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Switching between multivariable controllers

Henrik Niemann'*', Jakob Stoustrup>* and Rune B. Abrahamsen’

Y@rsted DTU, Automation, Technical University of Denmark, Building 326, Lyngby DK-2800, Denmark
2 Department of Control Engineering, Aalborg University, Fr. Bajers Vej 7C, Aalborg DK-9220, Denmark
3 Space Systems Division, Rovsing A|S, Dyregardsvej 2, Skoviunde DK-2740, Denmark

SUMMARY

A concept for implementation of multivariable controllers is presented in this paper. The concept is based
on the Youla-Jabr-Bongiorno—Kucera (YJBK) parameterization of all stabilizing controllers. Using this
scheme for implementation of multivariable controllers, it is shown how it is possible to smoothly switch
between multivariable controllers with guaranteed closed-loop stability. This includes also the case where
one or more controllers are unstable.

The concept for smooth on-line changes of multivariable controllers based on the YJBK architecture can
also handle the start-up and shut down of multivariable systems. Furthermore, the start-up of unstable
multivariable controllers can be handled as well. Finally, implementation of (unstable) controllers as a
stable Q parameter in a Q-parameterized controller can also be achieved. Copyright © 2004 John Wiley &
Sons, Ltd.

KEY WORDS: multivariable controllers; parameterization; switching; controller implementation; stabiliz-
ing controllers

1. MOTIVATION—AN EXAMPLE

Some aspects of stability in connection with implementation of controllers for multivariable
systems are considered in this paper. This includes both implementation of unstable controllers
as well as on-line change between a number of controllers.

Even for stable systems, most (post-) modern control techniques based on various
optimization techniques, such as #, #~,, ¥ /¢, norm based or u optimization-based designs
tend to provide unstable controllers.

The industrial use of unstable controllers has been limited. This is unfortunate, considering
that for some plants, no stable controller will achieve optimality (in a mixed sensitivity sense).
Moreover, for some plants, no stable controller will robustly stabilize the system. Finally, for
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52 H. NIEMANN, J. STOUSTRUP AND R. B. ABRAHAMSEN

some unstable plants—violating the interlacing property—no stable controller will stabilize even
the nominal system.

Another aspect is the change of controllers, e.g. in the case where a simple controller is
applied in the start-up of the process, but which is later replaced by a more advanced controller.
This is normally performed by using a linear interpolation between the two controllers. As the
following small example show, there is in general no guarantee that a linear combination of two
stabilizing controllers will also stabilize the system.

Consider the following state space description of a generalized nominal 2 x 2 system,

X =Ax+ B,w+ B,u
2:2z=C,x+D,,w+ D, u )
y=Cyx+ Dy,,w+ Dy,u
where x € #" is the state vector, we %" is a disturbance input vector, u € £" the control
input signal vector, z € Z7 is the external output signal vector to be controlled, and y € #”

is the measurement vector. Let the nine matrices in the general system in (1) be
given by

70 0 0 0.1 1.0
4| B, B, 1.0 —7.0 —2.4495 0.0 0.0
C.|D.v Do | = | \00 24495 0 0.1 0.0
Cy | Dyw Dy (1.0 0.0 1.0) 0 1
(1.0 —5.0 253.1139) 1 0

ieen=3r=1, m=1, g=1land p=1.
The system is unstable, but can be stabilized by a P controller given by

u=—Dpy )
The system is closed-loop stable for Dp given by
Dp € [334,0)

Let us use Dp = 1000 as the gain for the P controller. This controller results in the following
stable closed-loop poles:

—998.67
poles p = | —0.6660 +25.027i
—0.6660 —25.027i

Let the other controller be a dynamic controller given by
u=Ki(s)y 3)

Copyright © 2004 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2004; 25:51-66



MULTIVARIABLE CONTROLLER TRANSITIONS 53

where the controller K;(s) has the following state-space realization:

Xe = Acxe + Bey
ZC :
u= Cexe+ Dy

“4)

where x. € #™ is the controller state vector. The controller has been designed as an observer-
based feedback controller, using an #, design method on the full 2 x 2 system described above.
The resulting controller K is given by

—15.070  45.992  —2309.7 9.1283
4.1 B 0.35357 —-3.7679 —166.07 0.64643
(212 -
Ce | Dc —0.13121 3.1056 —33.212 0.13121
(—12.941 0.35054 0.85619) 0

Note that the state feedback gain F' and the observer gain L for the controller is given as C, and
—B., respectively.
The poles for the closed-loop system using K; are given by

—25.1218

—0.9022

—7.7082 + 1.1005i
—7.7082 — 1.1005i
—5.3047 + 1.1643i
—5.3047 — 1.1643i

pOIeSCl,K| =

Let a controller K, be given as a linear combination of the P and K; controllers, i.e.
K, =0 —-o)Dp+akK;, ael0,1] (5

This controller is used for on-line change between the two controllers. However, it turns out
that the controller K, given by (5) is not stable for all « € [0, 1]. The closed-loop system is not
stable for

o € [0.66768,0.99995)

This example clearly show that using a direct linear change between two controllers can result in
a stability problem. This problem will become even more distinct in the case where we want to
change between more that two controllers. A direct jump from one stabilizing controller to
another stabilizing controller is not in general a useful method. This will in many cases result in
spikes in the outputs, which is not acceptable. It is therefore necessary to provide a systematic
way to obtain on-line controller change without getting stability or transient problems.

In the following, a concept based on the Youla—Jabr—Bongiorno—Kucera (YJBK)
parameterization will be introduced for handling on-line controller changes without resulting

Copyright © 2004 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2004; 25:51-66



54 H. NIEMANN, J. STOUSTRUP AND R. B. ABRAHAMSEN

in any closed-loop stability problems. As a result of this, the implementation of unstable
controllers by using stable transfer functions only is also considered in the following. At last, the
connection with gain scheduling control will be considered.

The rest of this paper is organized as follows. The YJBK parameterization is briefly
introduced in Section 2. The main results are given in Section 3. The connection between gain
scheduling control and the presented results in this is considered in Section 4. The example from
this section is considered again in Section 5 followed by a conclusion in Section 6.

2. THE YJBK PARAMETERIZATION

The YJBK parameterization is briefly introduced in this section. Let the state space system given
in (1) be described by transfer functions as follows:

z=G,w+ Gu
z:
y=Gyuw+ Guu

(6)

Moreover, let a co-prime factorization of the system G,,(s) from (1) and a stabilizing controller
K(s) from (4) be given by

Gu=NM"=M"'N, N,M,N,MeRH

K=Uuv'=v'0, U, V,0,VeRHs (7)

where the eight matrices in (7) must satisfy the double Bezout equation given by, see Reference
[1]

-G
(90

Assume that the controller K(s) is an observer-based feedback controller given by

K(s) = (A +B,F+LC,+LD,F | — L) o

F |0

where F' is a stabilizing state feedback gain such that 4 + B,F is stable and L is a stabilizing
observer gain such that 4 + LC, is stable. One possible way to construct the eight stable co-
prime matrices in (7) is then

A+BJF | B, -L
(M U) _ F 70
N Cy+DywF | Dy, 1

Copyright © 2004 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2004; 25:51-66



MULTIVARIABLE CONTROLLER TRANSITIONS 55

17 _Uv A + LC» | _(Bu + LDyu) L
. = F ! 0 (10)
-N

C

M D I

Based on the above co-prime factorization of the system G,,(s) and the controller K(s), we can
give a parameterization of all controllers that stabilize the system in terms of a stable parameter
0O(s), i.e. all stabilizing controllers are given by [2]:

K(©Q) = U@V (11)
where
Uuo)=U+MQ, V(Q)=V+NQ, QeRH
or by using a left factored form
K(Q) = V(Q)'U(©Q) (12)
where
UQ)=U+0M, V(Q)=V+ON, QeRHx

Using the Bezout equation, the controller given either by (11) or by (12) can be realized as an
LFT in the parameter Q,

K(Q) = 7 (U, Q) (13)
where Jg is given by
vyt oyl vl vl
Jx = = (14)
vt —v-IN vt —VoIN

3. CONTROLLER IMPLEMENTATION

First, let us consider a controller change between two stabilizing controllers by using the YJBK
parameterization. The following theorem shows that it is possible to switch from a stabilizing
controller to another stabilizing controller while maintaining stability.

Theorem 3.1

Let the system be given by (1) and let a number of stabilizing controllers for the system be given
by K;. Then K;, i=1,...,p, can be implemented as Ky(Q;) := F (Jk,, Q) where Jk, is formed in
analogy with (14) and where the stable Q; parameter is given by

Qi =X(UVy—ViUp) = X,Qi, i=1,....p

Copyright © 2004 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2004; 25:51-66



56 H. NIEMANN, J. STOUSTRUP AND R. B. ABRAHAMSEN

or
0i=X\(ViK; — Ko)Vo), i=1,....p
with

Xi=M;'M;, i=1,....p

The proof of Theorem 3.1 is given in Appendix A. The proof can also be found in
Reference [3].

Note that in the above theorem, it is not assumed that the co-prime factorization of G, is the
same, i.e. that NV and M are the same for both controllers Ky and K; as assumed in Reference [4],
for example.

A state space realization of the Q; parameter from Theorem 3.1 is given in the following
lemma.

Lemma 3.2
Assume that the stabilizing controllers K; are given as observer-based feedback controllers.
Possible state space realizations of Jg, Q; and X; are then given by

A+B,F+LC,+LD,F|-L B,+LD,
Jx = F ‘0 I

—~(Cy + Dy, F) I -D

yu

A+ B.Fy |-Lo

0, — A+LCy | B+ LDy —Li) o 0
F; | -1 0
Cy+DyFy | 1
_(A+B.F | B,
o (FE )
Proof
Lemma 3.2 follows directly from Theorem 3.1 by using the state-space description of the co-
prime factors given by (10). O

In general, the most typical case is when we want to change from a P controller to a more
advanced controller, such as an observer-based controller. Let us consider the case where the
nominal controller is a P controller and the second controller is an observer-based controller.
The state space realization of a P controller is given by

50 = (512) (15)

Copyright © 2004 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2004; 25:51-66



MULTIVARIABLE CONTROLLER TRANSITIONS 57

From the general state space description of the co-prime factors given in Reference [2], we can
derive state space realizations of the factors when a P controller is applied. The co-prime factors
are given by

(M U) A+BuFP|Bu 0

B
I Dy (16)
0

where Fp is a fictitious state feedback gain that stabilizes A4 + B, Fp. The derivation of (16) is
based on the assumption that the system does not include a direct term.

To simplify the Q term, we can select Fp to be the same as the state feedback gain Fj in the
observer-based controller K;. This will make X; = I, see Lemma 3.2. Note that for more than
one observer-based controller, X;, i =2,...,p will, in general, not be equal to the identity
matrix. Based on the co-prime factorization given in (16), we have the following result:

Lemma 3.3
Assume that the nominal stabilizing controller K is a P controller and K, is an observer-based

feedback controller. State space realizations of Jg, Q) and X are then given by

A+B,F | 0 B,
Je= | F1=DpCp)| Dp T

-G,

In connection with the above lemma, it is important to point out that the implementation
involves a separate implementation of the state feedback dynamics and the observer dynamics,
respectively.

These results show how it is possible to implement a controller as a stable Q parameter based
on another stabilizing controller. The result also shows that it is possible to change the
controller online without any jumps, just by scaling the Q parameter from zero to full value
continuously. The closed-loop system is guaranteed to be stable for all values of Q;. This is very
useful in connection with implementation of unstable controllers.

Moreover, the above result can also be applied in connection with implementation of unstable
controllers for a stable system, where no other stabilizing controller is implemented. From
Theorem 3.1, we have the following result.

Copyright © 2004 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2004; 25:51-66



58 H. NIEMANN, J. STOUSTRUP AND R. B. ABRAHAMSEN

Lemma 3.4
Let Kunsable = Ki = Uy V! = Vl’lyl, U, Vi,U., Ve RHy be an unstable controller for a
stable system G,,(s) = N = N, N,N € RH,. The unstable controller can then be implemented as

Ki = Ko(Q1) = Q11 + NQ1)™!
where
0 =MU,
where M, U, and V, satisfies the Bezout equations:

I71M1 — ﬁlNl =1

Proof
The proof of Lemma 3.4 follows directly from Theorem 3.1 by using that Ky(Q) is given by (12)
with G, stable and Ky = 0. O

To implement an unstable controller K; as described in Lemma 3.4, it is also possible to
describe the controller as

Ky = M U,(I+ N,Uy)"! (17)

It is easy to show that the implementation of an unstable controller given in Reference [5] is
equivalent with the above implementation based on the YJBK parameterization, [6]. Further,
note that K; given in (17) can also be obtained directly from Lemma 3.3 by using Dp = 0.

If the system is unstable, the above results cannot be applied directly. Instead, Theorem 3.1
can be used, provided the system is strongly stabilizable. In this case, there will exist stable
controllers that will stabilize the unstable system, [7]. The unstable controller can then be
implemented using a stable stabilizing preliminary controller and the controller implementation
of Theorem 3.1 to implement the unstable controller by using stable transfer functions (co-prime
factors) only.

The result in Theorem 3.1 gives an implementation of a multivariable controller as a specific
stable Q parameter in a parameterization of all stabilizing controllers. Theorem 3.1 provides one
way to change the applied controller from K to K; online in closed-loop and also in a way such
that the closed-loop system is stable for all applied controllers. Further, we do not necessarily
need to be limited to the use of two controllers given by K, and K;. It is not only possible to
change the controller from K to one of the p controllers given by K, it is also possible to change
the controller K; to K;, i,j = 1,...,p, i#j. In the case where we want to apply controllers that
are a combination of all p (or a subset) stabilizing controllers, we get the following result.

Theorem 3.5
Let the system G,,(s) be given by (1) and let p stabilizing controllers for the system be given by
K;, i=1,...,p. Further, let the controllers be implemented as

Ki = Ko(Q) = Ko+ V' Qi + V' NoQ) V!, QieRHw, i=1,....p

Copyright © 2004 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2004; 25:51-66
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with Q; given by
Qi =X(UiVy—ViUp), i=1,....p

Moreover, let a linear combination of the Q; parameters be given by

P
0= Z 0 Qi
i=1

with Y7 | o; = 1. Then the resulting controller X is independent of K, and is given by
)4 N 1y .
K(Q) = Z oMV ZdiMiUi
i=1 i=1

The proof of Theorem 3.5 is given in Appendix B.

Remark 3.1

It is stated in the theorem that the final controller is independent of K. The reason is that it is
assumed that the scaling parameters o; satisfy > 7 | o; = 1. However, from a stability point of
view, there is no reason to require that the scaling parameters «; need to satisfy that the sum is
equal to 1. If they do indeed not satisfy this condition, the final controller will also be a function
of Kj. It should also be pointed out that the scaling parameters does not even need to be
positive. Negative values can be allowed without any closed-loop stability problems.

Using the complete description of the controller K(s) given in Theorem 3.5 as a feedback
controller, it is interesting to give an explicit equation for the closed-loop system. Such an
explicit description of the closed-loop system can be applied in connection with the tuning of the
controller, i.e. the selection of the o vector, such that the closed-loop system is optimized with
respect to the operating point.

Let the complete open-loop system be described by (1). The closed-loop system from w to z,
T.,(s), is then given by

Tou(s) = Z1(Z, K) = Gy + G KU — G, K) ' G, (18)

We can now give an explicit description of the closed-loop system 7,, when the controller K(Q)
given in Theorem 3.5 is applied.

Theorem 3.6

Let the closed-loop transfer function be given by (18). Further, let the stabilizing controller
K(Q) be given by

-1
K(Q) = (i %’Mﬂ;z) i oMU,
i=1 i=1

Copyright © 2004 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2004; 25:51-66
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with Zf:l o; = 1. Then the closed-loop transfer function 7, is given by

p

Tzw(s) = GZW + G:u (Z aiMi 01) G}’W

i=1

The proof of Theorem 3.6 is given in Appendix C.

Again, it should be pointed out that 7, o; = 1 is not really required. If it is not satisfied,
however, the nominal controller will also be part of the closed-loop transfer function 7,,.

The controller can now be designed based on an optimization of the closed-loop transfer
function T%,, given in Theorem 3.6. If M; and U; are stable and satisfy the Bezout equation in
(8), then the closed-loop transfer function 7, is stable. The design of the controller can then be
done in open loop, which make e.g. multiobjective controller design more easy. This concept has
been used in Reference [8] in connection with a multi-objective design method based on
optimization of sensitivity functions.

4. GAIN SCHEDULING CONTROL

The relation between the proposed switching concept of multivariable controllers and gain
scheduling control is considered in this section. For a description of gain scheduling control, see
e.g. References [9-11].

The main idea in gain scheduling control is to switch between a number of pre-designed
controllers with respect to the variation in the system. The variation can be a result of parameter
variations and non-linearities in the system. In the switching method presented in this paper, the
switching is derived with respect to changes of performance conditions.

This difference has also a major impact on the stability conditions for the closed-loop
systems. For the method presented in this paper, the closed-loop stability is obtained by
requiring that the nominal closed-loop system is stable and that the YJBK parameter Q is
stable. Stability of systems including gain scheduling controllers are much more involved.
Here, it is required that the applied controller will stabilize the non-linear system at the actual
working point. The stability condition will not be changed much if the gain scheduling
controllers are implemented by using the switching approach from this paper. In this case,
stability of the nominal feedback loop together with stability of the YJBK parameter will not
guarantee closed-loop stability. The reason is that the closed-loop system T-,, given in Theorem
3.6 will not be an affine function of the YIBK parameter Q. Q will also appear in the feedback
loop of the closed-loop system, [2, 12]. This means that Q needs to be considered in connection
with a feedback system.

However, it is possible to apply the switching method from this paper in connection with gain
scheduling control with advantages. Using this approach, it is possible to separate the gain
scheduling controller into two parts, a nominal controller related with the nominal performance
of the system and a controller part related with the robustness of the feedback system. The last
part is implemented by the YJBK parameter Q.

Let a gain scheduling controller be given by K(6), where 6 is the scheduling parameter. The
controller for the nominal system is given by K(0). Based on this controller, the YJBK

Copyright © 2004 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2004; 25:51-66
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parameterization is derived resulting in the following feedback controller:

u= K@)y =7(Jk,Q0)y (19)
or
(£)-()
= Jx
N r
r=Q(0)s (20)

It can be shown, see References [2, 12], that the open-loop transfer function from r to s depends
directly of the parameter variations and non-linearities in the system. The transfer function will
be zero in the nominal case. This means that there will be an explicit decoupling of the YJBK
parameter Q(6) in the feedback controller. It is then clear that the Q(6) part of the controller is
closely related with the robustness of the closed-loop feedback system.

From the above description of the application of the YJBK parameterization in connection
with gain scheduling control, it is also clear that it cannot be guaranteed that Q(0) will always be
a stable system. Further, this gives also a very direct connection between the variations in the
system and the associated feedback part of the controller, given by Q(6). It is possible to apply
this connection in order to establish a performance validation of the closed-loop system.

5. EXAMPLE

Now, let us again consider the motivation example from Section 1. Based on the results given in
the above section, we are now able to give a correct set-up for the controller K, described in (5).
Using the result from Lemma 3.3, we get directly that K, needs to be given as

K, = K(Q(2)) = 7 (Jk, Q(«))

where Jx and Q(«) are given by

—5.9413 0.35054 0.85619 0 1.0
100  —7.00 —2.4495 0 0.0
Jx = 00 24495 0.0 0 0.0
(987.06 — 4999.6 253110) ~1000 1.0
(—1.0 5.0 —253.1139) 1.0 0
~2.1283 45642 —2310.5 —990.87
0.35357 —3.7679 —166.07 0.64643
Q@ =wx 1\ 13121 3105 33202 0.13121
(—12.941 0.35054 0.85619) | 1000

Copyright © 2004 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2004; 25:51-66



62 H. NIEMANN, J. STOUSTRUP AND R. B. ABRAHAMSEN

with this structure we have

Ky—o = Dp
and

K. =K

Note that using the above controller K, the « parameter is not restricted to be in the interval
[0, 1].

Further, note that the closed-loop poles of the system is invariant of the o parameter. The
closed-loop system has the following stable closed-loop poles:

—998.67

—25.1218

—0.9022

—7.7082 + 1.1005¢
poles, o = | —7.7082 — 1.1005i
—5.3047 + 1.1643i
—5.3047 — 1.1643i
—0.6660 + 25.027i
—0.6660 — 25.027i

The closed-loop poles given above are the combination of the closed-loop poles when the P
controller and when the J#, controller is applied, respectively.

6. CONCLUSIONS

This paper demonstrates a number of successful applications of the YJBK-parameterization to
problems of implementing multivariable controllers.

First of all, by using the YJBK-parameterization, it is possible to switch between controllers
in a stable way. If the switch is established by a simple linear interpolation of the transfer
functions of two stabilizing controllers, stability is not guaranteed during the transition. This
lack of closed-loop stability is removed by using a parameterization in connection with the
controller implementation.

Furthermore, it is also possible to optimize a controller given as a combination of a number
of pre-designed controllers. This optimization can be done on-line, thereby facilitating adaptive
optimization of the controller.

Another important issue is implementation of unstable controllers. Again, by using the
YJBK-parameterization, it has been shown how unstable controllers can be implemented by
using stable transfer functions only. This is especially important in connection with starting up
unstable controllers.

Copyright © 2004 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2004; 25:51-66
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APPENDIX A: PROOF OF THEOREM 3.1
Proof

Clearly, Q; is a stable transfer matrix. We just need to show that Ko(Q;) = K; when the above Q
is applied and X; is stable.

Ko(Q) =Ko+ V'Ol + Vi 'NoQ) 11y !
=Ko+ Vi XiV (K = Ko)Voll + Vi ' NoX;Vi(Ki = Ko)Vo) ™' V!
=Ko+ Vi ' XiVi(Ki — Ko)I + NoXiVi(K; — Ko)) ™!
=Ko+ Vo' XVl + (K; — Ko)NoX: V)" (Ki — Ko)
=Ko+ Vo' XV + (Ki — Ko)No X))~ (Ki — Ko)
=Ko+ V' Xq(V:i' + VITONo X, — Vi UgNo X)) ™ (K — Ko)
=Ko+ Vo' Xi(V;' (I + UiN)) — V' UgNy) ™ (K; — Ko)
=Ko+ Vo' Xi(VoM; — UgN:) ' V(K — Ko)
=Ko+ Vo' (VoMo — UgNo) 'V o(K; — Ko)
=Ko + (Ki — Ko)
=K;, i=1,...,p

From Lemma 3.2, we directly have that X; is stable. O

APPENDIX B: PROOF OF THEOREM 3.5

Proof

The proof of Theorem 3.5 is derived for the case when p = 2. This will simplify the proof and it
is without loss of generality.
Let the Q parameter be given by

0 =x01+y0:
=xM (U, Vo = V1 Up) + yMo (U2 Vo — V2 Us)
=xMV(Ki — Ko)Vo + yMa2Va(Kz — Ko) Vo
with x +y = 1.

Copyright © 2004 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2004; 25:51-66
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The resulting controller K(Q) is then given by

K(Q) =Ko+ Vi'QU + V5 'NoQ) ™' V5!
=Ko+ V' (X1 V(K — Ko) + yXaVa(Ks — Kp))
x (I + No(xX, V1(Ky — Ko) + yX2Vo(Ks — Kp)) ™'
=Ko+ Vo' (I + Xy Vi(K) — Ko) + yXa V(K2 — Ko))No) ™!
X (xX1 Vi(K) — Ko) + yXa Vao(K; — Ko))
=Ko+ Vo' (Mo + (xM (U — V1Ko)
+ yMy(Us — V1Ko))Np) ™
X (XM V(K1 — Ko) + yM> V(K> — Kp))
=Ko + (MyVy + (xM (U, — V1 Ky)
+ yMo (U — V2Kg)No Vo) ™!
X (XM V(K1 — Ko) + yM> V(K> — Kp))
= Ko + (MoVo + xM (U1 NoV — V1UyNo)
+ yMy(U2No Vo — V2UgNo)) ™
X (XM V(Ky — Ko) + yMaV(Ky — Ko))

= Ko+ (xM V1 + yM,yV
+ (I —xM V| — yMyV2)MoV
+ (M Uy + yMyU2)No Vo)™
X (XM V1(Ky — Ko) + yMaV(Kz — Kp))

Copyright © 2004 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2004; 25:51-66



MULTIVARIABLE CONTROLLER TRANSITIONS 65

= Ko+ (xM V' + yMy V5 + xU\(MNo — N1 M)V
+ yU2(M2Ny — NaMo) Vo)™
X (xMV (K, — Ko) + yMV(Ky — Ko))

= Ko+ (xM V' + yM,y V)™
X (XM V (K, — Ko) + yMyV(Ky — Ko))

= (XM V1 + yMy V) ' (xM Uy + yM,U») O

APPENDIX C: PROOF OF THEOREM 3.6

Proof
Using a YJBK parameterization, it can be shown that the closed-loop system is given by [2]

Tzw(s) - GZW + GZWMO UO Gew + G:u MO QMO Gyw

Using the Q given by
P
0=>" %0
i=1
where
0: = XUV, — VUj)

with X; = My ' M;. Without loss of generality, let p = 2. The closed-loop transfer function 7%, is
then given by

Tep =Gy + Go(My U + xM (U Vo — ViUg) Mo + yMx(U2 Vo — V2Ug)Mo)Gy
= Gop + Go(1 = XMV — yMaV )Mo Up + xM (U + yMo(U2)VoM))G
=G.y + Go((xM Uy + yMoUs) + (xM Uy + yMoU2)NoUy — (xU Ny + yUsN2)MoUy) G
=G + Go((xM U + yM,U>) + xU (M Ny — N1 Mo)Ug + yUs(M2Ny — NaMo)Uy)G,e

- sz + qu(XMl Ul + yMZ 02)Gyw D
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