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Abstract This paper provides a survey on probabilistic decision graphs for mod-
eling and solving decision problems under uncertainty. We give an introduction
to influence diagrams, which is a popular framework for representing and solv-
ing sequential decision problems with a single decision maker. As the methods
for solving influence diagrams can scale rather badly in the length of the decision
sequence, we present a couple of approaches for calculating approximate solutions.

The modeling scope of the influence diagram is limited to so-called symmetric
decision problems. This limitation has motivated the development of alternative
representation languages, which enlarge the class of decision problems that can be
modeled efficiently. We present some of these alternative frameworks and demon-
strate their expressibility using several examples. Finally, we provide a list of
software systems that implement the frameworks described in the paper.

Keywords Survey, probabilistic decision graphs, influence diagrams.

1 Introduction

Bayesian networks (Pearl, 1988) have for a couple of decades been a popular frame-
work for modeling and reasoning under uncertainty. Bayesian networks have also
been exploited in the development of frameworks for decision making under un-
certainty. These types of frameworks are commonly called probabilistic decision

graphs. Most prominently is the influence diagram (Howard and Matheson, 1981),
which originally was proposed as a compact representation of symmetric decision
trees.

The current paper provides an overview on probabilistic decision graphs. The
concept of Bayesian networks is briefly introduced, but hopefully sufficiently for
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reading the paper. However, readers unfamiliar with Bayesian networks are rec-
ommended to consult a modern textbook like (Jensen and Nielsen, 2007), (Korb
and Nicholson, 2004), (Kjaerulff and Madsen, 2008), (Darwiche, 2009), and (Koller
and Friedman, 2009).

1.1 Notation

A variable has a set of mutually exclusive and exhaustive states. Variables are
denoted by upper case letters; a state of a variable is denoted by a lower case letter;
a set of variables is denoted by an upper case boldface letter, and a configuration
of states over a set X is denoted by x, a lower case boldface letter. In this paper
all variables have only a finite set of states.

A conditional probability, ”the probability of A being in state a given that B
is in state b” is denoted P (A = a |B = b), and also P (a | b) when the variables
are obvious from the context. P (A |B) denotes a table of conditional probabilities
P (a | b), one for each combination of states of A and B, and P (X |Y) denotes a
table of conditional probabilities P (x |y).

2 Normative decision making

In normative decision making you model a domain using probabilities and utilities,
and you aim at maximizing the expected utility. For a single decision, it may be
illustrated as in Figure 1.

World model

evid
enc

e

Decision D

P (X | evidence, D)

Fig. 1 A general model for one decision.

You have a decision variable D consisting of a set of options, and you have
a model of the world relevant for D. The world model consists of a finite set
W of variables and the relations between them. Furthermore, you have a utility

function U(X, D), where X ⊆ W. For a particular decision problem you have a
set o of observations of a set of variables O ⊆ W. The world model shall provide
P (X |o, D) s.t. you can calculate the expected utility of D given o:
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EU(D |o) =
∑

X

U(X, D)P (X |o, D). (1)

Following the normative approach, you are assumed to act rationally, which
means that you choose the option of maximal expected utility (von Neumann and
Morgenstern, 1944):

Opt(D |o) = argmax
D

∑

X

U(X, D)P (X |o, D). (2)

The function, which for each configuration of O returns an optimal decision is
denoted δD(O) and is called an optimal policy for D.

2.1 Example: a simplified poker game

You have entered a poker game with the following rules. There are two players,
Opponent O and you M , and each player places 1e when entering the game. There
are two rounds of card change, where O changes first each time. After the card
change rounds, O has to decide whether to call, which costs 1e, or to fold . If O
calls, M has to decide whether to fold (in which case O takes the pot) or to call.
Calling costs 1e, and if M calls, the players compare hands; the one with the best
hand takes the pot.

Now, M has been through the card changes, O has called, and M has to decide
whether to call or fold. The relevant information available is M ’s own hand, O’s
change of cards, and the fact that she called. M can use this information to
estimate O’s hand OH. In Figure 2, a model for this task is presented.

OH0 OH1 OH

OSCOFC OD

Fig. 2 A Bayesian network for calculating P (OH | ofc, osc, od).

The model is a Bayesian network (Pearl, 1988). The white nodes represent the
opponent’s initial hand (OH0, a variable with states describing the relevant types
of initial hands), her hand after the first change of cards (OH1), and her final hand
(OH). The colored nodes represent variables whose states M knows when taking
the decision of calling or folding. OFC represents the number of cards in O’s first
change of cards, OSC represents her second change of cards, and OD represents
her decision of calling or folding. The links between nodes represent causal impact.
That is, OH0 and OFC have a causal impact on her second hand. As the impact is
not deterministic, it is represented by conditional probabilities. For example, the
node OH1 has attached the conditional probability table P (OH1 |OH0, OFC)
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and the node OH0 has a prior distribution over the possible hands attached.1

The Bayesian network in Figure 2 can be used to calculate P (OH | ofc, osc, od),
and Equation 1 can be used to calculate the expected utility of calling with the
possible monetary wins and losses as the utilities of the game.

Actually, the model in Figure 2 can be extended to also represent M ’s decision
problem (see Figure 3, which is no longer a Bayesian network).

U

OH0 OH1 OH

OSCOFC OD

MH MD

Fig. 3 A graphical model representing M ′s problem of whether to call or fold.

In Figure 3 the diamond shaped node represents M ’s utilities for the various
scenarios (the amount of es to win or loose), and the rectangular shaped node
represents M ’s options (call of fold).

Now, if the states of the variables are specified as well as the conditional proba-
bility tables and the utility function, then sufficient information has been provided
for solving the decision problem. In other words, it is sufficient to enter the graph,
the probability tables and the utility function to the computer; then it can take
care of the calculations.

2.2 Bayesian networks

Definition 1 A Bayesian network consists of the following:

– A set of variables and a set of directed edges between variables.
– Each variable has a finite set of mutually exclusive and exhaustive states.
– The variables together with the directed edges form a directed acyclic graph

(a DAG).
– To each variable A with parents pa(A), there is a conditional probability table

P (A | pa(A)) attached.

Note that if A has no parents, then the table reduces to the unconditional
(prior) probability table P (A).

The backbone for the application of Bayesian networks is the following theorem
(Pearl, 1988).

1 The conditional probability tables associated with OFC, OSC, and OD are a little special;
they encode the policy which M believes that O follows when deciding on the change of cards
and whether to call of fold. We shall return to this issue in Section 7.
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Theorem 1 (The chain rule for Bayesian networks) Let BN be a Bayesian

network over U = {A1, . . . , An}. Then BN specifies a unique joint probability dis-

tribution P (U) given by the product of all the conditional probability tables specified

in BN:

P (U) =
n∏

i=1

P (Ai | pa(Ai)).

So, a Bayesian network is a compact representation of a joint probability dis-
tribution, but it is also a graphical model representing cause-effect-relations of a
domain and reflecting the inherent uncertainty in the domain. It should be stated
here that probability theorists are not religious about the links being causal as
long as the model represents the proper distribution. However, when you include
decisions which have an impact on the state of some variables, then you should be
aware that the effect of an action follows the direction of causal links, and in these
situations it is critical that the direction actually represents a causal direction.

The primary application of Bayesian networks is belief updating. Confronted
with a particular case you will receive case specific knowledge. We shall by evidence

mean a statement that a particular variable is in a particular state. In that case
we say that the variable is instantiated. Belief updating consists of entering the
evidence to the Bayesian network model and calculating the posterior probability
distribution for other sets of variables.

In general, the belief updating task is exponential in the number of variables.
However, good exact and approximate algorithms have been constructed, such
that belief updating is tractable for most of the Bayesian networks you meet. We
shall not deal with belief updating algorithms in this paper, for which the reader
is referred to the textbooks on Bayesian networks listed in Section 1.

3 A sequence of decisions

When you have a sequence of decisions, the modeling becomes more involved.
To find an optimal first decision, you have to anticipate the future. That is, you
have to take all future scenarios into account, and you must forecast your future
decisions. The model for your first decision can therefore be seen as a nested model
with internal models for the future decisions (see Figure 4).

The model in Figure 4 contains a sequence of three decisions. To take the first
decision, you consider the scenario for the next decision: what will be the informa-
tion at hand, and what will the decision be? Assume that you know that the state
of the variables X will be disclosed before you take the next decision. However,
you do not yet know the actual states, so you have to take all possible configura-
tions of X into account and calculate the probabilities of these configurations. You
may then use the model to calculate the expected utility of the various options
given the evidence. If you assume that you in the future will act rationally, you
can establish a policy function δX, which provides an optimal decision given the
evidence.

However, you cannot determine the expected utility for the options of the
second decision without considering the third decision. Therefore, you start by
solving the decision problem for the last decision. When taking the last decision,
you will know the state of the variables Y, and the solution (found using the
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World model

Model of my sec-
ond decision

Model of my
last decision

Evi
den

ce e

Decision D

Opt(D | e)
EU(D | e)

Fig. 4 A model for my first decision containing models for two future decisions.

approach outlined in Section 2) provides a policy function, δlast, which for evidence
y gives the optimal decision δlast(y). The policy function for the last decision can
now be used in the model for the second last decision, and in this way you work
your way backwards to the first decision.

3.1 Poker again

In the poker game you have in fact three decisions to take, namely two changes
of cards and the final decision on whether to call or fold. Following the reasoning
above, we start with the last decision (see Figure 5).

U

OH0 OH1 OH

OSCOFC OD

MH0 MH1 MH MD

MFC MSC

Fig. 5 A model for the last decision including the preceding card changes.

The model in Figure 5 reflects that the opponent observes your card changes.
The nodes MFC and MSC represent M ’s first and second change of cards, re-
spectively. These nodes are given a rectangular shape because they, like MD, are
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decision nodes. Furthermore, these nodes are not given probabilities as they are
always under the full control of the decision maker.

From the model the expected utility of call is calculated:

EU(call | evidence) =
∑

OH

U(OH,mh, od, call)P (OH | evidence),

where evidence is a configuration over the variables OFC, OSC, OD, MH0,
MFC,MH1, MSC, and MH. The model also provides a policy δMD(OFC,OSC,

OD,MH0,MFC,MH1,MSC,MH) for MD. The domain of δMD consists of the
variables whose states are known at the time of deciding on MD, i.e., the variables
in the past of MD. This set of variables (and thereby the domain of the policy)
can become intractably large, but often not all past variables are relevant for the
decision. There are algorithms for performing a structural analysis to determine the
relevant past (Nielsen and Jensen, 1999; Shachter, 1999; Lauritzen and Nilsson,
2001). For the model in Figure 5, the analysis gives that MH0 and MH1 are
irrelevant. You may wonder why MSC is relevant as MSC does not have a causal
impact on an unknown variable in the domain of U . However, when O decides for
calling or folding, she knows MSC. This, together with her own hand, determines
her decision of calling. Therefore, when M knows that she called, MSC will tell
him something about her hand. Assume for example, that M changed no cards.
Then O may infer that he most probably has a straight or better, and with three
of a kind or less, she will be inclined to fold. Now, M can do the same reasoning:
as she called, she does most probably not have three of a kind or less, and he may
with a small straight decide to fold. Note that for this model, the possibility of
her bluffing (and her estimate of M ’s bluffing) is represented by the conditional
probabilities of her policies.

The kind of reasoning performed above exploit the properties of causality. It
is formalized in the so-called rules of d-separation (Pearl, 1988), which work on
the model structure and can reveal conditional independence: if X and Y are
d-separated given Z, then X and Y are conditionally independent given Z. The
implication does, however, not hold the other way around. The interested reader is
referred to standard texts on Bayesian networks (see the references in Section 1).

When δMD(OFC,OSC,OD,MFC,MSC,MH) has been determined, it is
used as a conditional probability table in the model for the second card change
(see Figure 6). This conditional probability table is also called a chance variable

representation of the policy δMD.

From the model in Figure 6 we can calculate

EU(MSC | evidence) =
∑

OH,OD,MH,MD

U(OH,OD,MH,MD)

P (OH,OD,MH,MD | evidence,MSC),

together with a policy δMSC(OFC,OSC,MFC,MH1) for MSC. Using the same
techniques as above, we can get a model for the first change of cards (see Figure 7),
which can finally be used to find an optimal policy for MFC.
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U

OH0 OH1 OH

OSCOFC OD

MH0 MH1 MH MD

MFC MSC

Fig. 6 A model for the second change of cards. MD is a chance node with δMD as conditional
probability table.

U

OH0 OH1 OH

OSCOFC OD

MH0 MH1 MH MD

MFC MSC

Fig. 7 A model for the first decision.

4 Influence diagrams

The decision problem above is represented by three models, one for each decision.
The models have many similarities, and actually, they can be represented in a
single unified model (see Figure 8).

The model in Figure 8 is called an influence diagram (Howard and Matheson,
1981). It contains a Bayesian network part and a decision part. The rectangular
shaped nodes represent the decisions, and an edge from a node N to a decision
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U

OH0 OH1 OH

OSCOFC OD

MH0 MH1 MH MD

MFC MSC

Fig. 8 An influence diagram representing the poker problem.

node D means that the state of N is known when D is to be decided. We assume
no-forgetting : the decision maker remembers what he has known and decided in
the past.

We can read a partial order of observations and decisions by using the fact
that a node, which is a consequence of a decision D, cannot be observed before D

is decided upon. From Figure 8 we can read the following order: {MH0,OFC} ≺
MFC ≺{MH1,OSC} ≺MSC ≺ {MH,OD} ≺ MD. Therefore, the influence
diagram in Figure 8 can be unfolded to the three models in Figures 5 to 7.

Definition 2 An influence diagram (ID) consists of a DAG over chance nodes,
decision nodes, and utility nodes with the following structural properties (see Fig-
ure 9 for a general example):

– there is a directed path comprising all decision nodes;
– the utility nodes have no children, and they have no states;
– the chance nodes and the decision nodes have a finite set of mutually exclusive

and exhaustive states.

Furthermore, a conditional probability table P (A | pa(A)) is attached to each
chance node A, and a real-valued function over pa(V ) is attached to each utility
node V .

4.1 Semantics

Edges into a decision node are called information links, and they indicate that
the state of the parents are known prior to taking the decision. No-forgetting
is assumed, so the variables known when taking decision D4 in Figure 9 are
{O1,O2, D1,O3, O4,D2, O5,O6, D3,O7, O8}.

The structural requirement that there must a path comprising all decision
nodes ensures that the influence diagram defines a temporal sequence of decisions.
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A1 A2 A3 A4

V1 V2

V3

D1 D2 D3 D4

O1

O2

O3

O4

O5

O6

O7

O8

B1 B2 B3 B4

C

Fig. 9 An influence diagram with three utility functions and a sequence of four decisions.

This yields a partitioning of the chance variables into disjoint subsets according
to the time of observation. The set I0 is the set of variables observed before any
decision is taken ({O1,O2} in Figure 9); I1 is the set of variables observed after
the first decision and before the second, and so forth.

When there are several utility functions in the model, the total utility is the
sum of the utility functions. This includes products of positive utilities as it can
be transformed to sums of the logarithms. Other combinations of utilities can be
represented by introducing super-value nodes (Luque and Dı́ez, 2010).

4.2 Evaluating influence diagrams

A solution of an influence diagram is an optimal strategy. A strategy consists of
a set of policies, one for each decision node. A policy for D is function which, for
each configuration of the relevant past of D, returns a decision in D. An optimal
strategy is a set of policies, which together gives the decision maker maximal
expected utility. The process of determining an optimal strategy is often referred
to as evaluating the influence diagram.

As sketched in Section 3.1, a conceptually simple method for evaluating an ID
is to first find an optimal policy for the last decision node, substitute that with
a chance variable representation of its policy, and then continue to the second
last decision node . . . . Other and more efficient methods have been constructed
(Shachter, 1986; Shenoy, 1992; Jensen et al, 1994), and the interested reader can
find them in the textbooks (Jensen and Nielsen, 2007; Kjaerulff and Madsen, 2008).
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4.3 Modeling scope

Influence diagrams are very handy for representation. As opposed to decision trees,
specification of an influence diagram does not require much effort. The hard work
is left to the computer. However, influence diagrams can only efficiently model
symmetric scenarios, namely scenarios with a fixed sequence of decisions and where
the variables observed between decisions are the same regardless of the previous
decisions and observations. This is a rather delimiting constraint. For example,
if the decision is whether or not to perform a test, then the next observation is
dependent on that decision. Assume, for example that you may perform a test
Test? (of cost C), which discloses the state of the variable O with states o1, . . . on,
and after the decision Test? you shall take the decision D. You cannot make O a
parent of D, as O is only observed if you decide to test.

There is a way of overcoming this problem. Consider Figure 10, where a new
child O′ of O is introduced. O′ has the states {o1, . . . on,no-test}, and the condi-
tional probability table P (O′ |O,Test?) is so that if Test? = no then O′ = no-test;
otherwise O′ = O.

D

Test?

O O′

C

Fig. 10 A part of an influence diagram representing a test decision.

This approach works fine if there is only one test to decide upon. It is much
more complex when you have several tests. Assume, for example, that you after
an initial investigation I have two tests TA and TB for a set of diseases Dis and
a single subsequent treatment decision D. One strategy may be to perform TA,
and depending on the outcome of the test you perform TB , but you may also do it
in the opposite order, or you may perform no test at all. Following the approach
above you end up with the influence diagram in Figure 11.

For more than two tests, the influence diagram representation becomes quite
inhuman. The decision nodes contain all tests as options, and the observation nodes
have as states all possible outcomes of all possible tests. Furthermore, you have to
make it explicit that a tests shall never be repeated. In short, the representation
scales badly, and the models are hard to read.

5 Unconstrained influence diagrams

A test decision is one example of asymmetry in a test scenario. Much effort is now
spent on constructing languages for easy representation of asymmetric decision
scenarios (Shenoy, 2000; Jensen et al, 2006). In this section we present one such
specification language. An unconstrained influence diagram (UID) (Jensen and
Vomlelova, 2002) is an influence diagram, except that it is not required that there is
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I D

Test1 Test2

O1 O2

Dis

C1 C2

U

C

Fig. 11 An influence diagram representing two tests and one subsequent decision. The Test

nodes have three options: tA, tB , and no-test. The O nodes have five states: posA, posB , negA,
negB , no-test. The edge O1 → O2 models that repeating a test will give identical results.

a directed path comprising all decision nodes. Instead, nodes which are eventually
observed are called observables and drawn as double-circled nodes (see Figure 12).

I D

TestA TestB TestC

OA OB OC

Dis

CA CB U5

U

C

Fig. 12 An unconstrained influence diagram representing a scenario with three tests and one
decision.

The test decisions as well as their outcomes are represented explicitly (a general
assumption behind this modeling is that the tests are of the kind that they will
give the same result if repeated). The nodes I, OA,OB, and OC are labeled as
observables. An observable can be observed when all its preceding decisions have
been taken. In that case, the node is said to be released. As the costs are part of
the (test) decisions, we can safely assume that an observable is observed whenever
it is released (nothing can be gained by waiting).

When the model specified in Figure 12 is extended with the required parameters
(probabilities and utilities), the decision problem is fully specified, and it can be
left to the computer to determine an optimal strategy. Note that a strategy for a
UID differs from a strategy for an ID as it contains a specification of the decision
to choose as well as a specification of which decision variable to consider next; the
latter part of the strategy is also referred to as a next-step function. An optimal
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strategy for the UID in Figure 12 could for example specify that if I is y, then
perform TestB and continue to decide on TestA followed by a decision on TestC ;
if I is n, then perform TestC , and if the result is posC then perform TestA, else
perform TestB , etc.

5.1 Evaluating UIDs

An optimal strategy for a UID is a set of next-step functions and a set of policies
for each decision. The possible paths of decisions and observations in a strategy
can be put together into a DAG. Figure 13 shows an example of a DAG for a
possible optimal strategy (the one outlined above).

I

D

TestA

TestA

TestA

TestB

TestB

TestB

TestC

TestC

OA

OA

OA OB

OB

OB

OC

OC

Fig. 13 A DAG for an optimal strategy for the UID in Figure 12.

The principle in evaluating a UID is to establish a DAG which includes all
paths possible in an optimal strategy. Some paths may be discarded. For the UID
in Figure 12 it can be inferred that an optimal path must have D as the last
decision. If, namely, D has been decided, performing a test will only be a cost and
should be skipped, and the decision on skipping a test can just as well be taken
before the decision on D is taken. Actually, this kind of reasoning can be performed
algorithmically on the basis of a set of rules for analyzing UIDs (Ahlmann-Ohlsen
et al, 2009).

The result of the analysis is a so-called GS-DAG, which has the property, that
it contains a DAG for an optimal strategy as a subgraph. A GS-DAG for the UID
in Figure 12 is shown in Figure 14. Note that the DAG in Figure 13 is a subgraph
of the DAG in Figure 14.

When the GS-DAG has been established, the policies are determined in the
usual backwards order, where you bring the expected utilities with you. When
two paths meet in the backwards solution phase, the expected utilities are used to
determine the next-step functions in the (forward) strategy.

6 Representation of solutions for influence diagrams

The main complexity issue regarding influence diagrams is the size of the domains
of the policies in an optimal solution. The more observations and decisions there
are, the larger will the domains for the policies of the last decisions be. Consider
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I D

TestA

TestA

TestA

TestA

TestB

TestB

TestB

TestB

TestC

TestC

TestC

TestC OA

OA

OA

OA

OB

OB

OB

OB

OC

OC

OC

OC

Fig. 14 A GS-DAG for the UID in Figure 12.

the influence diagram in Figure 9, and assume that all variables have ten states.
The domain for the policy δ4 is {O1, O2,D1, O3,O4, D2,O5, O6,D3, O7,O8}. It
contains 1011 configurations, and even if you had sufficient time to calculate the
policy, it would be difficult to store it as a look-up table for fast access. Therefore,
you have to look for other ways of representing the policies.

For δ4 from Figure 9 there is an efficient representation at hand, namely the
influence diagram itself (See Figure 15).

When D4 is to be decided, you know the configuration of the evidence. You
enter the evidence to the influence diagram, and the Bayesian network part of the
model can easily provide P (C |D, evidence). So, even though the domains for the
policies of the last decisions may be very large, they are not a problem when you
eventually reach that point in your decision making.

However, they cause another complexity problem. Look back at Figure 4 and
consider the evaluation method described in Section 4.2. To determine the policy
δ1 we need an online efficient representation of δ3. If the domain of δ3 is intractably
large, it is not possible to determine an optimal policy for the first decision. This
is called the curse of knowing that you shall not forget.

6.1 Limited memory influence diagrams

A way of addressing the curse of knowing that you shall not forget is to work
with approximate representations, where you assume that you in fact do forget
something. It is called a limited memory influence diagram (LIMID) (Nilsson and
Lauritzen, 2000). The approach can be used for obtaining an approximate solu-
tion by assuming that you have less information at hand in the future, and your
decisions will therefore not necessarily be optimal. In the specification we cannot
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A1 A2 A3 A4

V1 V2

V3

D1 D2 D3 D4

O1

O2

O3

O4

O5

O6

O7

O8

B1 B2 B3 B4

C

Fig. 15 A representation of the policy for the last decision.

assume no-forgetting, and all information has to be made explicit through infor-
mation links. If we assume in the influence diagram in Figure 9 that we remember
one decision back, we get the model in Figure 16, where the domain of δ4 contains
only five variables rather than the 11 variables for the influence diagram in Figure
9.

The policies for a LIMID are found through an iterative procedure, where you
start off with a set of policies of your own choice for all but the last decision. You
enter these policies as conditional probabilities and solve the resulting one-decision
problem to determine δlast. Then you work your way backwards as described in
Section 3.1. You enter δlast as a conditional probability table for the chance node
Dlast; change the second last decision to a decision node and determine an optimal
policy for it; . . . . When you have established a policy for the first decision, you
reconsider the last decision and change the policy if it will increase the expected
utility; work your way backwards again, and continue the iteration until no policy
has been changed. As there are only finitely many policies and the expected utility
of the strategy increases through each iteration, the procedure will stop.

The result is an approximated policy for the first decision. When you get to the
next decision, you have collected new information, and you can therefore do better
than simply using the policy from the current LIMID; you have information at
hand, which the original LIMID assumes you have forgotten. You should therefore
use a new LIMID (see Figure 17) and re-run the procedure using this model to
find δD2

. For example, in Figure 17 the decisions D3 and D4 have more relevant
information at hand than in the LIMID in Figure 16.
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Fig. 16 A LIMID approximation of the model in Figure 9. There is no no-forgetting.
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Fig. 17 A LIMID for the second decision of the model in Figure 9.
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When you approach the last decisions, you can use the initial influence diagram
for determining policies.

6.2 Information abstraction

A LIMID is one example of a general approach called information abstraction,
where the information is abstracted to a less informative, but smaller size. LIMIDs
are a rather simple way of abstracting information. You may use more sophisticated
methods like introducing new variables which sum up the crucial properties of the
past. They are called history variables.

Very often, there is a crucial variable, which changes over time, but which
is never observed. You may abstract the information regarding the state of that
variable. In the influence diagram in Figure 9, you have the two paths of A-nodes
and B-nodes. The information relevant for the A-line is the decisions and the even-
numbered O-nodes O2,O4, O6,O8. This information may be abstracted into the
history nodes Ahist1, Ahist2, and Ahist3 (see Figure 18. Note that no-forgetting is
not assumed). The same can be done for the B-line.

6.3 Information enhancement

Another approach is information enhancement (Jensen and Gatti, 2010). You
assume that you will know more in the future, than you actually will. For the
influence diagram in Figure 9, rather than assuming future abstracted historical
information you may assume that you in the future will know the state of an A-
variable and a B-variable. If you assume that when taking decisionD4 you actually
know the state of A3 and B3, then the relevant variables are {A3,B3,O7, O8} (see
Figure 19), and you have a much smaller domain for δ4.

You may also use a closer approximation by assuming knowledge of B2 rather
than B3. In that case δ4 will have the domain {B2,O5, D3, A3, O7,O8}.

It should be stressed that information enhancement as well as information
abstraction are methods for approximating policies for some of the first decisions
and not for the decisions for which you alter the information.

7 Modeling Domains with Multiple Agents

The standard influence diagram framework (as well as the extensions discussed
above) only supports the specification of decision problems for a single decision
maker who is in complete control of all decisions. For example, in the influence
diagram representation of the poker problem (see Figure 8) we have modeled the
decisions of player M by assuming that the decisions of opponent O follow a fixed
strategy, i.e., O is implemented as an automaton. This assumption is often overly
simplistic, and instead we could consider modeling the opponent as an agent that
is (also) trying to maximize her own expected utility.
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Ahist1 Ahist2 Ahist3

Bhist1 Bhist2 Bhist3

Fig. 18 The model in Figure 9 extended with history variables. No-forgetting is not assumed.

7.1 Multi-agent Influence Diagrams

Traditionally, decision problems involving several decision makers/agents have
been modeled by game trees, a representation language that can be seen as ex-
tending the decision tree framework (Raiffa and Schlaifer, 1961) to multi-agent
decision problems. By this measure, game trees suffer from the same complexity
problems as decision trees, and this problem has motivated the development of
languages for more compact representation. One of the more popular frameworks
developed is the multi-agent influence diagram (MAID) (Koller and Milch, 2001,
2003), which extends the influence diagram with features for representing non-
cooperative games. Specifically, in a MAID, each decision variable is associated
with an agent, and the preferences of an agent are represented by a set of utility
functions specific for that agent. The total utility for an agent is the sum of the
agent’s own local utilities.

Figure 20 shows a MAID representation of the poker problem with both agents
modeled explicitly. In the model we assume no-forgetting for each of the players,
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Fig. 19 The model in Figure 9 extended with the links A3 → D4 and B3 → D4.

i.e., the players will remember their own previous decisions and observations. In
this example, the utility functions of both players are defined over the same domain
and they are therefore represented by a single utility node.

OH0 OH1 OH

OFC OSC OD

MH0 MH1 MH

MFC MSC

MD U

Fig. 20 A multi-agent influence diagram representation of the poker problem.

When analyzing the MAID in Figure 20 we find that the optimal strategy for
player M depends on the optimal strategy for player O and vice versa. This means
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that we have an infinite regression, where player M models the decision process
of player O which includes a model of the decision process of player M and so on.
In game theory, a solution to such an infinite regression is found by determining a
Nash equilibrium for the decisions. A Nash equilibrium is a collection of strategies,
one for each agent, with the property that no agent can increase its expected
utility by unilaterally deviating from its prescribed strategy. More formally, let
σ = {σ1, . . . , σn} be a collection of strategies for n agents. The strategy σi is said
to be locally optimal wrt. σ−i = σ \ {σi} if

EU(σ) ≥ EU({σ′

i} ∪ σ−i),

for all σ′

i. Moreover, the collection of strategies σ is a Nash equilibrium if for all
agents i, σi is a locally optimal strategy wrt. σ−i.

A straightforward approach to finding a Nash equilibrium for a MAID is to
first convert it into a game (in either extensive or normal form), and then solve it
using existing algorithms from game theory. This approach is analogous to solving
an influence diagram by first converting it into a decision tree, and then using
backwards induction for solving the tree. It is, however, possible to devise more
clever solution procedures that, e.g., exploit the probabilistic independencies en-
coded in the MAID structure. For example, one may attempt to decompose the
general inference task into a collection of smaller sub-tasks, and then find a gen-
eral solution by combining the solutions to the sub-tasks. The key idea is to first
construct a so-called relevance graph over the decision nodes (an example is given
in Figure 21). In a relevance graph, there is an arc from a decision node D to a
decision node D′ if the optimal policy for D depends on D′. If there is also an
arc from D′ to D, then the decision policies for the two decisions are intertwined
and an equilibrium should therefore be found. For example, in Figure 21 we have
an arc from MFC to OFC, since OFC is observed before MFC and knowledge
about the policy for OFC may therefore provide information about O’s initial
hand OH0; the updated belief about OH0 may influence the decision at MFC.
Similarly, we have an arc from OFC to MFC, since the decision at MFC (and
thereby also the policy for MFC) influences the expected utility at OFC.

Given the relevance graph for a MAID, we can identify maximal sets of decision
variables that jointly rely on each other (but on no other decision variables) and
for which a Nash equilibrium should be computed. These sets of decision variables
are also called strongly connected components. Syntactically, a maximal set C of
decision variables is a strongly connected component if, for all pairs of decision
nodes D and D′ in C, there is a directed path from D to D′. In Figure 21 the
relevance graph consists of a single strongly connected component that contains
all the decision variables. However, imagine that M observes O’s initial hand
before the first decision (this corresponds to adding an arc from OH0 to MFC

in Figure 20). In this modified poker problem, the policies for MFC, MSC, and
MD do not rely on the policy for OFC, and the resulting relevance graph would
therefore contain two strongly connected components: one consisting of only OFC

and the other consisting of the remaining decision variables.

The strongly connected components in a relevance graph can always be or-
ganized in a directed acyclic graph, which defines a topological ordering of the
components. By going in reverse order, we can compute an equilibrium for the
last set of decision variables (that does not rely on any other decision variables).
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These decision variables can then be substituted by chance variables, and we can
then (iteratively) continue to the next set of decision variables. Notice that this pro-
cedure resembles the solution procedure for influence diagrams (see Section 4.2)
except that we here work with sets of decision variables at each step. In some
cases, this decomposition can result in substantial reductions in computational
complexity compared to solving the full game tree, but in the worst case all de-
cision variables rely on each other and no reductions can therefore be obtained.
The poker problem is one such example: the optimal policy for any of the decision
variables (indirectly) relies on the policies of all the other decision variables (see
Figure 21).

OFC OSC OD

MFC MSC MD

Fig. 21 The relevance graph for the multi-agent influence diagram representation of the poker
problem. There is a directed path between all pairs of decisions, which implies that we need
to consider all decisions simultaneously when finding a Nash equilibrium.

7.2 Modeling the Decision Making Processes of other Agents

Fundamental to the MAID framework is the assumption that the model of the
problem is known to all the agents and that the model captures all relevant aspects
required for calculating optimal decision policies for the agents. In particular, it is
assumed that the agents are knowledgeable about the decision policies available
to the other agents. These assumption will often make the optimal policies inter-
dependent, in which case a solution to the decision problem is a Nash equilibrium.
However, in most real-world problems (human) agents do not calculate a Nash
equilibrium when solving a decision problem nor do they necessarily rely on the
same model for making decisions. Instead, agents may have their own private
mental models, which they use when making decisions. These observations have
motivated the development of several frameworks that separate the structure of
the game/decision problem from the mental models used by the agents when doing
reasoning.

7.2.1 Network of Influence Diagrams

The network of influence diagrams (NIDs) (Gal and Pfeffer, 2003, 2008) is such
a framework, which facilitates the separation of the real-world model from the
agents’ mental models. For example, it is possible for an agent to have several
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models of another agent, using a probability distribution to represent the uncer-
tainty about which model is actually being used by the agent. Moreover, the mental
models may themselves contain mental models of other agents, thus supporting a
type of recursive modeling (Gmytrasiewicz et al, 1991).

A NID is a rooted directed acyclic graph, in which each node is a MAID. To
make a clear distinction between the nodes in a NID and the nodes in a MAID,
the nodes in a NID are usually referred to as blocks. The root block of a NID is a
MAID representing the real-world from the modeler’s point of view. An edge from
a block X to a block Y is labeled with {A,D}, meaning that in MAID X agent A
is assumed to use the mental model Y when making decisions D. As an example,
consider again the poker problem, where the MAID in Figure 20 corresponds to
the real-world model from M ’s point of view. Suppose that M believes that O

plays according to one of the following models:

– a fixed strategy (encoded in the conditional probability tables associated with
the chance nodes OFC, OSC, and OD in Figure 8);

– the MAID in Figure 20, where O in turn believes that M plays according to
the model in Figure 8) (i.e., O believes that M believes that O plays a naive
strategy and will therefore play a best response to that strategy);

– the MAID in Figure 20 with an infinite regression being the result.

Thus, M has three mental models for O with regression levels 1, 3, and infinity.
Using the NID framework, this revised poker problem can be represented as in Fig-
ure 22. Agent M ’s uncertainty about which model O is using for deciding on OFC,
OSC, and OD is modeled by a model selection variable Mod[OFC,OSC,OD]
having three states corresponding to the three blocks in the NID. Graphically,
Mod[OFC,OSC,OD] is included as a parent of the three decisions OFC, OSC,
and OD in Figure 20 (see Figure 23); the significance of this construction becomes
apparent in the solution phase. Note that Mod[OFC,OSC,OD] is an ordinary
chance variable that could also be influenced by other variables in the model.

Rational
model

Model 1Model 2

{O,O∗} {O,O∗}

{M,M∗}

Fig. 22 A NID representation of the poker problem; O∗ and M∗ are shorthand notations
for {OFC,OSC,OD} and {MFC,MSC,MD}. Model 1 and 2 correspond to the models in
Figures 8 and 20, respectively, and the rational model corresponds to the model in Figure 23.
Player M ’s uncertainty about which model O uses for deciding on OFC, OSC, and OD is
modeled by a chance variable Mod[OFC,OSC,OD].

When solving a NID we proceed bottom-up using a topological ordering of
the blocks in the DAG. The blocks in the leafs are simply MAIDs, which can be
solved using the algorithm outlined above. In case the model only contains decision
variables for a single agent (as in Model 1 in Figure 22) a solution can be found
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OH0 OH1 OH

OFC OSC OD

Mod[O]

MH0 MH1 MH

MFC MSC

MD U

Fig. 23 The top-level rational block for the NID shown in Figure 22. M ’s uncertainty about
which model O uses is captured by the model selection node Mod[O], which corresponds to a
standard chance variable with three states representing the three possible models.

using a standard solution algorithm for influence diagrams.When all the children of
an internal block X have been solved, the calculated policies are incorporated into
X. This involves representing the policies by their chance variable representations
and using the model selecting variables (e.g. Mod[OFC,OSC,OD]) for making a
conditional specification of which policies to use. Block X can then be solved and
the calculated decision policies are passed on to its parents.

8 Other Issues

In the sections above we have mainly focused on modeling aspects as well as general
considerations about inference. There are, however, several other research areas in
connection to probabilistic decision graphs that we have not touched upon and for
which a more thorough discussion will be outside the scope of the present paper.
Below we will give a brief overview on some of the developments with emphasis
on modeling scope, inference, and domain analysis.

So far we have assumed that all variables are discrete, but in many real-world
domains we often find a mixture of discrete and continuous variables. A straight-
forward approach for modeling and solving these domains is simply to discretize
the continuous variables, and apply one of the standard frameworks discussed
above. Alternatively, there have also been several attempts at extending the influ-
ence diagram and the solution algorithms to allow for continuous variables in the
representation. For example, Shachter and Kenley (1989) propose the Gaussian

influence diagram, where all variables (including the decision variables) are con-
tinuous and the chance variables are assigned linear Gaussian distributions. More
recently, Madsen and Jensen (2005) and Madsen (2008) have proposed methods
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for solving conditional linear quadratic Gaussian (CLQG) IDs containing both
discrete and continuous variables. In a CLQG ID, the continuous variables follow
conditional linear Gaussian distributions and the utility functions are quadratic
functions over any continuous parents. Furthermore, discrete children of contin-
uous parents are not allowed and the temporal order defined by the CLQG ID
should specify that all discrete variables have been observed or decided upon be-
fore any of the continuous variables. The latter requirement can be weakened, but
this requires a structural analysis of the dependence properties specified by the
graph structure. In combination, these requirements ensure that an exact solution
can be found and, in particular, the (negative) quadratic utility functions ensure
that a unique optimal decision can be found for the decision variables without
having to solve a complex optimization problem.

The representational restrictions imposed by the solution methods for CLQG
IDs do, however, limit the applicability of these models and have motivated the
development of alternative modeling frameworks. One recently proposed model
is based on the mixture of truncated exponentials (MTEs) framework, which was
originally specified for Bayesian networks (Moral et al, 2001). In an MTE-based
Bayesian network, discrete and continuous variables can be treated in a uniform
fashion and exact inference can be performed using the Shafer-Shenoy architec-
ture (Shafer and Shenoy, 1990). Cobb and Shenoy (2004, 2008) extended the MTE
framework to influence diagrams with the only requirement that the decision vari-
ables should be discrete. This restriction was later lifted by Cobb (2006). More
recently, Li and Shenoy (2010) proposed a general architecture (exemplified using
mixtures of polynomials (Shenoy and West, 2009)) for solving hybrid influence
diagrams with deterministic functions assigned to (some of) the chance variables.

Algorithms for solving decision graphs, and influence diagrams in particular,
have received much attention. In general, solving an influence diagram is NP-
hard (Cooper, 1990) but many real-life problems have been shown to have feasible
solutions. Exact algorithms for solving influence diagrams range from algorithms
working directly on the influence diagram structure (Shachter, 1986) to algorithms
that rely on a secondary representation of the model.2 Examples of the latter in-
clude search-based algorithms that operate on a decision tree representation of the
model (Yuan and Wu, 2010; Yuan et al, 2010), message-passing algorithms that
rely on a junction tree representation of the model (Jensen et al, 1994; Madsen
and Jensen, 1999; Madsen and Nilsson, 2001), and algorithms that transform the
influence diagram into a so-called decision circuit (Bhattacharjya and Shachter,
2007; Shachter and Bhattacharjya, 2010), the analogue to arithmetic circuits for
Bayesian networks (Darwiche, 2003). The computational difficulties involved in
solving influence diagrams have also sparked the development of several approxi-
mate algorithms. For example, Horsch and Poole (1998) and Dechter (2000) have
proposed anytime algorithms for solving influence diagrams, and sampling-based
methods have been described in e.g. (Virto et al, 2002; Charnes and Shenoy, 2004;
Cano et al, 2006; Garcia-Sanchez and Druzdzel, 2007).

Given an influence diagram representation of a decision problem, we can not
only use the model to find an optimal strategy for the decisions involved, but
we may also use the model to perform a more extensive analysis of the decision

2 It is worth noting that solving an influence diagram is closely related to performing infer-
ence in a Bayesian network (Cooper, 1988; Shachter and Peot, 1992; Zhang, 1998).
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problem. For example, in Section 3.1 we mentioned algorithms for determining the
required past of a decision variable based on the structure of the model; similar al-
gorithms also exist for determining the relevant future of a decision (Nielsen, 2001).
For analyzing the numerical aspects of a model, algorithms have been developed
for performing sensitivity analyses, i.e., determining how sensitive the maximum
expected utility or the optimal strategy is to variations of one or more of the (nu-
merical) parameters in the model (Felli and Hazen, 1999; Bielza et al, 2000; Nielsen
and Jensen, 2003; Bhattacharjya and Shachter, 2008). A related type of analysis
is value of information: should we look for more information before deciding on
a particular decision? When several different information sources are available,
the general problem becomes intractable and one typically resorts to approximate
algorithms (Dittmer and Jensen, 1997; Shachter, 1999; Liao and Ji, 2008)

9 Computer systems

There are several academic as well as commercial systems for editing and running
Bayesian networks. You can find a list on directory.google.com/Top/Computers/

Artificial_Intelligence/Belief_Networks/Software.
Some of the systems also process influence diagrams. For example, the commer-

cial systems Analytica (www.lumina.com), Bayesia (www.bayesia.com), and Netica
(www.norsys.com) process influence diagram specifications with no-forgetting, and
Hugin (www.hugin.com) is based on LIMIDs.

The academic system Bayesian network toolbox (www.cs.ubc.ca/~murphyk/
Software/BNT/bnt.html), Java Bayes (www.cs.cmu.edu/~javabayes/Home), Ge-
nie (genie.sis.pitt.edu/), and MSBNx (http://research.microsoft.com/en-
us/um/redmond/groups/adapt/msbnx) process influence diagrams, and the Elvira
system leo.ugr.es/elvira also processes UIDs.
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