensors provide more information and hence a better ardpmemise un-
derstanding of a system. Moreover, a single sensor is not capabléadrfio all the required
information reliably at all times in varying environments.

In order for the advantages of multi-sensor systems to be realized, itestedghat the in-
formation provided by the sensors is interpreted and combined in such #éafas reliable,
complete and coherent description of the system is obtained. This is theudita problem.
Multi-sensor fusion is the process by which information from many serisaccembined to
yield an improved description of the observed systdtatambaral1998.

In here each upwind turbine affect the downwind wind field in wind farmuglit is necessary
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to use the information of upwind neighbor turbines to form a dynamic modeldditian the

wind direction has an important effect. As it is shown in previous sectioneffieet degree
of each upwind turbine on the behavior of a downwind turbine, is heavipexdéent on the
wind direction. Therefore, wind direction and information of upwind nemhioirbines must
be combined in order to have the more accurate prediction for the downwinideu If each

wind turbine is assumed as a sensor, the problem of predicting the EW S$nigyinf®rmation

of upwind neighbors, is translated to a multi-sensor fusion problem.

As it is stated, there is a dynamic model for each upwind neighboring turbihe@nsidered
downwind turbine. These models are updated recursively and their oateutse local predic-
tions of EWS at considered wind turbine. The problem is how to fuse thesé poedictions
and eventually obtain the global prediction of EWS at the downwind wind tartitach model
gives the predicted EWS at the downwind wind turbine with its prediction exgariance
matrix. A straight-forward fusion algorithm is simply to take the variance wetyaterage of
predicted EWSs and obtain the global predictigras follows:

N

yg(k+1|k) = Pr(k+1[k) > P (k + 1]k)gi(k + 1|k)
=1

N (4.1)

Pr(k+1lk) = > P (k+1[k)]

i=1

wherey; is thei?” predicted EWS and;(k + 1|k) is the corresponding error covariance. The
weightings are dependent only to error covariances. To make the wejghtiore flexible,
fusing is simply done by using recursive modeling. The main advantagessdagproach is
simplicity. Moreover, the effect of wind direction is inherently included in theghtings. In
this regard, the local EWS predictions are assumed as inputs of a dynanadal with an
output that is global EWS prediction at the downwind wind turbine. The fualgorithm has
the from

N
yg(k+ 1) + aryg(k[k — 1) = > bigi(k + 1|k) + e(t) (4.2)
=1

where each local predictiof is assumed as input and global predictigras output. Parame-
tersa; andb; are computed by using the same recursive algorithm as before.

Above fusion algorithm is evaluated for two cases as shown in figue In the experiment
(C), wind direction is parallel to the connecting line betwégfi}; andWT5; turbines. The aim

is to predict EWS atV' T, by fusing the predicted output of online LTI models frai7; and
WTs to WT,. Finally in the experiment (D), the wind direction is 15 degrees more than the
experiment (C).

Table4.1represents the results of experiment (C). It shows that in this casedtieted EWS
by usingW T35 data can not improve the prediction since the downwind turbifig, experi-
enced less of the wind which experiencedbyls. The results of experiment (D) are shown
in table4.2 It can be seen that fusing the local EWS predictions increases thesfiipedbout
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Figure 4.4: Layout of the experiments: (C) parallel to the connecting lihsdmn V' T; and
W T, turbines and (D) with 5° deviation from former situation in (C).

1%. It implies that improvement in prediction is dependent to the wind directitwerefore,
in a case that the upwind turbine is located exactly against the wind directepreklictions
from the other upwind turbines are not useful.

Pred. hor. lsec. 10sec. 20 sec.
Fitness of Model frontV'T; to W T, (%) 94.761 90.010 89.774
Fitness of Model frontV T3 to WT, (%) 78.151 71.504 71.030
Fitness of fused prediction (%) 94.732 89.988 89.730

=

Error RMS of Model fromiWT; to W7, (m/s)  0.078 0.148 0.15
Error RMS of Model fromW 75 to WTs (m/s)  0.324  0.422 0.429
Error RMS of fused prediction (m/s) 0.078 0.148 0.152

Table 4.1: Results of fusion algorithm in the experiment (C)
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Pred. hor. l1sec. 10sec. 20 sec.
Fitness of Model frontV'T; to WT, (%) 85.915 84.222 84.130
Fitness of Model front¥ T3 to WT, (%) 79.617 76.599 76.453
Fitness of fused prediction (%) 87.310 85.289 85.165
Error RMS of Model fromiWT; to WT, (m/s)  0.202 0.226  0.227
Error RMS of Model fromW 75 to W1, (m/s)  0.292 0.335 0.337
Error RMS of fused prediction (m/s) 0.181 0.211 0.213

Table 4.2: Results of fusion algorithm in the experiment (D)

4.2 Aeolus Benchmark Layout

The basic farm configuration of Aeolus benchméa8blfani et al. 2010 uses 10 NREL 5MW
(Jonkman et a].2009. wind turbines placed in a lattice structure as shown in figube The
inter-turbine distances are 600 meters in the horizontal and 500 metersidahgirections.
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o
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‘ ) o
e}
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600 m 600 m 600 m >I
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> >
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Figure 4.5: The configuration of the wind farm. The mean wind direction is ethvkith an
arrow.

The mean wind speed is chosenl&t: which ensures that the turbines are operating in full
load. Again this is a deliberate choice to simplify the closed form control model®itper
scenarios could be chosen for future versions of the model e.g. argzamere the wind speed
is 11.47 which is the rated wind speed.

The wind turbine model is a simplified aero-elastic model based on static CP/Ies,takimple
3rd order drive train model and a 1st order generator model. The ashire controlled using
the control strategy fromlpnkman et al 2009 which includes a simplified start up procedure
and pitch control for full load operation. The most important turbine patarsare listed in
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Table 4.3: Gross properties for NREL 5-MW turbine

Rated power S5MW
Configuration Upwind, 3 Blades
Control Variable speed, collective pitch
Drive train High speed, Multi-stage gearbax
Rotor, Hub diameter 126m, 3m
Hub height 90m
Cut-in, Rated, Cut-Out Wind speed 37, 11472, 257
Cut-in, Rated rotor speed 6.97pm, 12.1rpm

Table 4.4: Wind field parameters
Mean wind speed 157
Turbulence intensity 10%
Length of wind field (x) 2000m
Length of wind field (y) 1800m
Accuracy of the spatial grid ~ 15m
Sample time 1s
Simulation lenght 5000s

the tabled.3.

The wind field model characteristics are provided in the tdlie These characteristics are
used to generate data for simulation. The model which will be used for ¢ales@mn can then
use the generated data for evaluation.
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Decentralized flow model is obtained for the benchmark in two cases. Irr¢hedse, the wind
direction is aligned with the rows of wind turbines. So, EWS dfgd, of a wind turbine at
a row does not contribute to EWS at another row here. Therefore gitenttalized model is
a combination of local models from each front turbine to one turbine dowahwitigure4.6
shows the decentralized wind flow model for this case Wblé;aepresents a model fro

wind turbine EWS tgj** wind turbine EWS.

The wind direction in the second case is 15 degrees more than that of tteadies Thus, the
model is more complex compared to the first case, i.e., two upwind turbines wililmate to
the EWS prediction at each downwind turbine. Figdréshows the decentralized wind flow
model for this case WherM;fk represents two models froif* and k' wind turbine’s EWS

andP,.; to j'* wind turbine’'s EWS.

Both off-line and on-line models for two cases have been saved in a Mattdage.

R'cfS Prcjf}
—_— 7 Q E‘ 7
M98 IEW S Mlgo WS
— —
EW Sg EW Sg
R’cf-5 meﬁ
: — 5 [Ewss Y — 6 [EWs;
— —>
EW S5 EW Sg
Prep1 Prep2 Preys
A M21 \EW 52 M2 \EW 53 Mf \EW S4
——p 3 —>
EW S, EW S, |ETV S3

Figure 4.6: Decentralized wind flow model when the wind direction is parall¢heéowind
turbine rows.

The fusion algorithm is applied to the first row of the benchmark wind farm ondases, which
are displayed in figurd.6 and4.7. In each case, the EWS at the downwind wind turbines is
predicted. The results are presented in fighu&and4.9. In each figure, plot "a" (blue line)
shows the fitness of the predicted EWS at the downwind wind turbine by osigghe front
upwind wind turbine information (e.g. information ®¥ 7y for predicting the EWS alV'Ty
location), plot "b" (green line) reveals the same by using only the latexaingpwind turbine
information (e.g. information oV 75 for predicting the EWS altV' T location) and finally in
the plot "c" (red line) both upwind wind turbines’ informations are fused.

Figure4.8shows that the information of a lateral upwind turbine does not improve theacy
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Figure 4.7: Decentralized wind flow model in the benchmark wind farm witredfit wind

direction.

of a fused prediction at the downwind wind turbine, when the wind directigaiallel to the
wind turbine rows. On the other hand, figute® indicates improvements in fused prediction
(see plot "c"), when the wind has an angle with respect to the wind turlows,ri.e., the
downwind wind turbine experienced the more wake of the lateral upwind wihéhiel
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Figure 4.8: Fitness of the predicted EWS at downwind wind turbines in thehipesrk wind
farm when the wind direction is parallel to the wind turbine rows.
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Figure 4.9: Fitness of the predicted EWS at downwind wind turbines in thehbesrk wind
farm with different wind direction.
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Chapter 5

Discussion and Conclusion

This report is part of the deliverable D2.3 of the European resedPdhpfoject, Aeolus. In
this report aDecentralized Dynamic Wind Flow Modfdr wind farms is investigated. The
presented model uses the estimated effective wind speed of the neightoobiings in a wind
farm to predict the wind speed at each wind turbine. This means that thdatado load
will be distributed on all turbines locally. The results are especially usefig@nadesigning a
decentralized wind farm controllers in a large-scale wind farm.

The presented models are also obtained both in an off-line and on-line marime off-line
model is a valid model for a specific wind condition (average wind speedfitirg where the
parameters of the model are obtained from recorded data. It is alsodekd when there
are uncertainties in the real experiment (for example, temperature asmhséahanges which
are not considered in the wind farm model). The on-line model insteadegptie parameter
at each time step and therefore adapts the model to the new condition in oal#aito less
prediction error from the model.

It is also observed that the model from a neighboring upwind turbine towdavd turbine is
highly affected by the wind direction. The on-line prediction will be affectgth the change
in wind direction but still it can be improved when a number of predictions eaéadle from

upwind turbines. It is rather easy to implement an algorithm to find the neigithbapwind

turbines for each wind turbine when the layout of the wind farm is available fusion al-

gorithm, presented in this report then provides a fusion on the wind prewsciibdownwind
using the information from upwind neighboring turbines. The results ofus®ih shows an
improvement on the prediction especially when the wind direction is not pataltee wind

turbine rows.
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