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LOADS ON WIND TURBINES ACCESS PLATFORMS WITH GRATINGS 

Thomas Lykke Andersen1, Peter Frigaard
1
, Michael R. Rasmussen

1
 and Luca Martinelli2 

The present paper deals with loads on wind turbine access platforms. The many planned new wind turbine parks 

together with the observed damages on platforms in several existing parks make the topic very important. The paper 

gives an overview of recently developed design formulae for different types of entrance platforms. Moreover, the 

paper present new results on loads on grates based on both drag coefficient measurements and preliminary results on 

slamming from large scale tests. As expected both investigations show that platforms with grates give a significant 

reduction in the loads compared to closed plate platforms. The grate multiplication factor, defined as the peak load on 

the grate platform relative to the peak load on a closed plate platform was found approximately equal to the solidity 

of the grate. 

Keywords: offshore wind; run-up; slamming; entrance platforms; grates; large scale tests 

INTRODUCTION 

Offshore wind turbine parks have up to now been placed in areas with relatively shallow waters 

where there is a high risk of wave slamming caused by waves with steep front or breaking waves. It has 

been observed in several parks that such slamming events might result in very high run-ups, i.e. in the 

order of 25 m. Entrance platforms needed for safe access to the wind turbine have in several cases been 

damaged due to such run-up events during storms. The very significant impact loads cannot be 

prevented as the platforms for practical and safety reasons cannot be positioned high enough. As a 

consequence very strong structures are needed in order to prevent damage.  

If wind turbines are placed in an area with risk of sea ice, a cone is typically applied to break the 

ice. The cone also provides a platform with access to the wind turbine. In case there is no risk of sea 

ice, a platform consisting of solid plates or gratings has typically been applied. Such platforms using 

gratings have been used on the large wind turbine park Horns Reef 1 in Denmark. This park is an 

example of a park with damaged platforms and grates that have been dislodged. Horns Reef 1 was one 

of the first bigger offshore parks and was thus designed before the run-up generated loads were well 

known. An example of a run-event at Hors Reef 1 is shown in Fig. 1 for a significant wave height 

approximately half of the design condition.    

 

    
 

    
Figure 1. Example of observed run-up at Horns Reef 1, Denmark for Hs ≈ 2.5 m, while the platform level is 9.0 
m above SWL. Hs,design,50y = 5.3 m. 
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As part of the Horns Reef 1 repair project and for the design of Horns Reef 2, Aalborg University 

performed model tests. First model test investigations were presented together with a run-up formula by 

De Vos et al. (2007). A more detailed parametric model test investigation on run-up together with an 

updated run-up calculation method based on stream function wave theory is presented in Lykke 

Andersen and Frigaard (2006) and Lykke Andersen et al. (2010). Run-up has been modeled in a CFD 

model by Nielsen et al. (2008) and others. 

Lykke Andersen and Brorsen (2006, 2007) presented and calibrated, based on small scale model 

tests, a calculation model for horizontal and conical closed plate platforms.  

For platforms with grates the loads are reduced as found by Lykke Andersen and Rasmussen (2008) 

for drag and perpendicular attack. For slamming loads large scale or prototype measurements are 

needed in order to determine grate multiplication factors. The grate multiplication factor is here defined 

as the peak load on the grate divided by the peak load on the solid plate for identical impacts. 

Based on above mentioned experimental results it was chosen to use conical platforms at Horns 

Reef 2. Fig. 2 shows a run-up event at Horns Reef 2 for a sea state with a significant wave height 

approximately half of the design value.   

 

     
 

    
Figure 2. Example of observed run-up at Horns Reef 2, Denmark for Hs ≈ 3.5 m. Design wave height 
Hs,design,50y = 6.5 m. 

AIM OF PRESENT PAPER 

The aim of the present paper is firstly to give an overview of design methods for loads on wind 

turbine entrance platforms established from above mentioned experimental studies. Secondly to present 

new results for loads on grates subjected to impacting stationary jets including oblique attack. Thirdly 

to present new preliminary results on grate multiplication factors from newly performed large scale tests 

in the Großen Wellenkanal (GWK), Hannover, Germany.  

EXISTING DESIGN FORMULAE FOR ENTRANCE PLATFORMS 

The existing design formulae is based on model tests carried out at Aalborg University and 

reported in Lykke Andersen and Frigaard (2006), Lykke Andersen and Brorsen (2006 and 2007). Based 

on above experiments the design formulae given in Eq. 1-3 is presented by Lykke Andersen et al. 

(2010) for run-up height (vertical distance from SWL ) in the absence of a platform.  
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Here Ru,2% is the run-up height exceeded by 2% of the waves and Ru,max is the maximum run-up 

height. g is the gravity acceleration and m is the run-up factor that takes into account that the initial run-

up velocity is higher than the horizontal particle velocity in the crest. η and u is respectively the crest 

elevation and horizontal particle velocity in the crest calculated using stream function wave theory. In 
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these calculations Tp is used as wave period and as wave height is used H2% and Hmax for Ru,2% and 

Ru,max, respectively. Based on small scale model tests Lykke Andersen (2010) found m = 4 for s0p = 0.02 

and m = 3 for s0p = 0.035.  The factor 1.4 is to take into account impacting waves not dealt with 

correctly by the measurement system used by Lykke Andersen in the small scale tests. It should be 

noted that even for waves that are not depth limited some waves are still breaking or close to breaking 

with a steep front and thus leading to high and thin run-ups. Therefore, it is recommended to apply the 

factor 1.4 in all typical applications of offshore wind turbines.  

For estimation of the impact loads on platforms the run-up velocity (v) at the platform level is used. 

This is calculated from the run-up height by assuming no energy loss in the run-up process from the 

platform level and upwards. This leads to the formula given in Eq. 3: 

 ( )zRgzv u −⋅= 2)(  (3)  

where z is the vertical distance from SWL to the platform. The slamming pressures (pmax) are 

calculated using the run-up velocity (v(z)) and a slamming load model as given by Eq. 4.  

 sCvp
2

2
1

max ρ=  (4)  

Based on model tests the slamming coefficients were calibrated for the two different types of 

platforms. Slamming coefficients are given for the maximum peak load on the front part (160º sector) 

of the platform and for maximum local pressures over a prototype area of approx. 0.5 m
2
, cf. Lykke 

Andersen and Brorsen (2007). The slamming coefficients are given in Table 1. 

 
Table 1. Conservatively calibrated slamming coefficients (Cs) 
for closed plate platforms (Lykke Andersen and Brorsen 2007). 

 Cs, 160º sector Cs,local pressure 

Conical platform 1.2 6 
Horizontal platform 1.5 10 

 

Eqs. 1-4 give the load model that exists for closed plate platforms. However, for porous platforms 

there exists no load model at the moment and it is thus the scope of the rest of this paper to present 

results for platforms with grates in order to provide a preliminary load model for platforms with grates. 

EXISTING DATA FOR LOADS ON GRATES  

The literature review on existing data on loads on porous structures is split into two parts, i.e. 

perpendicular attack and correction for oblique attack. 

Perpendicular Attack 

The normal force on a grate (Fx) from a stationary jet can be calculated from the momentum 

equation, eq. 5.  

 ( )outxinxx VVQF ,, −⋅= ρ  (5)  

Here Q is the flow and Vx is the velocity in the x-direction (normal to the plate). For a non-porous 

plate the outflow will be parallel to the plate. For perpendicular attack we thus have Vx,in = V and Vx,out 

= 0 and get Fx = ρ Q V = ρ V
2 

A, i.e. corresponding to CD = 2 for the plate. The maximum local pressure 

is the stagnation pressure corresponding to CP = 1. The reason for CD = 2 on the total force is that the 

exposed area is larger than the area of the jet. For a grate Vx,out > 0 and we thus get a reduction in the 

load compared to the solid plate, i.e. CD < 2. 

Richards and Robinson (1999) found that the load reduction on grates compared to solid plates 

mainly depends on the porosity (β) defined as:  

 
1A

Ao=β  (6)  

where Ao is the area open to flow and A1 is the total area. The pressure drop (∆p) across a porous 

structure depends of the resistance against the flow through it. The resistance is often characterized by a 

pressure loss coefficient K.  
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where V is a characteristic velocity. For structures with a high porosity we can assume that most of 

the flow approaching the porous structure will pass through it. Therefore, the drag coefficient (CD) is 

approximately equal to the loss coefficient (K), but only if the velocity is taken as the velocity in the 

incomming jet and the reference area is taken as the total area including the openings (area of jet). This 

is important as Richards & Robinson (1999) and others give values of hydraulic loss coefficients (K) 

for different types of porous elements that can be used as estimates for the drag coefficients. Richards & 

Robinson (1999) gives values of K for round wire mesh screens as function of porosity and Reynolds 

number. They also give the following formula for estimating the relationship between drag coefficients 

for a solid plate (CD,solid) and for a round wire mesh screen (CD):  

 
e

solidD

D

C

C
β−= 1

,

 (8)  

The effective porosity βe takes into account the influence of the geometry and the size of the 

openings. For instance grates made from elements with sharp edges are expected to observe larger 

forces than elements with rounded edges as observed for single body drag. βe = β for round wire mesh 

screens while βe = 0.75·β for structures made from slats with a depth comparable to their width 

(Richards & Robinson 1999). For structures made from flat webs the effective porosity may be about 

2/3 of the geometric porosity (Morgan 1962). 

Several other suggestions for the drag coefficient as a function of porosity have been suggested.  

Annand (1953) propose that the drag coefficient can be found as:  

 
( )

2

21

β

β−⋅
=

a
CD

 (9)  

where a is a Reynolds number dependent coefficient. For high Reynolds numbers, this coefficient 

becomes constant with a value around 0.55. 

The loading on free standing porous walls is given by Richards and Robinson (1999):  

 ( )212.1 β−⋅=DC  (10)  

For high porosities (β > 0.7) equations 8, 9 and 10 give very similar results. 

Oblique Attack 

For solid plates the maximum force is achieved when the jet is perpendicular to the plate. This can 

be realized by the momentum transfer described by Eq. 5. By changing the angle of the jet, the force is 

split into a normal force due to pressure differences and a friction force parallel to the plate. The normal 

force can be found from Eq. 5:  

 ( )( ) ( )θρθρ sin0sin 2
AVVQF =−⋅⋅=  (11)  

where θ is the angle between plate and jet and A is the area of the jet (measured on a plane 

perpendicular to the flow direction).  

For mesh type grates with round bars, the reduction is as for the plate and the drag coefficient can 

be founds as (Richards and Robinson 1999), (Idelchik 2003):  

 ( )θsin, ⋅= normalDD CC  (12)  

This can be explained by the fact that the effect on the individual round bar is the same, 

independently of the angle. Therefore, the normal force to the mesh will follow the usual sine relation 

as found for the solid plate. 

For grates with rectangular bars and a significant depth of the grate, only little literature is found on 

the influence of the angle of attack.  The complication of this structure, compared to grates made from 

round bars, is that the depth of the grate is exposed to the water jet as the jet is angled. Due to little 

knowledge on the effect of thick grates, the present experiments will measure the normal force as a 

function of angle of attack. 



 COASTAL ENGINEERING 2010 

 

5

The assumption behind equation 11 is that the jet of water is smaller than the grate as investigated 

in the present tests. Therefore, it is assumed that the run-up tongue is smaller than the platform area 

with grates. 

GRATE MULTIPLICATION FACTORS BASED ON DRAG TESTS 

Set-Up 

The set-up for the drag measurements consisted of a frame connected to a large force transducer, 

cf. Fig. 3. The different grates have been attached to this frame when tested. The force is measured for a 

jet generated by a nozzle connected to two large pumps. The connection of the two pumps to the nozzle 

is shown in Fig. 3. As the nozzle was placed within few centimetres from the plate/grate the diameter of 

the impacting jet is very close to the inner diameter of the nozzle equal to 0.081 m. The pumps used are 

of type FLYGT 5.2kW and has a maximum flow rate around 35 l/s each. In the present tests one and 

two pumps have been used. The flow was measured by a clamp on ultrasonic flow transducer. 

 

  
Figure 3. Photos of the set-up used for the drag tests. 

The influence of entrained air has been studied in the tests. The air was added in the outer part of 

the nozzle approximately 20 cm from the outlet. To get a close to uniform air entrainment the air is 

added through a nozzle perforated in the side facing the outlet as shown in Fig. 4. The air flow was 

measured to approximately 5 l/s, corresponding to 10% air in the tests performed with both pumps 

running at maximum power. The nozzle was also in place for the tests with no air. A comparison of the 

drag coefficient for the solid plate was performed for measurements with and without the air nozzle in 

place. From this it was concluded that the influence of the air nozzle itself was very small. 

 

    
Figure 4. Picture of air nozzle. 
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Four grates and a solid plate were tested. The dimensions of the different grates are given in Table 

2. It can be seen that three of the grates have very similar porosity and only the Weland J9 has a 

porosity that is significant different from the others.  
 

Table 2. Dimensions of tested grates and their opening percentage. 

 openings bar thickness bar height Porosity (β) 

Solid plate - - - 0.00 
Fiberline 40 33.5×33.5 mm 6.5 mm 30 mm 0.70 
Fiberline 50 42.5×42.5 mm 7.5 mm 50 mm 0.72 
Weland H4 30/5 SAFETY 43.0×28.0 mm 7.0 & 5.5 mm 30 mm 0.72 
Weland J9 30/3, non-galvanized 92.0×38.0 mm 6.0 & 3.0 mm 30 mm 0.87 

 

However, the structure of the Fiberline and Weland grates are very different, cf. Fig. 5, and this 

might influence the observed forces. The rounded bars used on the Weland grates generally give 

smaller resistance than bars with sharp edges used for the Fiberline grates.  

 
Figure 5. Pictures of the four grates tested. From left to right is Fiberline 40, Fiberline 50, Weland H4 and 
Weland J9. The pictures are taken so the grates are viewed from the bottom (the side facing the jet). 

Results Perpendicular Attack 

Fig. 6 shows the results for the solid plate. These results are included to verify the clamp-on 

ultrasonic flow transducer using the two different sets of electrodes available for the flow transducer. 

Moreover, a fitted curve to each of the electrode pairs is also included in the figure. These curves have 

been fitted with the assumption of a constant CD. It can be seen that there is only 10% difference in the 

two CD values for the two different pairs of electrodes. This corresponds to only 3% differences in the 

two flow rates. Moreover, CD = 2 as given by the momentum equation is validated by the tests.  

 
Figure 6. Solid plate results. 

 Pictures of the impact on the four different grates and the solid plate are shown in Fig. 7 for 

perpendicular attack and no air added. It can be seen that the area of the jet is quite small compared not 

only to the structure of the grates but also compared to prototype conditions. It is possible that this have 

some influence on the obtained results as the spreading on the rear side of the grate will probably be 

different if a larger area is exposed. Moreover, the relation between the force on the plate and on the 

grate might depend on the area considered and the size of the jet. Due to the large spreading on the rear 
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side, no significant downstream suction is expected in the tests as it seems well ventilated. If the 

exposed area is significantly larger in prototype this might not be true for the prototype conditions. As a 

consequence the obtained results might for the grates be on the unsafe side. Moreover, the situation 

considered is drag and not slamming as in prototype. In order to investigate these two items large scale 

or prototype tests are needed.  

 

  
 

  
 

  
Figure 7. Pictures of perpendicular impact on the solid plate and the three different grates for close to 
identical jet velocities and no air added.  

The large openings in the Weland J9 grate compared to the size of the impacting jet, makes the jet 

impact point very important. In the present study two positions have been considered for this grate, cf. 

Fig. 10. Position 1 corresponds to maximum porosity (β ≈ 0.95), while Position 2 corresponds to 

minimum porosity (β ≈ 0.83). Moreover, the pictures illustrate that for the grates most of the water flow 

through the grate and has great velocity also behind the grate. This indicates significant smaller forces 

on the grates compared to the solid plate. It can also be seen that the results for the Weland J9 grate is 

SOLID PLATE FIBERLINE40 

WELAND H4 SAFETY FIBERLINE50 

WELAND J9, POS. 2 WELAND J9, POS. 1 
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not as strong influenced by the jet impact point as the two porosities indicate, but anyway the influence 

is important. 

 

  
Figure 8. Measured drag coefficients for the different grates for perpendicular attack and no air added. The 
reference area used is the area of the jet.  

Within the uncertainties related to these tests, it is clear from Fig. 8 that the grate multiplication 

factor is not strongly dependent on the Reynolds numbers. However, the tests with the larger flow rate 

(higher Reynolds number) give generally slightly smaller grate multiplication factors. The upper limit 

for the grate multiplication factor seems to be the solidity of the grate as also indicated by Eq. 8.  

The two Fiberline grates give drag coefficients that are higher than those for the Weland grates. 

This is expected mainly to be due to the rounded bars used for the Weland grates instead of the sharp 

edged slats used for the Fiberline grates. Grates with sharp edged elements correspond to a smaller 

effective porosity 

However, in some cases the grate multiplication factors are smaller than expected. This can maybe 

be explained by the well ventilated rear side or the very large Reynolds numbers in the present tests. 

Another explanation could be that even for very porous grates the flow is much different in the present 

tests to the flow used in the resistance tests. In the present tests this was observed as some part of the 

water flows parallel with the grate and the rear side is well ventilated. Therefore, the flow is significant 

different from the resistance flow where the rear side is not ventilated and the water cannot escape 

parallel to the grate. The case in the prototype is expected to be something in between as the jet is much 

bigger than tested in the experiments but smaller than the platform.  

Influence of Oblique Attack and Air Content 

Fig. 9 presents all the results obtained for the different angles of attack and the two air flows tested. 

The results states that the forces on a solid plate will depend on the angle of attack as given in Eq. 11. 

When no air is added CD,normal ≈ 2.0 as given by the theory in Eq. 5. When 10% to 16% air is added it 

still follows Eq. 10 but with CD,normal ≈ 2.6. The increase in the drag coefficient when air is added was 

unexpected from a momentum point of view, but could be due to a non-uniform velocity and air 

distribution (model effects). Moreover, the 10% drop in water flow from the pumps as reported by the 

flow transducer when 10% air is added could be wrong. An explanation could be that more water is 

thrown backwards from the plate when air is added. Even though it was visually observed that the air 

changed the flow pattern it is believed that the difference is mainly due to model effects. 
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Figure 9. Measured forces at different angle of attack for the different grates. For the solid wall case two 
curves are given corresponding to Eq. 11 using CD = 2.0 and CD =2.6 for perpendicular attack for no air 
added and air added, respectively. 

The grate will observe approximately the same out of plane force for attack angles between 90 and 

50 degrees, cf. Fig. 9. In case of very oblique attack the out of plane forces are decreasing. However, a 

special attention has to be given to the results for the Fiberline 50 grate as the measured forces are 

largest for a small obliqueness. The reason for this is expected to be that the Fiberline 50 grate is the 

thickest of the four grates tested. It should be noted that when the jet is angled in relation to the grate, 

the depth of the grate is exposed to the jet. This will increase the projected frontal area. At the same 

time, when the jet is angled in relation to the grate, only a part of the force will be directed 
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perpendicular to the grate. The projected area will be directly proportional to the sine of the angle, 

while the projected forces will be the inverse proportional to the sine of the angle. 

 

LARGE SCALE TESTS 

The stationary drag tests have some open points regarding transformation to prototype conditions 

where a major difference is that the load on the grate in prototype is not drag but slamming dominated. 

The jet tested in the drag tests was very small leading to well ventilated rear side. Moreover, there 

seems to be a significant influence of the angle of attack leading to larger loads for slightly oblique 

attack for thick grates with flat bars. These three uncertainties make large scale tests very important in 

order to have a better estimation of the grate multiplication factor. The large scale tests presented here 

are some recently performed tests in the Großen Wellenkanal (GWK), Hannover, Germany and can be 

considered as scale 1:8 to 1:10 of typical offshore wind turbine parks.  

Test Set-Up 

A pile with a diameter of 0.56 m was installed 111 m from the generator. A sandy sea bed was used 

with a thickness varying from 0 m approximately 50 m from the generator to 1 m at the pile. 22 surface 

elevations gauges were installed to measure the wave transformation along the channel. The wave 

parameters given in the present paper are those measured at the pile.  

Run-up without platforms installed was first measured using a high speed video camera. Afterwards 

the tests were repeated with load measurements on the platforms. 

For the load measurements a solid plate platform and two grates with porosities 70% and 84% were 

tested at several platform levels. The outer diameter of the platforms were 1.00 m giving a platform 

width of 0.22 m. Both grate types were made of steel slats. The platforms were mounted with a small 

gap to the pile in order to be able to measure the total load. The gap was in the range 1 to 10 mm on the 

front side and a larger gap on the rear side. The platform had three supports (120 degree interval) each 

connected to a force transducer. Fig. 10 shows the two front support force transducers (U9B from 

HBM, with nominal forces 10 kN). The third support and associated force transducer (U9B from HBM, 

with nominal force 2 kN) located on the rear side of the pile cannot be seen in the figure. Per force 

transducer, a knuckle eye is used (mounted between the transducer and the platform) as force-

introduction aid and to avoid bending moments. An analog lowpass filter was applied on the three force 

transducers with a cut-off frequency of 316 Hz. 

 In addition to the force measurements were measured impact pressures on the closed plate 

platform by 25 pressure cells (DRUCK PDCR 830). 

Sample frequency was 1000 Hz for tests with the two grate platforms. For the solid plat platform 

the sample frequency was increased to 4000 Hz to have better resolution on the impact pressures.  

 

  

Figure 10. Photo of grate (70% porosity) and solid platform installed.  

Test Programme and Analysis 

A number of different sea states were tested including freak waves and different irregular seas 

generated from the JONSWAP spectrum with γ = 3.3 for water depths (h) between 2 and 3 m at the 

pile. Each of the irregular sea states included approximately 500 waves.  
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For the present paper only a preliminary analysis is presented as only the platform level +1.75 m 

and the sea state given by the following sea state parameters at the pile h = 3.0, Hm0 = 1.0 m and Tp = 

5.9 s is considered. This sea state has been repeated with identical steering signals for run-up 

measurement and load measurement on the three tested platform types. Thus interrelated run-up levels 

and loads have been obtained. For this sea state there are five run-up events giving approximately the 

same run-up height. The measured green water thick run-up reached approximately level +1.8 m for 

these five events with spray up to at least level +3.0 m. The run-up formulae by Lykke Andersen et al. 

(2010), Eq. 2, based on small scale results give for the highest wave a run-up height of 3.3 m and is thus 

in quite good agreement with the spray measurements. 

Results 

Figs. 11-13 show a comparison of the event giving the maximum total force (sum of the forces in 

the three supports) on the three types of platforms. The largest impact on the three platform types 

occurs for different waves all giving a very large run-up. In the three events the individual wave height 

is more or less identical with Hmax ≈ 1.6 m.  

 The slamming load model based on small scale results give for the closed plate platform a 

maximum vertical force of 1.0 - 2.2 kN, depending on the assumption of the pressure outside the 160 

degree sector with pressure cells. 1.0 kN is obtained if zero pressure is assumed outside the sector. 2.2 

kN is obtained if the pressure outside the sector is assumed identical to pressure inside the sector. The 

most realistic estimate is believed to be close to the lower end of the interval.  

A total load of 2.3 kN was measured in large scale for the closed plate platform. Further analysis of 

run-up and loads on the closed plate platform for several tests is needed to analyze the deviations in 

predicted and measured loads for the closed plate platform. 

 

    
 

   
 

   
Figure 11. Pictures (∆t = 0.20 s) of impacting irregular wave on grate platform (porosity 84%) at level +1.75. 
Maximum load 0.51 kN for h = 3 m, Hm0 = 1.0 m and Tp = 5.9 s, all values in model scale. 
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Figure 12. Pictures (∆t = 0.08 s) of impacting irregular wave on grate platform (porosity 70%) at level +1.75. 
Maximum load 1.05 kN for h = 3 m, Hm0 = 1.0 m and Tp = 5.9 s, all values in model scale. 

By comparing Figs. 11-13 it is evident that the solid plate experiences significantly larger forces 

than the porous grates. The grate multiplication factors for the maximum vertical loads seems to be 

slightly larger than the solidity (1 – porosity), i.e. slightly larger than found for drag. 

A summary of the obtained loads and the corresponding grate multiplication factors are given in 

Table 3. 

 
Table 3. Summary of peak loads and corresponding grate 
multiplication factors for the max load in the considered sea 
state. 

Porosity Measured max. peak load Grate multiplication factor 

0% 2.3 kN 1.00 
70% 1.05 kN 0.46 
84% 0.51 kN 0.22 

 

Fig. 14 shows the load history for the three impact examples shown in Figs. 11 – 13. The loads 

consist of an impact load and some vibrations of the structure. Therefore, the maximum force is not the 

only parameter to describe the loads, but the time history is also very important. Moreover, the response 

of the prototype structure for such types of loads should be determined for design purposes in order to 

know if dynamic amplification or dampening occurs. Here it should be noted that the eigen frequency 

of the platform was 50-60 Hz in the model, which is expected to correlate quite well with prototype 

platforms of such types. 

The duration of the impacts is less than 200 ms and highest for the closed plate platform. This 

means the impact impulse is significantly larger for the closed plate compared to the grates.  
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Figure 13. Pictures (∆t = 0.08 s) of impacting irregular wave on solid platform (porosity 0%) at level +1.75. 
Maximum load 2.3 kN for h = 3 m, Hm0 = 1.0 m and Tp = 5.9 s, all values in model scale. 
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Figure 14. Total force time series of the three impacts shown in Fig. 11-13. 
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Fig. 15 shows a comparison of peak loads for all impacts in the considered sea state. This is done 

for interrelated events (loads for same waves compared) and where the events are ranked after peak 

force for each platform type. In the latter situation we thus compare the highest peak loads on the three 

platform types, the second highest and so on. 

It can be seen that if identical events are compared there is a very significant scatter on the grate 

multiplication factors. This shows that slamming loads are very sensitive to small differences in the 

wave kinematics for example caused by slightly different breaking. 

When the loads are ranked after peak force the scatter almost disappears and it can be seen that the 

grate multiplication factor is approximately equal to the solidity of the grate (1 – β), but slightly larger 

for the highest event. This was found as a conservative limit in the drag tests for perpendicular attack. 

 

  
Figure 15. Peak loads for all events giving impact in the sea state. 

It can also be seen that in this specific case 2% of the waves hit the platform. This shows the 

importance of the highest run-ups and the importance of the really extreme events. It also demonstrates 

that safety on platform loads cannot be included by the partial safety factor method as the phenomenon 

is extremely non-linear. Instead safety should be included by using a return period leading to the wanted 

safety level (for example T = 10,000 years). Combinations of sea state parameters corresponding to this 

return period should be established in order to calculate extreme design loads for example using the 

load model presented here. Even for the short lifetime of wind turbines, climate changes might also be 

very important to include. 

CONCLUSIONS 

A summary of recently performed model tests and associated design formulae for run-up and loads 

on closed plate platforms has been given. Moreover, results from two studies on loads on grates have 

been presented. The first study is drag load measurements from an impacting stationary small jet. The 

second study is based on large scale tests, where only preliminary results have been established at the 

moment. In the large scale tests were measured run-up heights as well as impact loads on different 

platform types. 

Based on both studies it appears that peak loads on entrance platforms with grates can be calculated 

from the peak load on a closed plate platform multiplied by a grate multiplication factor. This grate 

multiplication factor was in both studied found to be approximately equal to the solidity of the grate (1 

– porosity), but also slightly dependent on the detailed geometry of the grate.  

However, the drag tests indicate that this is a conservative limit while based on a single large scale 

test condition it seems as a central or slightly unsafe estimate. Analysis of several of the large scale tests 

are needed to quantify if this is a general difference between the two studies. Because of this difference 

it must be concluded that the drag tests are very good to test different grates in order to find grates that 

meet the safety requirements and give small grate multiplication factors. The large scale tests give 

however a more realistic estimate of the actual flow and loading conditions and thus are the grate 

factors determined from these experiments expected to be more realistic for prototype conditions. 
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An important conclusion is that both studies indicate that grates lead to a very significant reduction 

in the design loads compared to closed plate platforms. For very typical grate geometries the load is 

reduced by a factor 3-5 compared to solid plates and even higher if safety requirements allow grates 

with higher porosities. Investigations on force peak shapes are still ongoing. 

Visual observations in small and large scale indicate that wave run-up and associated loads on 

platforms is very sensitive to the detailed wave kinematics. Wave breaking in irregular waves seems to 

be a key issue that at the moment is not well dealt with in the literature. To get maximum run-up a wave 

with steep front or a wave breaking directly on or slightly in front of the pile is needed. In the tests only 

very few of the waves have these characteristics (approx. 1-2%). Also it should be noted that even 

though spilling breakers were expected from the Irribarren number, it was observed that few waves 

have a very steep front and are plunging or close to plunging. 
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