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Abstract— This paper concerns the software architecture called ~ The Sophy server is written in JAVA, allowing designers
Sophy, which is an abbreviation for Simulation, Observatimi, and  to exploit the garbage collecting feature of the Java Virtua
Planning in HYbrid systems. We present a framework that allavs Machine [Lindholm and Yellin, 1998 which increases the
execution of hybrid dynamical systems in an on-line distriluted ’ o
computing environment, which includes interaction with bah robu.stness of the software (_jevelo.pment process by gllmgat
hardware and on-board software. the risk of so-called “dangling pointers”. Further, objseti-

Some of the key issues addressed by the framework are auto-alization techniques and networking capabilities are eygid
matic translation of mathematical specifications of hybridsystems to enable the dynamical transfer of components between
into executable software entities, management of executioof processing resources (e.g. redundant on-board compuiters)
coupled models in a parallel distributed environment, as wk as fact th hitect I th ts to be digib
interaction with external components, hardware and/or sofware, act, the architec .ure allows the Componen S o be d u
through generic interfaces. across any persistent network; This means that a Sophy-

Sophy is primarily intended as a tool for development of mode enabled satellite cluster can share software resourcds suc
based reusable software for the control and autonomous futions  as e.g. environmental models. From a user perspective, the

of satellites and/or satellite clusters. distribution and networking is completely transparent.

KEYWORDS The components are aple to interact with sensors and
actuators on all platforms in the Sophy network. On each

Hybrid systems, Autonomy, Java, Software Architectur@yatiorm the user must extend simple classes to interatt wit
Satellites the particular on-board hardware.

Sophy is built around a number of plug-in interfaces that
) o allow users to customize and tailor the framework towards
Small satellite missions tend to be far less costly tham theisecific needs. This interface also facilitates researgh, ley

conventional counterparts, which makes it possible toycaraking stringent comparison between various algorithreg.ea
out missions that previously were seen as infeasible. Mario The design of Sophy was first presentedliaursenet al
measures can be considered when attempting to drive the ¢ 5, while this paper describes a second iteration of ideas

down; the satellite hardware itself can be made miniatdrizeomd interfaces. based on the lessons learned so far

and simplified, off-the-shelf components can be used rather. . . L . .
The paper is organised as follows; First, in Section I,
than custom-made ones, and software components can,be L L )
. . the” motivation and objectives of Sophy are explained. Then,

made generic, allowing to cut down development manhou

. . : . éction 1ll presents the formulation of hybrid dynamical
This paper describes a software architecture that mteodsst stems used in the Sophy framework. whereunon it is Shown
reduce the time it takes to implement model-based softwe'_ié phy ’ P

I. INTRODUCTION

. : ow these models are mapped to human readable XML files
components such as attitude control, orbit control andt fa : . . )
. . . : ection V). Section V gives an overview of the overall
detection/handling algorithms for small satellites.

. . . S software architecture and a case study (a simulation mddel o
The key element is a lightweight application server, nam?ﬁ : . . . L
> . . the AAUSAT-II pico-satellite) that involves interactionitiv
Sophy[Laursenet al., 2003, which is loaded with specifi- ; . k : :
cations of hvbrid dvnamical svstems that for instance cou atlab is presented in Section VI. Finally, some conclusion
yord dy Y . . d perspectives are given in Section VII.

represent an attitude controller, a sensor fusion alguoritin
a supervisory controller. Each of these models are destribe
in human-readable eXtendable Mark-up Language (XML) Il. SOPHY OBJECTIVES
documents[Consortium, 2006 which can be reused from
mission to mission. The interconnection between the om-lin The Sophy framework takes its starting point in three curren
components is specified in another XML file along withrends in control engineering systems today, which will be
parameters specific for the mission. described in this section.



Requirements

Modeling

Algorithm
Design

Implementation

A. Hybrid Systems Modeling

In recent years, hybrid dynamical systems, i.e. systents tha
exhibit both continuous and discrete dynamics, have been th
subject of intense research interest. This paradigm isofte
well suited when modeling real-life complex systems such
as spacecraft, which are describing both continuous Viasab
such as e.g. battery capacity, attitude or propellant nsasse
well as discrete variables such as e.g the power-down status
(redundant) subsystems or a commanded mode of operation.

Previous research into hybrid systems theory has focused
on hybrid modeling, simulation and verification, see e.g.
[Henzinger, 1996 More recent research has begun to ad-
dress application of hybrid systems theory to control and
estimation problems, see elyVilliams and Hofbaur, 2004;
Barton and Lee, 2002; Branickgt al, 1999. In terms of
autonomous systems, the potential of hybrid systems used in
concert with model-based methods such as optimal nonlinear

fllterlng and model predlctlve control is huQe due to the'lgig. 1 Workflow for a traditional development cycle (Lefthda for

expressiveness and generality. _ development using Sophy (Right)
So far, however, the research community has not been able

to converge on one standard description of hybrid dynamical

systems, and one of the objectives of the Sophy project isrisfer to, e.g.,[Abildsten and Blanke, 1997 However, the

develop a specification and corresponding terminologyfitsat |ast decades’ rapid advances in digital technology has made

well with spacecraft control applications. ubiquitous computing available even in space. Modern space

B. Mapping Specifications into Software craft typically e_mploy a number of dedicate.d computers in

charge of specific tasks and/or subsystems; one example of

Figure 1 (Left) depicts a typical development cycle fogmg| spacecraft employing this strategy is the AAU-Cubesa

model based software. First, requirements are specified gaghninde et al., 2004.

then a simulation model is built that is used to design the o5 documented ifiLaursenet al, 2004, Sophy is designed

algorithms that implement the requirements on the systér. Trrom the bottom up with the understanding of a distributed

algorithms are evaluated using the simulation model ancwhgrchitecture in mind, allowing to distribute the respoilsies

and verified against the model. Any changes in requiremegjsiegate specific tasks to each node.

or models requires a new development cycle in the simulated
environment, which then needs to be translated into fligheco [1l. HYBRID DYNAMICAL SYSTEMS

and tested again etc. __ This section defines the view of hybrid dynamical systems
In Sophy, the goal is to bypass the need to write flighfyen in Sophy, including key definitions of major concepts

code in the design loop, as illustrated in Figure 1 (Righy), byng practical derivations of the specification. The viewt tha
automating the process of going from mathematical speeifiGa (aken is a control systems-oriented view quite similar to
tions to an executable software object for simulation analfie [Branicky et al, 1994, rather than a discrete-events oriented

line execution. The use of JAVA enables use of the same cqqgw such as the one found in e.§Grasso, 200R

both on desktop computers and on flight computers and therpe gpecification starts with a very abstract view and then
plug-in interfaces, together with the distribution cayiéibs, presents some useful restrictions on that. It is the objedf

allow a gradual transition from 100% simulation througis,yhy to support these various views through a highly flexibl
hardware-in-the-loop simulation and finally execution be t plug-in-based structure.

completed flight system.

Similar features for automatic code generation can algo Abstract Definition of Hybrid System
be found in other tools, such as Matlab or MatrixX, but | ha following R”
in addition Sophy provides functionality directly suppod clidean space and™ will the positive integers. A hybrid
hybrid systems theory and distributed computing architest system is an 8-tuple:

These features will be explained in greater depth in thé

Modeling

Algorithm
Design

Evaluation
Using
Simulation

Iteration
Iteration

Implementation Satisfied

Verification

Iteration
Satisfied

will denote the n-dimensional Eu-

following. H=(QX,UY,EF,GT) (1)
C. Distributed Computing in which
Traditionally, spacecraft have been controlled from a maine @ = {1,2,...,s} C Z* is the set of location indexes

on-board computer (possible with redundant backups) — with cardinal numbes



o X = {{z]r € X,}4e0lXy =R"} is the continuous is an algebraic reset of the statg,, is an input event that

state-space with dimension,cg € Z* causes the transition to trigger angd,; is an output event that

e U = {{uju e U,}seqlU, =R™} is the continuous is emitted when the transition is taken.
input-space with dimensiom,cq € Z* In this definition, the use of the location indexed st&te

e Y = {{yly € Y }4e0lYy =RPe}: is the continuous rather thanS makes it convenient to group transitions,
output-space with dimension,cq € Z* according to source location. For purposes of implemenntati

o« F= {e|ee 22}: is the set of possible input/output eventhe transition domain must be specified as a number of
labels, where> is an appropriate set of labels logically combined inequalities, for example:

« F:Q x X xU — X is the forcing function on the
continuous state-space j(Sq) =7 (Sq) >0 A (j2(8q) >0 Vs (Sq) > O) 4)

e G:Q x X xU —Y is a continuous output map

e T:QxXxUxFE—QxX x E is a transition map - i _ ) ]
Note how both the continuousF(G) and discrete dynamics For compositions Qf hybrid syster_n§,_ which will be (_jescrl_bed
(T) are allowed to depend on the discrete location (operatih the next subsection, the possibility that the dimensions

mode or similar) as well as the continuous states and inpus,NPUt, output and state-space changes with each location
while events affect only the discrete dynamics. requires that there are up &g x s, different specifications for

Remark 1 Time is not explicitly included in the definition C0MPOSINg two systems, which can make compositions quite

of the system. However, with no loss of generality the madel®Mmanagable.

can include an extra state in the continuous map to represent Nerefore, in this paper we will limit the definition of
explicit time. composition to what is called Constant Dimension Systems

Remark 2 In most practical applications the dimensionéCDS). For these systgm we can use fixed-dimension vectors
of the state-, input-, and output-spaces will not changd wit® represent elements in the spaces, as follows:
differentq € Q (see definition of CDS systems later). < » n-dimensional state: € X, Vg € Q
» m-dimensional input: € Ugeq Vg € Q
» p-dimensional outpuy € Y,cq Vq € Q

C. Constant Dimension Systems (CDS)

B. Definition of Hybrid Deterministic Systems (HDS)

A.‘ HDS imposes the following restrictions on the above Many practical systems are CDS and it is always possible to
definition: . . embed a HDS in a CDS formulation by looking at the union
« The mapsF,G, andT, must be deterministic functions u gpaces over all locations of a system. This may entail that
of the state and input _ _ in some locations some inputs or outputs that are unused (kep
« At any time the total state of the HDS is defined by th€onstant) in the CDS formulation.
triple: S = (¢ € Q,z € Xg,u € Uy) Sophy can simulate both HDS and CDS systems, but

« The initial state of a HDS is defined byo = (9% € ¢ompositions are always between systems on CDS form.
Q, o € quvu0 € UqO)

« If the total state is indexed with € @, e.9.S,, it means D. Composition

that .the location is flx_e.d, thus, = X, x Uy ) . In the following section we define the parallel composition
To define a HDS the initial total state must be included Bt two CDS systemschDS and ngs as shown in Fig-

the definition, and to make the specification of the HDS MO[fe 2. This operation yields a new hybrid systéti?S; .

convenient the mapg andg will be defined as sets of VeCtorComposing two hybrid systems into one involves two main
fields indexed by; € @ and the transition map will be bmkenstepS'

up into a set of different maps: . .

o A vector of external inputsuy, and outputsy;, Iis
HAPS = (Q,X,U,Y,E,F,G,T,S,) () selected for the composed system.

« A set of mapping functions that maps the input to the
composed system and the output from the two component
hybrid systemsyy,, and ys,, to the input to the two
component hybrid systemsy,;, anduy,, and the output

where
e Q,X,U,Y, E are defined as above
e F = {fq}qu |{q} X Xq X Uq - Xq} is the set of

forcing functions on the continuous state-space from the composed system, is selected for the composed
« § = {{gq}qu {q} x Xy x Ug — }@} is the set of system.

continuous output maps The parallel composition offers the possibility of modglin
e T = {{t7‘}T6{1,__,p} QXX xUxE—QxXx E} a complex hybrid system as a number of individual sub-

are transition maps indexed from 1 o models instead of as a single monolithic hybrid system. The
In the above, each transition is described as a 4-tuple: composition is parallel in the sense that the execution ef th

, 5 - models happens concurrently.

7r = (§(Sq),7(Sq) €in € 27, €out € 27) ®) The composition of two hybrid systems is defined over the
wherej(S,) : S, — {true, false} is the transition domain domain:
which triggers the transition when trug(S,) : S, — Q x X: l[ar 2 HEPS x HEPS — HEPS, 5)



and finally, the transition map is given by

three kinds of input files:

L o e | « Hybrid systems specification
« Specifications of Input/Output connectors
« Specifications of system interconnections

The format of these documents are specified using Docu-

ment Type Definitions (DTDs). In the following, each docu-
i.e., composition is an operator that takes two hybrid syste ment type will be explained.

. I
| |
! ! 1 (5} Z(pTOjQ g3, T1, U1, 6)
Ux YH T (g3, el = e
: = Hl — : <q3 |: Z2 :| |: U2 :| e> [75(]97‘0]@2(]3, T2, U2, 6) 11)
| |
: —_— : Remark 3As seen from the composition, spaces are simply
! ! merged and the matrid/ distributes information tg+{?%
| . andH$P* as appropriate. <
Upy; | = I L YHs Remark 4 As the newH$§P* itself is a hybrid CDS,
! M ! the composition operator is closed. This provides formal
[ = — [ justification for the modular design approach outlined ia th
| | previous Section. <
| |
——
| | IV. XML S PECIFICATIONS
| . H . | As mentioned above, Sophy relies on the XML format for
L U, 2 YHy ! information exchange about models. Specifically, it aczept
| |
| |

Fig. 2. Composition of two hybrid systems

HYPS = (Q1, X1, Uy, Y1, 51, F1, Gi, Th) (6) A. Hybrid System Specification

HSPS = (Q2, X2, Uz, Yo, 8o, Fa, Go, T) (7)  These documents describe subsystems, such as individual
components, in terms of hybrid system formulations. Theinp
files contain XML-encoded representations of the mathemat-
ical expressions given in Section Ill. An XML code snippet

and yields a new hybrid systeri$'?°. It is specified via the
matrix mapping:

UH, YH, is given below, illustrating how a specific location is deeth
Ur, | =M | yn, |- (8) with differential equations, output map, and transitiorighw
YHs U transition domains and reset conditions.
with the following restrictions in order to avoid algebraic| gcati on>
loops: <name>Noni nal </ name>
« There must only be zeros in the entries mapping between
y1 anduy <di ffequati on state="M >0</diffequation>
o There must only be zeros in the entries mapping betweerdi f f equati on state="C"'>
yo andus (2.7e-4+x(MPin-20))/V</diffequation>

Note that the dimensions af; (m) andy; (p) is implicity ~ <out put map out put ="V"> 18+10. 6xC
defined by the dimensions 6fl. It is then immediately con- </ out put map>

cluded thatQs = {¢3 : g3 € Q1 X Q=2} must be the location o

set of the composed hybrid systeny = [z} z1]7 is the <transitions>

new continuous state vector (with dimensiof = n; + no), <transition>
andB; = {ele € 21932)1 is the set of possible input/output ~ <name> t oPayl oad</ nanme>
events <domai n>C &gt; HFul ) </ domai n>
Furthermore, the maps of the composed system can be <fr eset>
expressed as follows. Firstly, the composed forcing famcti <destination> Payl oad </destination>
is given by: <statereset state="M >0</statereset>
] </reset>
}'((J3 [ . } [ " }) = [ fl(pm].qug’ r1, U1) } </transition>
L T Fa(projQ, s, w2, u2) ) <transition>
whereproj, 0 denotes set projection of onto the sef;. Next, zggg‘;?nigsgjf .?.</ E?:rn?; cal ) </ domai n>
the continuous output map is given by: <r eset > '

G x1 Uy | Gi(projo,qs, x1, u1) (10) <destination> Safe </destination>
B gy Uz | Ga(pra.gs, x2, ug) </reset>



- c
</transition> rilieae XML based Hardware/Software
</ tr anSi t | ons> Structure subsystem models 3rd party 10

</ | ocati on> -

In the XML file the declaration of locations is preceeded by
specifications of the input and output channels of the system ybrid Executor
as per the CDS specification 1lI-C, as well as declaratonof | | v ]
numerical constants used in the systems (to simplify expres
sions in each location). A full example of such a specifiaatio e » SomoToTEC ’
is given in the appendix diAlminde et al., 2004. S e

B. 1/O Connectors

I/0O connectors are bridges to the world outside Sophy, e.g. 'mpumtputof
sensors and/or actuators. They can also be used to accass dat continuous and
generated by an environmental simulation running in a a@roth fecrete slonek
software environment such as Matlab before deploymentin th
proper context.

An 1/O connector specification contains information about
inputs and outputs to allow composition with other systems b
means of t_he CD_S formulation ac_‘?ord'r_‘g to th_e mechanism Fig. 3. Overview of the key components in the Sophy framework
presented in Section IlI-D. In addition, it contains the @am
of a Java class file that acts a a device plug-in. The user most

[ e T G Y
1 1
1 1

Composer

code this small function, as described in Section V. other software is also declared in XML files. Obviously, as th

The 1/O connector mechanism is also used for data sinkgstem models are separated from the simulation architectu
such as plotting and/or logging. in this way, modular design and model reuse is made easier.
C. System Interconnections B. Hybrid Executor

This XML file contains references to hybrid system spec- The Hybrid Executor (HE) is the architectural element in
ifications and I/O connectors, which are to be loaded amlde framework that is responsible for simulation, obséovat
distributed to the network nodes specified in the declamaticand control of a single subsystem including managing any 1/0O
Furthermore, it contains information on which input andputit interaction with hardware or other software.
channels must be connected between these systems. A hybrid simulator is implemented and tested in various
cases, and a general hybrid observer is scheduled for devel-
opment within the framework together with a general purpose

As outlined in the introduction, Sophy is a frameworkybrid controller. General purpose control and observaiso
architecture aimed at implementing advanced autonomy dfvisioned to be implemented using e.g. Unscented Kalman
systems that can be described as hybrid dynamical systemiiering (UKF) for observation and Model Predictive Canitr
in general, this concerns complex systems often composed(WPC) for control. Both of these techniques are suited to
multiple subsystems. So far, the full architecture of Sophyperate in a declarative environment with a system model
has been defined and a hybrid simulation component h&s their only input and without the need for comprehensive
been implemented and tested. The framework architecturerianual tuning.
outlined in Figure 3 and the components are described inThe IO Unit also residing in the hybrid executor is a ver-
greater detail in the following. satile component enabling Sophy to interact with the oatsid

world. This is described in detail in section V-E.
A. Input Models . : o
The hybrid executor is not an executable program in itself,

A key architectural point in the framework is that it ispyt works as a thread spawned by the Sophy Server (see the de-
declarative in the sense that the user should only be coBtoyment diagram in Figure 5. When the Sophy Server detects
cerned about describing a system and not be concerned al%ﬁ‘mncoming network connection from a Sophy Composer, it

implementing specific controllers and observers for théesys spawns a hybrid executor which is ready to start the internal
at code-level. This is a major break from traditional thiki components required in the current scenario.

in automatic control.

To facilitate this, the only human inputs to the frameworf- Composer
are hybrid models described in human-readable XML files. The Composer coordinates the information flow between
On Figure (3) these are indicated as rectangles at the tbp attached HEs. The switchboard connects data-chanmels o
constituting hybrid models of the different subsystemshe t a subscription basis, meaning that any HE can subscribe to an
system and a file describing the interconnections between thutput of another HE as described in the "Composed System
different subsystems. Any 1/O connections to hardware &tructure” XML file. The composer is in this way the central

V. SOPHY ARCHITECTURE



point of interaction in Sophy, and it is supported by a graphi e

user interface called the Sophy Desktop Suite. : :

7] SOPHY Desktop Suite * - - 7 2 s ‘ ‘ : : : T

File Tuols Windaw IOManager I0Manager 1 10Manager| [— 1 1oManager,
] 1
(System out | 4| Desktop | A [} A H
L T T T T
— TCP/1P TCP/1P Teee| Lo :I ..
[7] New Simulation /¢ & LiLe H i
e ' '
File: [int/sophy/software fxmifdemocss.xm| | Browse..
[ eaiv. |[ stan | computerz 1 Computers 1
| it |[ st | Computer2 1 Computer 3
(ST I0Manager I0Manager
A A

% Hybrid Executor % Hybrid Executor

Fig. 5. Deployment of the software components

(-t T ST Tt T T T TN Com| p:)s-er-\l

Start Composer XML files
Read/interpreted XML <=1 CSS, HS, 10

Contact implicated Sophy|
Servers and send XML

- ---Jd---------------dJ------"/
( Sophy Serven
1 1
1| Spawn Hybrid Executor Spawn Hybrid Executor |
Fig. 4. Screenshot of the graphical user interface, the B@@sktop Suite [ HE starts Simulator HE starts 10 Unit 1
(SDS). SDS encapsulates all the components of Sophy andgesrsart- ! \

: Y
launching the hybrid executor components on the local glatf The Sophy ] ) Simulator
embedded simulator can be run as a plug-in within the suitegalvith the i
PlotViewer visualization tool. Also, a simple XML text editis integrated |
into the program 1

up of plug-ins and servers such as the Sophy server whicheidist for premea=e=ace=e: s=e=a=a=a=a= -f _____________ =2
1
1
1
1

i
1
Exchange input and oupuf 1
1
1

i
1

Propagate hybrid system]1
! with hard- or software
1

model to requested time

Fig. 6. The deployment sequence of a typical simulation @eemwith some
D. Deployment 1/0 in the loop.

Sophy is implemented in the Java 1.5 language and all data
traffic in the distributed framework nominally uses the TGP/
protocol nominally; however, if required, a user can writegp  and report back to the switchboard with the resulting output
ins that enable Sophy to operate on other network protocaggnals, and the switchboard then relays outputs to thetinpu
This is done by extending a simple base class representingfaany simulators that have subscribed to other simulator’s
networked connection, the IOManager class. outputs. The switchboard performs these operations in an
This allows the components to be distributed as depictediiinite loop until the simulation has reached the desighate
Figure 5 where a computer is appointed the role of composiatpp time.
the activities carried out on a number servers running the
Sophy Server application each hosting one or more Hybfid /O Infrastructure
Executors. When running the Sophy Desktop Suite, all theThe 1/O infrastructure of Sophy is one of the features
servers are automatically set up on the local host, buttiat truly sets it apart from other tools, as it enables in-
Sophy servers are running on remote hosts, these may alsddseonnection with hardware and third-party software,sthu
exploited when using the suite; addresses for hosts areedefimaking the framework truly versatile. For example, in the
in the Composed System Structure XML file. case study presented in Section VI, the I/O infrastructare i
A typical simulation scenario involving 1/0 will start with employed to build a bridge between Sophy and the commercial
reading in data from XML files and then distributing the task®latlab/Simulink package.
to the desired computational units. The steps are illiedrat The component managing the inputs and output of Sophy
Figure 6. is the 10 Unit in the Hybrid Executor. The 10 Unit has two
Figure 7 depicts the simulation algorithm in slightly morénterfaces to its surroundings: IOManager and I0Adaptee T
detail. A simulation is managed by the composer-switchthoatOManager is the internal connection to Sophy; as described
which requests the simulators involved to propagate one tinm the previous subsection, the default IOManager, whigdsus
step into the future using the hybrid system models providéae TCP/IP protocol, can be overridden to use other network
during the set-up phase. The simulators do the propagatmoetocols instead.



4: Next iteration

Composer relays
outpus to the relevany
inputs

Composer requests
propagation one step

1: Propagation request 3: Output switching

Simulators propagate
ybrid models via theiy

Result of propagation
is returned to
Composer

2: State propagation

Fig. 7. The overall sequence carried out at each step in datiouscenario.

Fig. 9. Artist’s rendition of AAUSAT-II in orbit

The IOAdapter encapsulates a number of implemented
drivers to communicate outside Sophy. An example of such
a driver is the MatlabAdapter used in the case study. Bye. demonstrate the use of reaction wheels for three-axis
extending an abstract Java class, the MatlabAdapter allows control for such a small platform
the 10 Unit to send data to and receive data from Matlab, « after nominal mission; demonstrate a mechanism to de-
which is then relayed to the Sophy Composer Switchboard. ploy a 40x10cm paddle to provide an extended area for
In Matlab, the communication is handled through a Simulink  power generation by photo voltaic cells

block designed specifically for interconnection with Sophy The satellite will be launched in June 2007 from the Satish
Figure 8 gives an overview of the classes comprising the iShawan Space Centre in India to a sun synchronous orbit with

Unit package. an altitude of 600km.
ioUnit | A. Attitude Control System
The attitude control system is based on a combination
IOUnit of magneto-torquers and tiny reaction wheels. A superyisor
controller switches between various control modes acogrdi
: : to the given conditions at any times. The design of the
oA y | Cenenciondapter IOManager supervisory control system can be seen on figure 10.
1T {abstract} {external}
PN norm<threshold
| MatlabAdapter | | PlotterAdapter | | FilelOAdapter | DEtumbling POinting
Fig. 8. The Java classes that constitute the 10 infrastreiadfi Sophy. The telecommand
child classes at the bottom are specializations of the atis@enericlOAd-
apter class, which allow Sophy to interact with e.g. Matladal ££SV files Fig. 10. Supervisory control of AAUSAT-II

during a control or simulation scenario.

In the Detumbling location the so called B-dot control
V1. AAUSAT-II C ASE STUDY law is used to detumble the satellite dqun to an acceptable
momentum for commanding and receiving data from the
The AAUSAT-II mission is a successor mission to the AAUsatellite. The control algorithm only makes use of derixati
Cubesat missiofAlminde et al, 2004, again designed and information about the local magnetic field. Detumbling is a
built by university students. It is built adhering to the esht prerequisite to start pointing control in order not to sater
concept specifications, meaning that the dimensions musttge reaction wheels.

only 10 x 10 x 10cm and a mass of one kilogram. An artist'’s |n the Pointing location the satellite stabilizes inertially in

rendition of the satellite is given in figure 9 accordance with a quaternion command signal. This coetroll
The satellite builds on technology from AAU-cubesat an@ pased on optimal control (LQG) designed for a linearized
has a number of technical goals: model of the satellite dynamics and kinematics.

o demonstrate a new type of Gamma ray burst detectionl) Control law implementation for B-dotThe B-dot con-
instrument troller has been implemented as PD controller for channel



(x,y,2) which is represented by the following transfer fiimie: C. Simulation Results

This subsection presents the results from the simulation
(12) case. Figure 12 shows the norm of the angular velocity. It
can be seen that initially the B-dot controller slowly disgties
angular velocity and then at time 240s the threshold is re@ch
and the pointing controller takes over. This results in a
temporary rise in angular velocity as it controls the suéell
to the proper attitude, where also the angular velocityhreac
zer

12.65 4+ 2.69 x 10~*

H{s) = —80 s+12.6

2) Control law implementation for PointingThe pointing
controller is a state-space controller which takes the kmgu
velocity, w, and an error quaterniomy; .5, as input and pro-
duces the commanded reaction wheel torqug,,, as output:

va = K[w Q1:3]T (13)

The norm of the angular velocity
T T T T

0.4

The gain matrixK' has been found as an LQR controlle
based on a linearized model assuming the angular veloc
is zero. This helps to ensure that the reaction wheels do |
get saturated when canceling the angular momentum of 1
satellite body.

3) Transitions between Control Lawghe transition con-
dition for going from B-dot to pointing is:

VwTw < 0.017 (14)

norm of angular velocity [rad/s]

To go from the pointing controller and back again, a tele
command (i.e., an external event) is required.
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B. Simulation Case
A detailed simulation model of the attitude control system Fig. 12. The norm of the angular velocity

for AAUSAT-II has been implemented in Simulink, based on

[Amini et_ al.,_ZOO_E]. In the S|_mulat|0n case presented in th'_s Figure 13 shows the corresponding attitude evolution. The

paper this Simulink model is used to simulate the Sate"'F%ference for the controller isg = [0 0 0 — 1], which is

dy”a”.“cs and kmema’nc;, V,Vh'le the supervisory contr(aihd_ %uickly reached once the pointing controller takes over.
associated control laws is implemented in Sophy, as deapict

in figure 10. Furthermore, thEDAdapterinterface is used to
facilitate the exchange of data between Simulink and Sop 1
during the distributed simulation, as described in section
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For this simulation, theOAdapterinterface has been used
to implement a plug-in for Sophy that exchanges data using 50 10 10 200 20 800 o 400 as0
line oriented protocol running over a TCP socket connectio time [s]
A library for Matlab has then been developed which through
the use of S-functions communicates with this socket during Fig. 13. The attitude Quaternion
the simulation. During the simulation Sophy is in charge of
global time and dictates to what time Matlab should proceed i Figure 14 shows the control input (voltages) to the magneto-
each step. The simulation has been carried out using a sthndarquers. It can be seen that the controller is active until
desktop PC, running both Simulink and Sophy. the pointing control takes over and that the amplitude of




the actuation gradually declines as angular velocity isvislo its ability to interface with external systems during rim

decreased. through the use of a generic plug-in architecture.
Future work will focus on deploying Sophy on other archi-
Applied magnetotorquer control signal tectures more in line with the current computing capabditi

‘ ‘ ‘ ‘ M, on flight systems in order to analyze and optimize performanc
4 M, |1 and make a thorough case study to pin-point any problems that
3 ﬂ M, 1] must be addressed.
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g. 15. Torque provided by reaction wheels

VII. CONCLUSIONS ANDPERSPECTIVES

This paper described the current status of the Sophy project
with emphasis on its mathematical foundation in hybrid sys-
tems theory, along with its main interfaces for plug-in depe
ment, which open up possibilities for connectivity with ngan
other systems. A case study focusing on supervisory control
of a satellite attitude control system for a pico-sateliitas
presented, demonstrating Sophy’s abilities to executeithyb
systems directly based on mathematical specifications and



