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a b s t r a c t

High performance and reliability are required for wind turbines to be competitive within the energy mar-
ket. To capture their nonlinear behavior, wind turbines are often modeled using parameter-varying mod-
els. In this paper we design and compare multiple linear parameter-varying (LPV) controllers, designed
using a proposed method that allows the inclusion of both faults and uncertainties in the LPV controller
design. We specifically consider a 4.8 MW, variable-speed, variable-pitch wind turbine model with a fault
in the pitch system.

We propose the design of a nominal controller (NC), handling the parameter variations along the nom-
inal operating trajectory caused by nonlinear aerodynamics. To accommodate the fault in the pitch sys-
tem, an active fault-tolerant controller (AFTC) and a passive fault-tolerant controller (PFTC) are designed.
In addition to the nominal LPV controller, we also propose a robust controller (RC). This controller is able
to take into account model uncertainties in the aerodynamic model.

The controllers are based on output feedback and are scheduled on an estimated wind speed to manage
the parameter-varying nature of the model. Furthermore, the AFTC relies on information from a fault
diagnosis system.

The optimization problems involved in designing the PFTC and RC are based on solving bilinear matrix
inequalities (BMIs) instead of linear matrix inequalities (LMIs) due to unmeasured parameter variations.
Consequently, they are more difficult to solve. The paper presents a procedure, where the BMIs are
rewritten into two necessary LMI conditions, which are solved using a two-step procedure.

Simulation results show the performance of the LPV controllers to be superior to that of a reference
controller designed based on classical principles.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Motivated by environmental concerns and the depletion of fos-
sil fuels, increasing attention is being paid to wind energy, which is
one of the most promising sustainable energy sources. From a con-
trol point of view, a wind turbine is a challenging machine, since it
is driven by a stochastic input, which is poorly known. A modern
wind turbine is controlled not only to maximize power production,
but also to reduce loads, minimize acoustic noise emissions, and
meet power quality grid codes.

Wind turbines inherently exhibit nonlinear dynamics, motivat-
ing the use of advanced control techniques such as gain-scheduled
control to continuously adapt to the dynamics of the plant. Since
many wind turbines are installed at remote locations, the introduc-
tion of fault-tolerant control is considered a suitable way of
improving reliability of wind turbines and lowering costs of re-
pairs. Finally, the lack of accurate models must be countered by ro-

bust control strategies capable of securing stability and satisfactory
performance despite model uncertainties, see [1].

In this paper a three-bladed horizontal-axis, variable-speed,
variable-pitch wind turbine is considered. The aerodynamic prop-
erties of the wind turbine are functions of the pitch angles of the
blades, the speed of the rotor, and the wind speed. The wind exerts
torque and thrust on the rotor. The aerodynamic torque is trans-
ferred to the generator through a drive train, which upscales the
rotational speed of the rotor, and the aerodynamic thrust is trans-
ferred to the tower-top.

In terms of control, the wind turbine operates in two distinct re-
gions, illustrated in Fig. 1. At low wind speeds, in the partial load
region, the turbine is controlled to maximize the power output.
This is achieved by adjusting the generator torque to obtain an
optimum ratio between the tip speed of the blades and the wind
speed. At higher wind speeds, in the full load region, the wind tur-
bine is controlled to reduce loads by producing a rated power out-
put at a constant rotor speed, which is obtained by pitching the
blades to adjust the efficiency of the rotor, while applying a con-
stant generator torque. In this paper only operation in the full load
region is considered.
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Due to the varying dynamic behavior of wind turbines along
their nominal operating trajectory, wind turbine controllers typi-
cally consist of multiple gain-scheduled controllers, which are de-
signed to operate in the proximity of a certain operating point. In
[2] a gain-scheduling approach for classical controllers is presented
and in [3,4] a controller for the whole operating range is designed
by introducing bumpless transfer between robust controllers. The
underlying assumption for such control schemes is that the param-
eters only change slowly compared to the system dynamics, which
is generally not satisfied. Additionally, classic gain-scheduling con-
trollers only ensure performance guarantees and stability at the
operating points where the linear controllers are designed. A more
comprehensive overview of wind turbine control is found in [5].

A systematic way of designing controllers for systems with lin-
earized dynamics that vary significantly with the operating point is
within the framework of linear parameter-varying (LPV) control.
Here, a controller is synthesized to satisfy a performance specifica-
tion for all possible parameter values within a specified model and
for the specified rate of variation of the parameters. An LPV con-
troller can be synthesized after solving an optimization problem
subject to linear matrix inequalities (LMIs).

In previous work, LPV controllers have been developed for wind
turbines considering a nominal plant model [1,6]. However, in con-
trol systems for wind turbines, robustness and fault-tolerance
capabilities are important properties which should be considered
in the design process, calling for a generic and powerful tool to
manage parameter-variations and model uncertainties. In this pa-
per, in addition to design procedures for nominal controllers for
parameter-varying models, also design procedures for controllers,
which obtain robustness and active/passive fault-tolerance, are
provided. To emphasize the contribution of this paper, a controller
is designed, synthesized, and simulated for each partial result;
hence, we design the four following controllers. Notice that the
names in parentheses are abbreviations used throughout this
paper.

1. Nominal controller (NC): LPV controller scheduled to handle the
parameter variations along the nominal operating trajectory.

2. Active fault-tolerant controller (AFTC): LPV controller scheduled
to handle the parameter variations along the nominal operating
trajectory and scheduled to accommodate the fault in the pitch
system.

3. Passive fault-tolerant controller (PFTC): LPV controller scheduled
to handle the parameter variations along the nominal operating
trajectory and resilient towards the fault in the pitch system.

4. Robust controller (RC): LPV controller scheduled to handle the
parameter variations along the nominal operating trajectory
and robust towards expected variations in the parameters of
the aerodynamic model.

The roles of the four controllers are to demonstrate the feasibil-
ity of the LPV method when managing parameter variations,
robustness, and fault-tolerant control. Indeed, handling known
parameter-dependencies, unknown parameter variations, and
faults, constitute the main challenges for the application of wind
turbine control. The controllers presented in this paper are there-
fore serious candidates for solving a majority of practical wind tur-
bine control problems, provided a sufficiently good model of the
wind turbine is available. Realizing such a controller in practice
can sometimes be difficult and may lead to numerical challenges,
but taking the precautions described in this paper, we believe that
such a controller can also be implemented in practice.

The focus on fault-tolerant control in this paper includes an
AFTC [7] and a PFTC [8], both providing a complete solution to
the design problem for the considered fault scenario. The intention
of the paper is to show feasibility of both solutions, compare the
two approaches in terms of design complexity and performance,
and allow the best-suited method to be selected for a given design
problem. The difference between an AFTC and a PFTC is that an ac-
tive fault-tolerant controller relies on a fault diagnosis system,
which should feed information about the faults to the controller.
This knowledge makes it possible for the AFTC to reconfigure
according to the current state of the system, but it also introduces
some detection time and a risk of false positive and false negative
diagnosis, e.g. due to model limitations. A PFTC is optimized for the
fault-free situation, while satisfying some degraded performance
requirements in the fault scenario. The degradation of performance
requirements is what separates reliable controllers from robust
controllers, as robust controllers have the same performance guar-
antee throughout the entire parameter space.

The list of faults occurring in wind turbines is extensive, reflect-
ing the complexity of the machines. On system level, faults occur in
sensors, actuators, and system components, ranging from slow
gradual faults to abrupt component failures. The occurrence of
faults may change the system behavior dramatically. This moti-
vates us to develop methods for fault diagnosis and fault-tolerant
control, offering several benefits:

� Prevent catastrophic failures and faults from deteriorating other
parts of the wind turbine, by early fault detection and
accommodation.
� Reduce maintenance costs by providing remote diagnostic

details and avoiding replacement of functional parts, by apply-
ing condition-based maintenance instead of time-based
maintenance.
� Increase energy production when a fault has occurred by means

of fault-tolerant control.

This paper addresses the simple case of a single fault: altered
dynamics of the hydraulic pitch system due to low hydraulic pres-
sure. The fault is a gradual fault affecting the control actions of the
turbine. The method used also applies to fast parameter variations,
i.e. abrupt faults in the extreme case, see [9]. The fault modeling
and the motivation for considering this fault originate from [10].
For a more comprehensive treatment of multiple fault types re-
lated to wind turbine operation see [9].

This paper is organized as follows: Section 2 describes the wind
turbine plant model and the considered fault. In Section 3 a refer-

Fig. 1. Power curve, rotor speed trajectory, and overview of control signals for the
partial and full load regions.
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ence controller based on classical methods is presented to establish
a frame of reference for the designed LPV controllers. In Section 4
the optimization problems and controller synthesis procedures are
presented for designing the nominal LPV controller and the con-
trollers including the fault-tolerant and robust extensions. Sec-
tion 5 contains the simulation results and compares the
performance of the LPV controllers to the performance of the refer-
ence controller. Section 6 concludes the paper.

2. Wind turbine model

A nonlinear wind turbine model is used for simulation of the
proposed control algorithms. The model consists of sub-models
for: static aerodynamics, the tower, the drive train, the generator,
the pitch system and the converter actuator, and the measurement
noise. The sub-models are separately explained in the following
subsections and combined at the end of this section, and the model
parameters are listed in Appendix A. Throughout the sequel, sub-
script ‘r’ will refer to rotor parts and subscript ‘g’ will refer to gen-
erator parts.

2.1. Aerodynamic model

The rotor of the wind turbine converts kinetic energy of the
wind to rotational energy of the rotor blades and shaft, rotating
at the speed xr(t). The power in the wind depends on the wind
speed, vr(t), the air density, q, and the swept area, A. From the
available power in the swept area, the power transferred to the ro-
tor is given based on the power coefficient, Cp(k(t),b(t)), which is a
function of the pitch angle of the blades, b(t), and the ratio between
the speed of the blade tip and the wind speed, denoted the tip-
speed ratio, k(t). The aerodynamic torque applied to the rotor is gi-
ven as:

TaðtÞ ¼
1

2xrðtÞ
qAv3

r ðtÞCpðkðtÞ;bðtÞÞ ½Nm� ð1Þ

The coefficient Cp describes the aerodynamic efficiency of the
rotor by the mapping illustrated in Fig. 2.

The thrust exerted by the wind on the rotor, Ft(t), is calculated
as shown in (2), where Ct(k(t),b(t)) is the trust coefficient.

FtðtÞ ¼
1
2
qAv2

r ðtÞCtðkðtÞ;bðtÞÞ ½N� ð2Þ

2.2. Drive train model

The drive train model consists of a low-speed shaft and a high-
speed shaft having inertias Jr and Jg, and friction coefficients Br and

Bg. The shafts are interconnected by a transmission having gear ra-
tio Ng, combined with torsion stiffness Kdt, and torsion damping
Bdt. This results in a torsion angle, hD(t), and a torque applied to
the generator, Tg(t), at a speed xg(t). The model of the drive train
is given as:

Jr _xrðtÞ¼ TaðtÞþ
Bdt

Ng
xgðtÞ�KdthDðtÞ�ðBdtþBrÞxrðtÞ ½Nm� ð3aÞ

Jg _xgðtÞ¼
Kdt

Ng
hDðtÞþ

Bdt

Ng
xrðtÞ�

Bdt

N2
g

þBg

 !
xgðtÞ�TgðtÞ ½Nm� ð3bÞ

_hDðtÞ¼xrðtÞ�
1

Ng
xgðtÞ ½rad=s� ð3cÞ

2.3. Pitch system model including fault model

The considered wind turbine has a hydraulic pitch system
which is modeled as a second-order system with a time delay, td,
and input bref(t). The natural frequency, xn, and damping ratio, f,
specify the dynamics of the model:

€bðtÞ ¼ �2fxn
_bðtÞ �x2

nbðtÞ þx2
nbrefðt � tdÞ ½�=s2� ð4Þ

To represent the limitations of the pitch actuators, the model
includes constraints on the slew rate and the range of the pitch
angle; see Appendix A for specific values.

2.3.1. Fault model
A drop in the hydraulic pressure affects the dynamics of the

pitch system by changing the damping ratio and natural frequency
from their nominal values f0 and xn,0 to their values at low pres-
sure flp and xn,lp, as described in (6). Low hydraulic pressure is
characterized as a gradual fault, since it affects control actions of
the turbine. Step responses of the pitch system in the normal
and fault conditions are illustrated in Fig. 3. The pressure level is
modeled as a convex combination of the vertices of the two param-
eter sets according to [10].

The dynamics of the pitch system is described as a second-order
system

€bðtÞ ¼ �2fðhfÞxnðhfÞ _bðtÞ �x2
nðhfÞbðtÞ þx2

nðhf Þbrefðt � tdÞ ½�=s2�
ð5Þ

where

x2
nðhf Þ ¼ ð1� hfÞx2

n;0 þ hfx2
n;lp ½rad=s2� ð6aÞ

� 2fðhf ÞxnðhfÞ ¼ �2ð1� hf Þf0xn;0 � 2hfflpxn;lp ½rad=s� ð6bÞ

and hf 2 [0,1] is an indicator function for the fault with hf = 0 and
hf = 1 corresponding to normal pressure and low pressure, and
_hðtÞ 2 ½�30=s;30=s�. It is assumed that the terms in (5) are changed
linearly between the two vertices.

Fig. 2. Illustration of the power coefficient, Cp.

Fig. 3. Step responses of hydraulic pitch model under normal (blue) and fault (red)
conditions. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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2.4. Generator and converter models

Electric power is generated by the generator, while a power
converter interfaces the wind turbine generator output with the
utility grid and controls the currents in the generator. The genera-
tor torque in (7) is controlled by the reference Tg,ref(t). The con-
verter dynamics are approximated by a first-order system with
time constant sg and time delay tg,d. Just as for the model of the
pitch system, the slew rate and the operating range of the genera-
tor torque are both bounded to match the limitations of the real
system.

_TgðtÞ ¼ �
1
sg

TgðtÞ þ
1
sg

Tg;refðt � tg;dÞ ½Nm=s� ð7Þ

The power produced by the generator can be approximated
from the mechanical power calculated in (8), where gg denotes
the efficiency of the generator, which is assumed constant.

PgðtÞ ¼ ggxgðtÞTgðtÞ ½W� ð8Þ

2.5. Tower model

Thrust acting on the rotor introduces fore-aft movements of
the flexible tower. Sideward movements are ignored in this pa-
per by neglecting yawing and drive train reaction torque on
the tower.

The fore-aft movement of the tower is assumed as a linear dis-
placement of the nacelle, acting as a disturbance to the free wind
speed, vw(t). The force acting on the tower at hub height, Fth(t), is
determined based on the thrust in (2) distributed to the individual
blades, assuming stiff blades, stiff tower, and a tower bending mo-
ment at the tower base. The tower displacement, xt(t), is modeled
using the spring-damper terminology in (9), including damping
coefficient Bt, stiffness coefficient Kt, and mass Mt.

Mt€xtðtÞ ¼ FthðtÞ � Bt _xtðtÞ � KtxtðtÞ ½N� ð9Þ

The effective wind speed at the rotor is described as:

v rðtÞ ¼ vwðtÞ � _xtðtÞ ½m=s� ð10Þ

2.6. Assembled model

The interconnection of the wind turbine sub-models is illus-
trated in Fig. 4. The disturbance input, vw(t), is provided by a wind
model, where tower shadow and wind shear are modeled as in [11]
using a turbulence model derived from the wind model in [12].
Furthermore, fore-aft movement of the tower is included in the
resulting wind speed as shown in (10).

Available measurements are: generator torque [Nm], generator
power [W], pitch angle [�], generator speed [rad/s], and rotor speed

[rad/s]; all sampled at a rate of 100 Hz. The measurement noise is
modeled as zero-mean white Gaussian noise with the following
standard deviations: rTg = 90 Nm, rPg = 17 kW, rb = 0.2�, rxg =
0.016 rad/s, and rxr = 0.025 rad/s. Considering the gear ratio of
95, the signal-to-noise ratio (SNR) of the measurement of xr(t) is
much smaller than the SNR of the measurement of xg(t). This is
typical to wind turbines, where the generator speed measurement
has a much higher precision, whereas the rotor speed measure-
ment, if available, will only be used in a diagnosis system for con-
sistency checks.

A combined model is arranged in state space form to be used in
the controller design. Linearizations of the nonlinear parts of the
model are derived from this state space form. Additional informa-
tion about the model is found in [9].

2.7. Model simplifications

The following list outlines the major simplifications of the
model.

� Rigid structure: The rotor is assumed rigid, such that the stiff
blades are fixed to the hub, which is fixed to the low-speed
shaft. This simplification eliminates bending modes of the
blades. Additionally, a stiff tower is assumed and sideward
tower movements are neglected.
� Fixed environmental variables: The wind is assumed to be per-

pendicular to the rotor plane at all times, eliminating the impact
of yaw misalignment. Furthermore, air density and wind shear
are assumed constant.
� Static aerodynamic model: The aerodynamics is assumed to pos-

sess static properties, neglecting dynamic stall and dynamic
inflow models.

3. Reference controller

The reference controller is supposed to approximate the config-
uration of an existing wind turbine control system, and is designed
using classical control techniques to provide a reference for the LPV
controllers. The controller parameters are found in Appendix B. De-
tails regarding the design and evaluation of the reference control-
ler are given in [9].

In full load operation two PI-controllers are used to track a con-
stant generator speed reference and a constant power reference,
see Fig. 1. A speed controller controls the pitch angle of the blades
while a power controller controls the generator torque. The gener-
ator torque is kept close to a nominal value and resulting speed
variations are compensated by the pitch system. Therefore, pitch
control is the essential element in full load operation. A diagram
of the reference control system is shown in Fig. 5. Both PI-control-
lers can be expressed on this general form, where s denotes the La-
place operator:

Fig. 4. Block diagram of the wind turbine model. Measurements are emulated by sampling Tg(t), Pg(t), b(t), xg(t), and xr(t) at 100 Hz and then adding zero-mean white
Gaussian noise.
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DðsÞ ¼ K 1þ 1
T i � s

� �
ð11Þ

The gain-scheduled speed controller consists of two controllers
operating at wind speeds of 12–15 m/s and 15–25 m/s, respec-
tively. These controllers were designed to have a gain margin of
6 dB and a phase margin of 50�, with further details given in [9].
A simple bumpless transfer was introduced to schedule between
the two controllers, utilizing the pitch angle as scheduling
parameter.

In order to mitigate the effects of drive train oscillations, the
measured generator speed and power are band-stop filtered before
they are fed to the PI-controllers. The filters are introduced in order
to remove the drive train eigenfrequency from the measurements.
Additionally, active drive train damping is deployed by adding a
signal to the generator torque to compensate for the oscillations
in the drive train. This signal should have a frequency, xnd, equal
to the eigenfrequency of the drive train, which is obtained by filter-
ing the measurement of the generator speed using the filter:

DdðsÞ ¼ Kd
2fdxndsð1þ sdsÞ

s2 þ 2fdxndsþx2
nd

½Nm=ðrad=sÞ� ð12Þ

The time constant, sd, introduces a zero in the filter, and can be
used to compensate for time lags in the system. Therefore, sd is se-
lected to equal the time delay of the converter system, tg,d. The fil-
ter gain is Kd and the damping ratio is fd. The active drive train
damping and power controller were also used for the LPV
controllers.

4. Controller design

This section presents the LMI-based method for designing and
synthesizing the four controllers introduced in Section 1. The four
controllers are: Nominal Controller (NC), Active Fault-Tolerant
Controller (AFTC), Passive Fault-Tolerant Controller (PFTC), and Ro-
bust Controller (RC).

Wind turbines inherently exhibit nonlinear dynamics that are
highly dependent on the current operating condition of the wind
turbine. LPV control is utilized in order to schedule the four con-
trollers according to the nominal operating trajectory of the full
load region shown in Fig. 1. Additionally, one controller is designed
to be robust in order to guarantee stability and performance de-
spite the nonlinear nature of the system. Since wind turbines are
also exposed to faults, two different fault-tolerant LPV controllers
are furthermore designed. As mentioned above, several controllers
will be designed in this paper, where each of them implements one
or more of the desired features. We shall, however, apply a joint
LPV controller design framework, for which all of the individual
controller designs can be seen as special cases. To support this
we shall extend the LPV controller design in [13] in order to allow

for unmeasured parameter variations in the same framework. In
contrast to [14], the method relies on a structured uncertainty
description and is based on parameter dependent Lyapunov func-
tions as in [15], and the rates of the parameter variations are
bounded as in [16].

A block diagram of the wind turbine being controlled by an LPV
controller is illustrated in Fig. 6, where u(k) is the control signal
and w(k) is the disturbance. The LPV controllers depend on the
measurements y(k) and an estimate of the current operating point,
ĥopðkÞ, which is used as scheduling parameter. Additionally, a fault
diagnosis system provides the scheduling parameter ĥf ðkÞ for the
active fault-tolerant controller. The extra degree of freedom added
by allowing the AFTC to adapt in case of a fault may introduce less
conservatism than for the PFTC. However, if the fault diagnosis sys-
tem behaves incorrectly, the AFTC is affected in an undesirable
manner. The generation of the scheduling parameters is explained
in Section 4.2.

Compared to the reference controller, the LPV controller man-
ages multiple inputs, which is generally a key to improving perfor-
mance of a control system. In the considered case, the noisy rotor
speed measurement only slightly improves the estimated rota-
tional speed. Additionally, knowledge of the pitch angle measure-
ment gives only a slight improvement of the estimated pitch
angle, as the pitch angle reference is already known to the
controller.

The AFTC is a conventional LPV controller scheduled on hop(t)
and hf(t); the reason for denoting it an active fault-tolerant control-
ler arises from the origin of the scheduling parameters. Throughout
this paper h(t) represents the measured parameter variations and
D(t) represents the unmeasured parameter variations.

The nominal controller and the AFTC are designed using the LPV
controller design method described in [13]. This method is based
on output feedback, which suits the considered problem well since
the state vector is only partially measured. To enable the design of
the robust controller and the PFTC, the description in [13] is ex-
tended in this paper by allowing unmeasured parameter variations
in the design.

4.1. System and controller description

The wind turbine model is given by the general LPV system
description shown in (13), where the subscripts h and D are used
as shorthand notation for a matrix depending on h(t) and D(t),
i.e. A(h,D) is denoted AhD. Note that z(t) is the performance output
vector.

_xðtÞ ¼ AhDxðtÞ þ B1hDwðtÞ þ B2hDuðtÞ ð13aÞ
zðtÞ ¼ C1hDxðtÞ þ D11hDwðtÞ þ D12hDuðtÞ ð13bÞ
yðtÞ ¼ C2hDxðtÞ þ D21hDwðtÞ þ D22hDuðtÞ ð13cÞ

The unmeasured parameter vector D is empty for the nominal
controller and the active fault-tolerant controller, since all schedul-
ing parameters are measured in these cases.

Fig. 5. Reference control system for the full load region tracking a nominal
generator speed reference, xg,N, and a nominal power reference, Pg,N. The mean
nominal generator torque is Tg,N.

Fig. 6. Block diagram of the controller structures. The black boxes are common to
the LPV controllers, while the red dashed box illustrates the fault diagnosis system
required by the AFTC. The LPV controller replaces the speed controller in Fig. 5.
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The controller description in (14), where the controller matrices
are dependent on the measured parameters, h(t), is common to all
of the controllers.

_xcðtÞ ¼ AchxcðtÞ þ BchyðtÞ ð14aÞ
uðtÞ ¼ CchxcðtÞ þ DchyðtÞ ð14bÞ

The size of the optimization problem involved in the controller
design is connected to how the model depends on h and D. An af-
fine dependence is preferable, otherwise grid-based methods
should be used at high computational cost; for details see Appen-
dix B in [6].

4.2. Scheduling parameters

For each controller a system description dependent on the vary-
ing parameters was set up, which involves determining the ranges
and rate bounds of the scheduling parameters. All controllers were
designed to operate in the entire full load region, ranging between
wind speeds of 13 m/s and 25 m/s, extending the results in [17].

The parameter variations of the system along the nominal oper-
ating trajectory originate from the linearized version of the aerody-
namic torque shown in (15), which is a linearization of (1).

TaðtÞ � Ta þ TD
a ðtÞ

� Ta þ
@Ta

@xr
xD

r ðtÞ þ
@Ta

@v r
vD

r ðtÞ þ
@Ta

@b
bDðtÞ ½Nm� ð15Þ

where @Ta
@xr

; @Ta
@vr

, and @Ta
@b are instantaneous partial derivatives of the

aerodynamic torque and xD
r , vD

r , and bD are the deviations from
the operating point where Ta is linearized.

The parameter variations in the nominal LPV plant model were
approximated using an affine description in the wind speed, i.e.
hop(t) = vr(t). The affine approximations of the instantaneous partial
derivatives of the aerodynamic torque are displayed in Fig. 7. By
inspecting the output of the wind model, the rate bounds of vr(t)
were approximated to be �2 m/s2 and 2 m/s2.

In wind turbine control it is highly desirable to know the effec-
tive wind speed, which is defined as the spatial average of the wind
field over the rotor plane with the wind stream being unaffected by
the wind turbine. However, on most wind turbines the wind speed
is measured by an anemometer on the nacelle, which only mea-
sures the wind speed at a single point in space and is affected by
the presence of the rotor. This measurement is not representative
of the effective wind speed. To obtain the scheduling parameter,
an effective wind speed estimator was therefore designed accord-
ing to the method in [18], described in detail in [9].

4.2.1. Fault-tolerant controllers
Since the parameter variations of the pitch system introduced

in (5) are affine in hf and can be used directly as shown in (6),
the fault in the pitch system can be incorporated into the LPV

description forthwith. The fault signal ranges between zero and
one for convenience and may be fully introduced within 30 s, cor-
responding to a rapid drop in pressure of the pitch system. This
makes the parameter range and the rate bounds be hf 2 [0,1] and
_hf 2 ½�0:033=s; 0:033=s�.

The scheduling parameter hf was not measured and had to be
estimated for the AFTC. Therefore, a parameter estimator was de-
signed based on a multi-model estimation method using an ex-
tended Kalman filter explained in [19], and relies on the
measured pitch angles of all three blades. The design of the fault
diagnosis system is described in detail in [9].

4.2.2. Robust Controller
The affine approximations of the partial derivatives of the aero-

dynamic torque along the nominal operating trajectory are shown
in Fig. 7. Although the approximations are reasonably good, the
deviations might still require some robustness of the controller.
Additionally, it is not expected that the nominal operating trajec-
tory is followed exactly even at normal operation due to the sto-
chastic wind input and measurement noise. Combined with the
simplification of a static aerodynamic model, robustness towards
parameter uncertainties in the aerodynamic model is of great
importance to the controller.

The uncertainty in the partial derivatives is modeled by adding
three independent uncertain but bounded variables D1, D2, and D3

to the parameter description:

@Ta

@b
ðv r;D1Þ � ab þ bbv r þ D1 ð16aÞ

@Ta

@vr
ðv r;D2Þ � avr þ bvr v r þ D2 ð16bÞ

@Ta

@xr
ðvr;D3Þ � axr þ bxr vr þ D3 ð16cÞ

To determine the bounds on D1, D2, and D3 the reference con-
troller was simulated with wind speeds ranging from 13 m/s to
25 m/s to record the actual partial derivatives of the aerodynamic
torque. These are illustrated in Fig. 8 by the green points. It was
decided for the design of the robust controller to use the parameter
set marked by the red boxes, which covers the majority of the sam-
ples; hence, the parameter ranges are D1 2 [�0.0994,0.0426]
MNm/�, D2 2 [�0.104,0.104] MNm/(m/s), and D3 2 [�1.0,1.1]
MNm/(rad/s). The rates of the parameter variations of D1, D2,
and D3 were not determined, since they are not utilized in the
controller design.

4.2.3. Affine system description
From the previous description of the parameter dependencies it

is concluded that an affine parameter description can be adapted
for the considered system by simplifying the general case in [13],
where no restrictions are imposed on the parameter dependence.

Fig. 7. Parameter variations along the nominal operating trajectory in the full load region. The partial derivatives of the aerodynamic torque (blue) are approximated in the
range from 13 m/s to 25 m/s by affine descriptions (red) using the wind speed as scheduling parameter. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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The affine description reduces the number of matrix inequali-
ties in the optimization problem used to compute the controller
matrices. The system description is shown in (17), where nh is
the number of measured parameters and nD is the number of
unmeasured parameters. To ease the design of the LPV controller,
some matrices in the LPV system description are assumed to be
constant. However, the restriction of parameter independent
matrices B2, C2, D12, and D21 can be applied without any loss of gen-
erality, see [20]. Furthermore, the assumption D22 = 0 can be re-
laxed by redefining the output.

AhD B1hD B2hD

C1hD D11hD D12hD

C2hD D21hD D22hD

264
375 ¼ A0 B1;0 B2;0

C1;0 D11;0 D12;0

C2;0 D21;0 0

264
375

þ
Xnh

i¼1

hi

Ah
i Bh

1;i 0

Ch
1;i Dh

11;i 0
0 0 0

264
375þXnD

j¼1

Dj

AD
j 0 0

0 0 0
0 0 0

264
375

ð17Þ

If an affine approximation cannot be justified, uncertain param-
eters can be introduced to cover model nonlinearities, as in the sec-
tion presenting robustness against model uncertainties. This
however introduces conservatism, in particular for highly nonlin-
ear systems.

For convenience the matrices Ah and Alin
D are defined in (18),

describing the measured and unmeasured parameter variations.

AhD ¼ A0 þ
Xnh

i¼1
hiA

h
i|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Ah

þ
XnD

j¼1
DjA

D
j|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Alin
D

ð18Þ

The NC and AFTC have no unmeasured parameters. Correspond-
ingly, for the cases under consideration:

NC : AhD ¼ A0 þ h1|{z}
vr

Ah
1 ð19aÞ

AFTC : AhD ¼ A0 þ h1|{z}
vr

Ah
1 þ h2|{z}

hf

Ah
2 ð19bÞ

PFTC : AhD ¼ A0 þ h1|{z}
vr

Ah
1 þ D4|{z}

hf

AD
4 ð19cÞ

RC : AhD ¼ A0 þ h1|{z}
vr

Ah
1 þ D1AD

1 þ D2AD
2 þ D3AD

3 ð19dÞ

Note that h2 and D4 describe the exact same parameter varia-
tion of the system. In the AFTC case, the parameter h2 is considered
to be measured, whereas in the PFTC case, the parameter D4 is con-
sidered to be an uncertainty, which the controller must provide
robustness for.

The general LPV plant model is shown in (20) and for the four
controller designs it is adapted to the cases in (19). To ease the con-

troller design by fulfilling (17), B2 is turned into a parameter inde-
pendent matrix by performing a state transformation which
replaces the state _bðtÞ with _b0ðtÞ ¼ 1

x2
nðtÞ

_bðtÞ.

_xðtÞ ¼ AðhÞxðtÞ þ B1ðhÞwðtÞ þ B2uðtÞ

_bðtÞ

€b0ðtÞ

_hDðtÞ

_xgðtÞ

_xrðtÞ

266666666664

377777777775
¼

0 a12ðhf Þ 0 0 0

�1 a22ðhf Þ 0 0 0

0 0 0 � 1
Ng

1

0 0 Kdt
Jg Ng

� Bdt

Jg N2
g
þ Bg

Jg

� �
Bdt

Ng Jg

1
Jr

@TaðhopÞ
@b 0 � Kdt

Jr

Bdt
Ng Jr

a55ðhopÞ

266666666666664

377777777777775

bðtÞ

_b0ðtÞ

hDðtÞ

xgðtÞ

xrðtÞ

266666666664

377777777775

þ

0

0

0

0

1
Jr

@TaðhopÞ
@vr

266666666664

377777777775
v rðtÞ þ

0

1

0

0

0

266666666664

377777777775
bref ðt � tdÞ

a12ðhf Þ ¼ ð1� hf ðtÞÞx2
n;0 þ hf ðtÞx2

n;lp

a22ðhf Þ ¼ �2ð1� hf ðtÞÞf0xn;0 � 2hf ðtÞflpxn;lp

a55ðhopÞ ¼
1
Jr

@TaðhopÞ
@xr

� Bdt þ Br

Jr

ð20Þ

The LPV controllers rely on measurements of b(t), xr(t), and
xg(t). Additionally, the AFTC also receives the fault estimate ĥfðtÞ
from the fault diagnosis system.

4.3. LPV controller design method

From the system description in (20) and the LPV controller in
(14), the design task is to find a parameter-dependent quadratic
(PDQ) stable closed-loop system, which minimizes the induced
L2-norm between the disturbance input, w(t), and the performance
output, z(t). This can be accomplished by finding parameter-
dependent Lyapunov functions, as explained in the following the-
orem presented in [6] originating from [13]. Note that the subscript
‘cl’ denotes closed-loop system matrices.

Theorem 1. Given a closed-loop system governed by the parameter-
dependent matrices AclhD, Bclh, Cclh, Dclh with ðh; _h;D; _DÞ 2 H� V

�D� U , suppose that there exists a differentiable symmetric function
Xclh such that Xclh > 0 and

_Xclh þ AT
clhDXclh þ XclhAclhD XclhBclh CT

clh

BT
clhXclh �cI DT

clh

Cclh Dclh �cI

264
375 < 0 ð21Þ

Fig. 8. Parameter variations along the nominal operating trajectory in the full load region. Partial derivatives of the aerodynamic torque in simulation of the reference
controller (green) are used in the design of the robust controller. The partial derivatives of the aerodynamic torque (blue) are approximated in the range from 13 m/s to 25 m/
s by affine uncertain descriptions (red) using the wind speed as scheduling parameter and three uncertain parameters. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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for all ðh; _h;D; _DÞ 2 H� V �D� U . Then,

1. the function AclhD is PDQ stable over H�D, and
2. the induced L2-norm of the operator Tzw is bounded by c > 0.

A bound c on kTzwki,2 equivalent to kTzwki,2 < c means thatZ 1

0
zTðsÞzðsÞds < c2

Z 1

0
wTðsÞwðsÞds ð22Þ

Theorem 1 cannot be utilized directly for controller design,
since the closed-loop system matrices are unknown. To form an
appropriate design problem, which can be solved using convex
optimization, some auxiliary controller matrices are defined as
shown in (23). Notice that the bold symbols are unknown matrices
in the design problem.bAh ¼ NhAchMT

h � Xh
_Yh � Nh

_MT
h þ XhB2CchMT

h þ NhBchC2Yh

þ XhðAh þ B2DchC2ÞYh ð23aÞbBh ¼ NhBch þ XhB2Dch ð23bÞbC h ¼ CchMT
h þ DchC2Yh ð23cÞbDh ¼ Dch ð23dÞ

Due to the assumption of an affine parameter description, the
Lyapunov matrices Xh and Yh, and auxiliary matrices in (23)bAh; bBh; bC h; bDh, are described using an affine description:

Xh ¼ X0 þ
Xnh

i¼1

hiXi Yh ¼ Y0 þ
Xnh

i¼1

hiY i
bAh ¼ bA0 þ

Xnh

i¼1

hi
bAi ð24aÞ

bBh ¼ bB0 þ
Xnh

i¼1

hi
bBi
bC h ¼ bC 0 þ

Xnh

i¼1

hi
bC i
bDh ¼ bD0 þ

Xnh

i¼1

hi
bDi ð24bÞ

From (21), (23), and (24), Theorem 1 is reformulated into:

Theorem 2. Given the open-loop LPV system in (13) with matrices
defined in (17), suppose that there exists two parameter-dependent
symmetric matrices Xh and Yh and four parameter-dependent matricesbAh; bBh; bC h; bDh, defined in (24), such that for all ðh; _h; D; _DÞ
2 H� V �D� U ,

/11 	 	 	
/21 /22 	 	

ðXhB1hþ bBhD21ÞT ðB1hþB2
bDhD21ÞT �cInw 	

C1hþD12
bDhC2 C1hYhþD12

bC h D11hþD12
bDhD21 �cInz

266664
377775<0

ð25aÞ

/11 ¼ _Xh þ XhAhD þ bBhC2 þ AT
hDXh þ CT

2
bBT

h

/21 ¼ bAT
h þ Yh Alin

D

� �T
Xh þ AhD þ B2

bDhC2

/22 ¼ � _Yh þ AhDYh þ B2
bC h þ YhAT

hD þ bC T
hBT

2

Xh I

I Yh

� �
> 0 ð25bÞ

Then, there exists a controller of the form in (14) such that

1. the closed-loop system is PDQ stable over H�D and,
2. the induced L2-norm of the operator Tzw is bounded by c > 0.

In large symmetric matrix expressions, terms denoted ‘⁄’ will be
induced by symmetry. For instance, with S and P symmetric

SþM þ N þ ð	Þ 	
Q P

� �
¼ SþM þMT þ N þ NT Q T

Q P

" #
From Theorem 2 it is seen that the inequalities should hold in

the entire parameter space. However, we want to solve a finite

set of inequalities. It is only necessary to test the matrix inequali-
ties (25a) and (25b) in the vertices of the parameter space, Dvex, if
the following additional constraint is satisfied:

XiA
h
i þ Ah

i

� �T
Xi 	 	 	

Y i Alin
D

� �T
Xi Ah

i Y i þ Y i Ah
i

� �T
	 	

Bh
1;i

� �T
Xi 0 0 	

0 Ch
1;iY i 0 0

2666666664

3777777775
P 0 ð25cÞ

for i = 1, . . . ,nh and D 2 Dvex.
It appears from the structure of (25c) that Xi should be in the

null space of Bh
1;i

� �T
and Yi should be in the null space of Ch

1;i, other-
wise the matrix is indefinite. The additional LMI introduces some
conservatism, which is dependent on how sparse the matrices
Bh

1;i and Ch
1;i are. If e.g. Bh

1;i is a zero matrix there are no additional
constraints on Xi. Usually, either Xh or Yh is selected to be indepen-
dent of h(t), i.e. either Xi or Yi is a zero matrix. The reason for this is
that if both Xh and Yh depend on h, then _hðtÞ should be measured to
synthesize the controller [13].

For NC and AFTC Alin
D is a zero matrix, turning the optimization

problem into an LMI-based optimization problem, since the term
Yh Alin

D

� �T
Xh vanishes in (25). In this case, the optimization problem

is convex and the controller giving the smallest c can be found eas-
ily using convex optimization. In contrast, the optimization prob-
lems for PFTC and RC are based on bilinear matrix inequalities
(BMIs) due to non-zero elements in Alin

D ; hence, some additional
work must be done to solve these problems.

4.4. Solving the BMI-based optimization problems

To solve the BMI-based optimization problem for the passive
fault-tolerant controller and the robust controller, a two-step pro-
cedure is suggested inspired by Jabbari [21], where the projection
lemma, provided hereafter, is utilized to derive two necessary LMI
conditions (27) and (28), for the BMIs in (25).

Lemma 1 (Projection lemma). Given a symmetric matrix X and
matrices B and C of compatible dimensions, there exists a matrix L

such that Xþ BLC þ ðBLCÞT < 0 if and only if

BT
?XB? < 0 and ð26aÞ
ðCTÞT?XðC

TÞ? < 0; ð26bÞ

where B? is defined as a basis for the null space of BT.

Lemma 1 is utilized to solve (25), corresponding to
Xþ BLC þ ðBLCÞT < 0, by exploiting the necessary LMI conditions
derived in (27)–(28), corresponding to (26). Since the necessary
conditions are LMIs they can be solved using conventional convex
methods. The following algorithm is utilized to solve (25):

1. Solve one of the necessary conditions (27) or (28) defined
below. Solving a necessary condition provides some of the
unknown variables of (25), in the considered case making it
an LMI in the unknown variables.

2. Solve (25), where the variables from the previous step are
utilized.

The necessary conditions for (25) are set up below.
Necessary condition for Xh:

/11 	 	
ðXhB1h þ bBhD21ÞT �cInw 	

C1h þ D12
bDhC2 D11h þ D12

bDhD21 �cInz

264
375 < 0 ð27aÞ
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for all h 2 hvex;D 2 Dvex; _h 2 _hvex, and

XiA
h
i þ Ah

i

� �T
Xi 	 	

Bh
1;i

� �T
Xi 0 	

0 0 0

266664
377775P 0 ð27bÞ

for i = 1, . . . ,nh.
Necessary condition for Yh:

/22 	 	
ðB1h þ B2

bDhD21ÞT �cInw 	
C1hYh þ D12

bC h D11h þ D12
bDhD21 �cInz

264
375 < 0 ð28aÞ

for all h 2 hvex;D 2 Dvex; _h 2 _hvex, and

Ah
i Y i þ Y i Ah

i

� �T
	 	

0 0 	
Ch

1;iY i 0 0

2664
3775P 0 ð28bÞ

for i = 1, . . . ,nh.

The robust controller is designed to guarantee the same perfor-
mance in the entire uncertain parameter space, whereas the PFTC
is a reliable controller designed to guarantee higher performance
in the normal case than in the fault case. In the latter case, this is
achieved by using different c values for the normal and faulty sys-
tems. The compromise between good performance in the normal
case and good performance in the faulty case is a design choice,
which is illustrated in Fig. 9, showing the Pareto optimum tradeoff
curve between conflicting requirements.

The Pareto optimality tradeoff curve shows the compromise be-
tween a good performance in the normal case (small cn) verses
good performance in the faulty case (small cf). If cn = cf we get
the same compromise as for a robust controller, which has the
same performance for all situations. For the passive fault-tolerant
controller it is desirable to have the best performance in the nor-
mal case, as the system is expected to be in this state most of
the time. Between the two vertices, the guaranteed performance
follows graceful degradation according to c ¼ cncf

cnð1�hf Þþcf hf
, where hf

indicates the state of the system between 0 (normal, cn) and 1
(faulty, cf).

4.5. Controller synthesis

When the optimization problem is solved, the following synthe-
sis procedure is used to calculate the controller matrices at each
sample time:

1. Compute bAh; bBh; bC h; bDh; Xh, and Yh using the measured value
of h(t).

2. Find Mh and Nh by solving the factorization problem:

I � XhYh ¼ NhMT
h ð29Þ

3. Compute Ach _h; Bch; Cch, and Dch from the equations:

Ach _h ¼ N�1
h Xh

_Yh þ Nh
_MT

h þ bAh � bBhC2Yh

�
� Xh Ah � B2

bDhC2

� �
Yh�XhB2

bC h

�
M�T

h ð30aÞ

Bch ¼ N�1
h

bBh � XhB2
bDh

� �
ð30bÞ

Cch ¼ bC h � bDhC2Yh

� �
M�T

h ð30cÞ

Dch ¼ bDh ð30dÞ

According to [13] either Xh or Yh must be held constant if the
controller should be synthesized without measuring _hðtÞ. Further-
more, if Nh and Mh are chosen according to Table I in [13], depen-
dencies of _hðtÞ can be removed from the calculation of Ach _h,
replacing (30a) with (31).

Ach ¼ N�1
h ðbAh � bBhC2Yh � XhðAh � B2

bDhC2ÞYh � XhB2
bC hÞM�T

h ð31Þ

The design procedure applies for continuous systems, whereas
the controller is a discrete component part of a sampled system.
It was chosen to design the controller in continuous time, as the
sampling frequency (100 Hz) is much higher than the highest fre-
quency of the system (approximately 5 Hz). To ensure that the re-
sult of the design procedure can be implemented as a discretized
controller, the location of the closed-loop poles in the complex s-
plane were restricted using D-stability [22]. This is done by limit-
ing the real parts of the eigenvalues of the closed-loop system, such
that -a < Re(s), by including the following LMI in the optimization
problem:

AT
clhDXclh þ XclhAclhD þ 2aXclh > 0; Xclh > 0 ð32Þ

The eigenvalues are limited by setting a = 2p � 25 to ensure that
the real parts of the eigenvalues are below 25 Hz.

This finalizes the procedure for synthesizing the controllers. The
last part of this section applies the design method to the cases
under consideration.

4.6. Computation of controllers

Each controller is designed by solving an optimization problem.
This optimization problem is based on a system description, which
is affine in the scheduling parameters, and which was derived in
Section 4.2. In order to formulate the optimization problems, first
a performance specification was composed.

4.6.1. Performance specification
The performance specification was based on a mixed sensitivity

description, where it was chosen to specify sensitivity and control
sensitivity. The mixed sensitivity description was implemented as
shown in Fig. 10, where WS(s) is the sensitivity filter and WM(s) is
the control sensitivity filter. In addition to the sensitivity filters, the
input disturbance filter WD(s) band limits the exogenous input in
the design and WN(s) adds measurement noise to the system
outputs.

WS(s) stresses the importance of the low-frequency components
of the generator speed error, xg,e(t). It has a pole at the origin to
ensure integral action in the controllers to eliminate steady-state
errors on the tracking of the generator speed reference. WM(s) is
a high-pass filter weighting the control effort with the aim of
penalizing fast pitch angle variations. The filter WD(s) is a low-pass
filter capturing the dominating frequency content of the wind field,
i.e. the effective wind speed. The frequency content of the wind

Fig. 9. Bounds on c values for the PFTC. cn is associated with the fault-free case and
cf is associated with the faulty case. The gray area contains all feasible PFTCs, where
a PFTC on the Pareto optimality tradeoff curve is desired.
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field is related to the frequency with which the blades pass the
tower. This frequency is denoted the 3P frequency, x3P, and equals
three times the rotor speed, which is rated at 1.71 rad/s. Therefore,
WD(s) is a low-pass filter with a pass-band up to the 3P frequency.
Finally, the filter WN(s) adds noise to the measurements according
to the variances listed in Section 2.6. The weighted performance
measures appear in (33) and the filters are specified in (34).

zðsÞ ¼
WSðsÞ 0

0 WMðsÞ

� � xg;eðsÞ
brefðsÞ

� �
ð33Þ

WSðsÞ ¼ kS
1
s

ð34aÞ

WMðsÞ ¼ kM
s

s=ð10x3PÞ þ 1
ð34bÞ

WDðsÞ ¼
1

s=ð1:5x3PÞ þ 1
ð34cÞ

The gains of the filters were chosen to kM = 0.2251 and
kS = 0.8167 to obtain the desired compromise between speed ref-
erence tracking and pitch angle variation. It was decided to se-
lect the gains such that the LPV controllers in the normal
scenario have similar pitch actuator usage as the reference con-
troller. This simplified the comparison of the LPV controllers and
the reference controller in terms of the two performance mea-
sures. In the implementation of the sensitivity filter (34a), the
system was augmented to include the integrator. For the imple-
mented controller, the integral of the speed tracking error is
measured, as in [6, p. 116].

4.6.2. Solving the optimization problems
The final task of the controller design is to solve the optimiza-

tion problems for the four controllers. The optimization problem
in (25) reduces to solving LMIs for NC and AFTC, as Alin

D is a zero ma-
trix due to the known parameter variations. The controller design
problems for RC and PFTC are however BMI-based, since unknown
parameter variations exist for these problems. Therefore, the fol-
lowing algorithm was utilized to solve the BMI-based optimization
problems.

1. Select a parameter-dependent Lyapunov matrix based on the
options:
(a) Lyapunov matrix X is dependent on h.
(b) Lyapunov matrix Y is dependent on h.
(c) No Lyapunov matrix is dependent on h.

2. Find unknown variables in (25) by solving necessary conditions,
turning the matrix inequalities of (25) into LMIs in the remain-
ing unknown variables.
(a) Find X; bBh; bDh by solving the necessary condition for X

shown in (27).
(b) Find Y ; bC h; bDh by solving the necessary condition for Y

shown in (28).
3. Solve (25) while minimizing cn = cf until the desired value of cf

is reached. This is done by switching between having
X; bAh; bBh; bC h; bDh or Y ; bAh; bBh; bC h; bDh as unknown variables.

4. Solve (25) while minimizing cn and switching between having
X; bAh; bBh; bC h; bDh or Y ; bAh; bBh; bC h; bDh as unknown variables,
until cn stops decreasing.

From the algorithm it is seen that first it should be decided
which of the Lyapunov matrices X and Y should dependent on h.
After this has been determined, one of the two necessary condi-
tions should be utilized to find variables to turn (25) into LMIs.
Note that this initialization of the algorithm may influence the final
outcome of the optimization problem. The final step is to solve (25)
having two different sets of unknown variables. It is chosen to
solve (25) multiple times, since there is no guarantee that even a
sub-optimal cn is obtained in one step.

The optimization problems were set up in YALMIP and solved
using SeDuMi based on balanced state-space system realizations
to improve the numerics. To decide whether Xh or Yh should be
held constant, the optimization problems were solved using all
possible combinations of constant and parameter-dependent
Lyapunov matrices, Xh and Yh. For all controllers, the smallest c val-
ues were obtained by choosing Xh to be a constant matrix and Yh to
be dependent on h.

The obtained c values for the four optimization problems are
shown in Table 1. For the PFTC, the ratio cf/cn was set to 2.8 in
the optimization problem, which is a compromise made to achieve
good performance in the normal situation and acceptable perfor-
mance in the fault case. The tradeoff is illustrated in Fig. 9. The
compromise was found by solving the PFTC for cf/cn = 1 and
increasing this ratio until cn was only slightly improving (de-
creased) for increasing cf/cn.

From Table 1 it is seen that the nominal controller has the low-
est cn value. This is expected as it is designed for only a subset of
the models utilized in the design of each of the other three control-
lers. The robust controller is designed for the nominal case also, but
captures the actual parameter variations in operation compared to
the under-approximation utilized for the nominal controller.
Therefore, cn is significantly higher for the robust controller. How-
ever, it is expected that the performance of the two controllers are
closer when simulating the nonlinear system.

The fault-tolerant controllers appear to have larger values of c
in the fault-free case than for the nominal controller, which is ex-
pected since they are also accounting the fault. Additionally, there
is a substantial difference between the c values of the AFTC and
PFTC, which was not the case for the AFTC and PFTC presented in
[17], where a less severe fault was considered. These results indi-
cate that a fault changing the system behavior significantly makes
it very difficult for the PFTC to manage the normal and fault situa-
tions without degrading performance significantly. This claim was
also supported by a design of the AFTC, where Xh was restricted to
only depend on hop instead of depending on both hop and hf. In par-
ticular, cn was increased from 1.76 to 2.20. It was expected that the
performance of the AFTC is superior to that of the PFTC.

5. Simulation results

The purpose of this section is to evaluate by simulation if the
performance of the controllers resembles the c values presented

Fig. 10. Block diagram of the mixed sensitivity description.

Table 1
c values for the four designed controllers. The columns cn and cf indicate the
performance to be expected in the normal and faulty cases.

Controller cn cf

Nominal controller (NC) 1.00 –
Robust controller (RC) 1.97 –
Active fault-tolerant controller (AFTC) 1.76 1.76
Passive fault-tolerant controller (PFTC) 2.30 6.45
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in Table 1. Additionally, the different controllers should be com-
pared to determine the impact of the different control strategies.
The reference controller described in Section 3 was used as a frame
of reference, being an approximation of a simplified wind turbine
controller.

Simulations were conducted in MATLAB Simulink using the
nonlinear model provided in Section 2 and the additive measure-
ment noise from Section 2.6. The simulation model is nonlinear
due the output model of the power in (8) and the nonlinear aero-
dynamics in (1) and (2) with the nonlinear mappings Cp and Ct.
This implies that the model utilized for the controller design differs
from the simulation model in all terms related to these nonlinear
equations.

To compare the performance of the LPV controllers, simulations
of duration 5000 s were conducted at wind speeds ranging from
13 m/s to 25 m/s to cover the entire design region. Simulations
were conducted with and without including the fault in the pitch
system to compare the performance of the controllers in case of
low pressure in the hydraulic pitch system. Simulations at inter-
mediate pressure levels are presented in the next subsection.

5.1. Validation of LPV controllers for the operational range and the rate
bounds

To verify that the LPV controllers are able to operate in the en-
tire parameter space and at the rate bounds, simulations were con-
ducted where the wind turbine model is forced between the
extremes of the parameter space used in the design. The first
125 s of the simulations are shown in Fig. 11, for both NC (green)
and RC (magenta) designed for the nominal plant model and AFTC
(blue) and PFTC (red) designed also to manage the fault in the pitch
model.

From Fig. 11 it is concluded that the LPV controllers manage to
operate in the entire parameter space and at the rate bounds. The
right subplots reveal a significant difference between using the
passive fault-tolerant controller or the active fault-tolerant con-
troller, which is evident from the degraded tracking capability of
the nominal generator speed reference of the PFTC (red) and from
its larger pitch angle variations. Comparing operation in the fault-
free and in the fault scenario shows that the AFTC (blue) has larger
variations in the generator speed in the fault scenario (when hf = 1).

5.2. Robustness analysis of robust controller

In order to verify that the robust controller meet the specifica-
tion in the entire parameter space defined in Fig. 8, the parameter
space was divided into a fine grid and the BMIs was tested in each
point of the grid. Additionally, a nonlinear simulation of duration
5000 s was conducted to create Fig. 12, which shows that the wind
turbine controlled by the robust controller operates in the entire
parameter space defined in the design specification. Since the ro-
bust controller behaves satisfactory in the entire parameter space,
it is concluded to satisfy the robustness requirements.

5.3. Comparison of controllers in the full load region

To demonstrate the feasibility of wind turbine LPV controllers,
the nominal LPV controller was designed for the entire full load re-
gion and is compared to the reference controller in Fig. 13. The fig-
ure displays the first 150 s of the simulations and emphasizes that
the nominal LPV controller (green) and the PI controller (gray) be-
have differently, due to their fundamental structural differences.
Simulation results of the robust controller (magenta) are also
shown in the figure and appear to have strong similarities to those

Fig. 11. Simulation results where NC (green), RC (magenta), AFTC (blue), and PFTC (red) are forced between the extremes of the operational range of the wind speed at the
rate bounds. For the fault-tolerant controllers in the right column, the fault signal is changed between normal pressure (hf = 0) and low pressure (hf = 1) using the rate bounds.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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of the nominal controller, which is expected, since they are de-
signed based on the same LPV plant model.

Even though the robust controller is designed for an uncertain
model, it performs similar to the nominal controller, which appears
from the list of performance measures in Table 2. This may be re-
lated to the fact that the nominal controller is designed for a model
which has a simplification of the aerodynamic model, while the ro-
bust controller is designed for a model which captures more
dynamics.

5.4. Comparison of controllers in the fault case

The simulation results of the fault-tolerant controllers are com-
pared to the results of the reference controller in Fig. 14, showing a
1 min excerpt from the simulations. The AFTC (blue) and PFTC (red)
are designed to manage low pressure in the pitch system, which is
not the case for the reference controller (gray) that performs poorly
in the fault case, showing oscillations in the control signal and in-
creased tower accelerations.

Comparing the fault-tolerant controllers it is seen that the ac-
tive fault-tolerant controller performs significantly better, since

controller adaptation is offered based on the fault diagnosis signal.
The performance measures in Table 2 show the performance of the

Fig. 12. Results of the robust controller (green) showing the partial derivatives of the aerodynamic torque in simulation. The partial derivatives of the aerodynamic torque are
approximated by an affine uncertain descriptions (red). The robust controller has satisfactory performance in the entire parameter space. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Simulation results of the NC (green) and the RC (magenta), which can be compared to the operation of the reference controller (gray). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Speed tracking errors and pitch actuator usage, normalized to the performance of the
reference controller. The numbers in parentheses denote normalization with respect
to the reference controller in the fault scenario. The performance measures are
computed based on 5000 s simulations ranging between wind speeds of 13 m/s and
25 m/s.

Controller R t
0ðxg;eðsÞÞ2ds

R t
0

_b2ðsÞds

Normal situation
NC 0.52 0.98
RC 0.53 0.96
AFTC 0.51 0.96
PFTC 1.09 1.02
Reference 1.00 1.00

Low hydraulic pressure
NC 2.52 (0.75) 8.42 (0.73)
RC 1.54 (0.46) 4.76 (0.41)
AFTC 1.16 (0.34) 0.96 (0.08)
PFTC 1.96 (0.58) 1.22 (0.11)
Reference 3.38 (1.00) 11.52 (1.00)
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LPV controllers to be superior to the performance of the reference
controller in the fault case. The pitch usage is significantly higher
for NC and RC than for the fault-tolerant controllers, which is ex-
pected since the nominal controller and the robust controller do
not include the pitch system fault in their design specifications.
Among these two controllers, the robust controller has an advan-
tage over the nominal controller as it utilizes an uncertain model,
where the partial derivatives of the aerodynamic torque are al-
lowed to change arbitrarily fast in the vertical direction of Fig. 8,
which partly accounts for altered dynamics of the pitch model.

5.5. Performance measures

The performance measures obtained for the simulations pre-
sented in the previous subsections are stated in Table 2.

5.6. Discussion

Based on the simulation results it is concluded that the LPV con-
trollers, except the PFTC, have almost the same performance in the
normal situation and that the fault-tolerant controllers are supe-
rior in the fault situation. However, this does not completely
resemble the a priori expectation based on the c values presented
in Table 1, where the robust controller has a much larger c value
than the nominal controller. This relates to the modeling used by
the controllers, where the nominal controller utilizes an under-
approximation of the nominal system model, due to the affine
approximation of the partial derivatives of the aerodynamic tor-
que, while the robust controller is designed for the actual parame-
ter variations of the nominal system, due to the robustness added

in the approximation of the partial derivatives of Ta. This result
indicates that adding robustness in the control system to the ex-
pected parameter variations will not degrade the final result. Fur-
thermore, if the controllers were applied to a real wind turbine, it is
expected that the robust controller would have the biggest chance
of performing satisfactory, as the robust design method includes
dynamics which is not present in the model, as the uncertain
parameters of the robust model are allowed to change arbitrarily
fast and independent of each other. Similarly, the results in Table 2
show that the robust controller has superior performance to the
nominal controller in the fault scenario, even though they have
similar performance in the fault-free case.

The considered fault causing low hydraulic pressure in the pitch
system has a significant influence on the system behavior, which is
expected based on Fig. 3. Therefore, the AFTC performs signifi-
cantly better than the PFTC, since the AFTC utilizes controller adap-
tation based on the fault diagnosis signal. This ensures better
performance in the fault-free and fault situations by avoiding the
conservatism introduced by the passive fault-tolerant design. The
obtained simulation results fit well with the c values presented
in Table 1, where the large c in the fault case for the passive
fault-tolerant controller is required in order to achieve reasonable
performance in the fault-free situation.

In [17] a similar wind turbine system is considered except that
it includes high air content in the hydraulic oil as the pitch system
fault; the two faults are compared in [9]. Here it is concluded that a
passive and an active fault-tolerant controller have similar perfor-
mance, because the fault has only a minor impact on the system
behavior. For faults where the system dynamics are not changed
significantly, passive fault-tolerant control may therefore be ap-

Fig. 14. Simulation results of the AFTC (blue) and the PFTC (red) conducted at both normal and low pressure in the hydraulic pitch system. The behaviors of the fault-tolerant
controllers can be compared to the operation of the reference controller (gray). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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plied without any notable performance degradation; however, if
the dynamics of the system are changed significantly, then active
fault-tolerant control should be used to maintain a satisfactory
nominal performance.

6. Conclusion

This paper addresses the design of four LPV controllers for a
wind turbine operating in the full load region. The designed con-
trollers demonstrate that it is possible to add robustness and
fault-tolerant capabilities to a nominal LPV controller by utilizing
a unified LMI-based design method. All controllers handle the
parameter variations along the nominal operating trajectory. The
robust controller also provides robustness towards parameter
uncertainties in the aerodynamic model, while the fault-tolerant
controllers handle the parameter variations introduced by a fault
in the hydraulic pitch system. The paper includes both an active
fault-tolerant controller and a passive fault-tolerant controller,
being the two possible choices.

The method is based on parameter-dependent Lyapunov
functions, which reduces conservativeness of control for systems
with rate bounds, which is the case in this work. In case of
abrupt component failures constant Lyapunov functions are re-
quired, and can be applied although they introduce more conser-
vatism. In the considered case, the parameter variations are
approximated using an affine description to simplify the solu-
tion. If an affine approximation cannot be justified, then uncer-
tain parameters can be introduced to cover model
nonlinearities, which though may be conservative for highly
nonlinear systems; the only other alternative is to apply grid-
ding in the parameter space.

Simulations show that the LPV controllers are superior to a ref-
erence controller designed using classical methods. Furthermore, it
is shown that robustness to the expected parameter variations can
be added to the controller design without sacrificing the perfor-
mance gap compared to the reference controller. From the simula-
tion results it is apparent that faults should be taken into account
in the controller design procedure, since the controllers designed
for the nominal system start oscillating when the fault is intro-
duced. Comparing the fault-tolerant controllers, it is seen that
the active fault-tolerant controller performs significantly better
than the passive fault-tolerant controller, since controller adapta-
tion is offered based on the fault diagnosis signal. This enables less
conservatism resulting in better performance.

In relation to the numerics involved in synthesizing the four
controllers, it is easier to solve the optimization problems for the
NC and AFTC than for the RC and PFTC which have uncertain
parameters, as the optimization problems are LMI-based and
therefore can be solved using convex optimization methods. How-
ever, using the presented design procedure it is possible to solve
the BMIs and achieve controllers with a good performance, even
though there are no guarantees for obtaining a global minimum
in the optimization problem.

In general, robust control is capable of securing stability and
satisfactory performance despite model uncertainties. Simulations
show that the nominal and the robust controllers have the same
performance for the nonlinear model; however, as additional guar-
antees are provided by the robust controller design, this method is
preferred. With respect to fault-tolerant control, an AFTC should be
used on systems for which a fault diagnosis system can be de-
signed to be sufficiently fast with a low risk of making false deci-
sions. If a fault changes the system behavior significantly, then
an AFTC should also be applied because controller adaptation will
have a large impact on performance. A PFTC should be favored
when faults are difficult to diagnose, when it has only a small im-

pact on system performance, or there is zero tolerance for false
decisions in the fault diagnosis system.
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Appendix A. Model parameters

The following parameters represent a realistic but fictitious var-
iable-speed, variable-pitch wind turbine. The nominal power is
4.8 MW and the rotor diameter is 115 m.

Aerodynamic model

A = 10387 m2 and standard air density q = 1.225 kg/m3. The Cp

mapping is illustrated in Fig. 2 and is available from the model in
[23], and the Ct mapping can be found in [9].

Drive train model

Br = 27.8 kNm/(rad/s), Bg = 3.034 Nm/(rad/s), Bdt = 945 kNm/(rad/
s), Jr = 55 � 106 kg m2, Jg = 390 kg m2, Kdt = 2.7 GNm/rad, and
Ng = 95.

Tower model

Bt = 66.7 N/(m/s), Kt = 2.55 MN/m, and Mt = 484 t.

Pitch system model including fault model

td = 10 ms, b 2 [-1.9�,40�], and _b 2 ½�10�=s; 10�=s�.

� Nominal values (normal pressure in hydraulic pitch system):
xn,0 = 11.11 rad/s and f0 = 0.6 rad/s.
� Fault values (low pressure in hydraulic pitch system):

xn,lp = 3.42 rad/s and flp = 0.9 rad/s.

Generator model

gg = 0.92.

Converter model

tg,d = 20 ms, sg = 10 ms, Tg 2 [0 Nm,35.3 kNm], and _Tg 2 ½�
50 MNm=s;50 MNm=s�.

Appendix B. Reference controller

This section includes the parameters of the reference controller.

PI-controllers

Speed controller 1: K = -6.89�/(rad/s), Ti = 25 s.
Speed controller 2: K = -2.95�/(rad/s), Ti = 6.02 s.
Power controller: K = 447 � 10�6 Nm/W, Ti = 0.031 s.

Drive train damping

sd = tg,d = 20 ms, Kd = 2500 Nm/(rad/s), and fd = 0.25.
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