
Aalborg Universitet

The HomePort System

Brønsted, Jeppe; Madsen, Per Printz; Skou, Arne; Torbensen, Rune Sonnich

Published in:
2010 7th IEEE Consumer Communications and Networking Conference (CCNC)

DOI (link to publication from Publisher):
10.1109/CCNC.2010.5421606

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Brønsted, J., Madsen, P. P., Skou, A., & Torbensen, R. S. (2010). The HomePort System. In 2010 7th IEEE
Consumer Communications and Networking Conference (CCNC) IEEE Press.
https://doi.org/10.1109/CCNC.2010.5421606

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 23, 2025

https://doi.org/10.1109/CCNC.2010.5421606
https://vbn.aau.dk/en/publications/8f98a1b0-002c-11df-9a61-000ea68e967b
https://doi.org/10.1109/CCNC.2010.5421606

The HomePort System
Jeppe Brønsted

Aarhus University
Computer Science

Aabogade 34
DK-8200 Aarhus N, Denmark

Email: jrb@cs.au.dk

Per Printz Madsen
Inst. 8 - Procescontrol
Fredrik Bajers Vej 7

DK-9220 Aalborg East
Email: ppm@es.aau.dk

Arne Skou
Aalborg University

Department of Computer Science
Selma Lagerloefs Vej 300,

DK-9220 Aalborg East, Denmark
Email: ask@cs.aau.dk

Rune Torbesen
Aalborg University

Department of Computer Science
Selma Lagerloefs Vej 300,

DK-9220 Aalborg East, Denmark
Email: rto@cfsi.dk

Abstract—Residential gateways for home automation are pre-
requisites to obtain optimal exploitation of energy resources, and
they also have the potential to provide a unified operation of
various home devices and appliances. Although a number of
protocol standards have been proposed, the number of commer-
cially available systems are still very limited. One reason for
this is the diversity of device manufacturing standards, another
is the lack of efficient and expressive middleware for defining
control algorithms and usage scenarios. In this paper we present
the architectural design of a distributed middleware system for
residential gateways including a simple composition language.
Also, we present the initial experiences obtained from a prototype
implementation of the system.

I. INTRODUCTION

In the last couple of years computer based home control
systems are getting more and more common in modern homes.
The main reason for introducing computer based control
systems, in our homes, is to increase the comfort and security
as well as to lower the consumption of resources such as
energy and water.

However, the penetration of home control technology in
the general population is still very low, due to a number of
obstacles: high initial cost, incompatible protocols and lacking
interoperability between systems [1].

Today a large number of home control systems are available
on the market. Each of them takes care of one specific
task for instance controlling of the heat or the light. These
dedicated control systems (Subsystems) are often not capable
of communicating with each other, because they use their own
specific communication method mostly based on standard low-
level wireless protocols. There exists no single dominating
wireless protocol for home control systems. Currently, the
main contenders for the market are Z-Wave [2] and ZigBee [3].
While there is a significant mass of z-wave products on the
market today, Zigbee is only slowly gainig momentum.

The main problem is: If you want to increase both the
comfort and the security and at the same time lower the
consumption of resources you must have a system, which
can interconnect the different subsystems in a flexible and
intelligent manner. For instance, when you leave the house
and lock the door, all the light should be switched off and the
heating system should settle on a lower level and maybe the
ventilation system should ventilate the house if the humidity
is too high, etc. Of course all these control actions shall

be executed in a system, which can communicate with the
door lock (the security system), the light, the heat and the
ventilation system. In addition to that, it is clear that the control
actions depend on the state of the environment, the system
itself and the people living in the house.

Besides achieving the goal of connecting home devices from
different subsystems to achieve improved comfort, security
and optimized energy consumption, the architecture should
also fulfill a set of business goals as well as exhibit a set
of architectural qualities (as defined in [4]).

Concerning the business goals, a requirement for achieving
wide adoption is that it is profitable for businesses to use the
architecture. Previously, a barrier to the integration of home
devices has been that businesses have been reluctant to adopt
open protocols. We conjecture that this is partly because it
has been unclear to businesses whether a sustainable business
model based on open protocols can be maintained. Therefore,
it is a requirement that the architecture, to a high degree,
supports current traditional business models based on partly
closed protocols. Additionally, the infrastructure should have
no impact on existing end-product designs and should also
allow updating of these designs.

To achieve wide adoption, it should be possible for all
interested parties to join the HomePort system and thus no
single commercial authority should be in control of the system
as a whole and in particular of the protocols used.

In addition to providing increased comfort and security, the
energy saved should be a motivating factor for the consumer to
adopt the system. To achieve this, the cost of the infrastructure
should be low enough in order not dominate the cost of the
energy saved. This implies that the nodes in the system should
be embedded controllers and not, e.g., standard PCs.

The business goals are complemented with requirements for
architectural qualities:

1) Modifiability: Once deployed, it should be possible
to add new devices and subsystems to the system without
affecting already deployed equipment. Furthermore, it should
be possible to connect new added devices to already existing
applications as well as new ones.

2) Usability: A significant part of the cost of current smart
home systems is the cost for installation and configuration
by technicians. If this task can be done by the user instead,
significant savings can be achieved. This requires, however,

that the user is able understand and configure the system.
3) Scalability: Since the current trend goes towards more

and more electronic devices in the home, the architecture
should scale to include hundreds of devices, maybe even
spread over a large building, without incurring a performance
penalty on individual devices. Simultaneously, the architecture
should scale to low end devices to ensure cost efficiency.

To achieve wide adoption of home automation with benefits
of increased comfort, security and energy conservation, this
paper proposes a communication infrastructure for connecting
these different subsystems and devices. The infrastructure is
based on service-oriented architecture (SOA) and introduces
a number of well defined protocols and interfaces to allow
market actors to produce homeport compatible components.
Control logic is located in a generic composition layer that is
isolated from subsystem specific protocols.

The rest of the paper is structured as follows. Below, we
describe related work with respect to technology integration
in home automation. In section III, we describe the Homeport
system architecture. Following that, in section IV, we present
a language for expressing service composites in the Home-
port system. Section V presents an experimental setup, and
section VI summarizes conclusions and outlines future work.

II. RELATED WORK

To obtain interoperability in home automation between
multiple standards [5] uses a central server to translate be-
tween end-devices. Their focus is on software based service
development and they introduce a technology abstract service
language (DomoML), that makes it easier to write generic ser-
vices i.e. graphical user interfaces that via the server-gateway
communicate with end devices. Once installed, this server will
not be able to allow new end-device types (subsystems) to be
added over time, since it requires updating DomoML language
translation code in the server. Compared to our approach, our
focus is on making an IP protocol/framework that makes it
easy to integrate any wireless home automation technology
into the system and write controller/user interface/composition
software. Regarding reliability, our design does not require
a particular deployment and many deployments are possible
using one or more gateways/bridges. If required, a decen-
tralized protocol translation can be obtained, allowing the
translation to be distributed into sub IP networks. Also, our
system is supporting existing equipment as subsystems. When
translation is distributed, IP language updates requires only
installing an extra translator gateway that is an embedded
device available from any infrastructure device vendor.

With focus on middleware for services on a dedicated server
(OSGI), [6] handles interoperability using software bridges on
the server in order to integrate heterogeneous networks and
devices. The solution suffers from the single point of failure
problem and does not scale down to a small installation in
a cost effective way. The internal language that the services
should use to interact with the bridges is not mentioned
in the paper. However, translation and integration of home
automation protocols is a non trivial problem, because of

different semantics. Also with an approach using a central
server, it is more difficult to obtain a balanced business
relationship between market actors since one actor is likely
gain dominance over the server. Compared to our approach we
propose an number of common protocols instead of common
middleware and platform.

Service orientation and service composition in pervasive
computing environments have previously been explored in [7].

III. DESIGN

In this section, we describe and motivate the design of the
HomePort layered architecture. The design of the architecture
has been guided by the set of requirements introduced above.
To ensure that the requirements are both relevant and real-
istic, the requirements originate from scenarios developed in
cooperation with a number of industry partners.

The architecture of the HomePort system can be divided
into four layers: device, bridging, service, and composition.
Each layer handles a part of the functionality required to meet
the requirements described above. In figure 1, an overview can
be seen.

Bridging Layer

Device Layer

Composition Layer

Service Layer

IP/HomePort

Composition DSL

ZigBee

HTTP/REST

Z-Wave

Fig. 1. Architecture Overview

4) Device Layer: The device layer consists of a set of home
devices each connected to a subsystem such as e.g. ZigBee or
Z-Wave. To ensure that businesses remain in control of their
subsystems (and thereby maintain current business models),
the HomePort architecture makes no assumptions at the device
level. It is, however, clear that to use devices from a particular
subsystem, it has to be possible to somehow communicate with
the devices.

The devices might belong to any of the traditional home au-
tomation domains, e.g. heating and ventilation, entertainment,
lighting, security, or entirely new domains.

5) Bridging Layer: In the bridging layer, subsystem devices
are made accessible over IP via a Bridge device using the
heterogeneous network protocol (h-net). The Bridge relays
commands to and from the subsystems using minimal trans-
lation or adaption of subsystem protocols. To interact with
devices, commands are sent to the Bridge which in turn replies.
The bridge can also initiate communication by broadcasting
UDP datagrams if relevant events occur in a subsystem.

The bridge layer functionality is split in two parts, a generic
IP bridging part (h-net) and a subsystem dependent part. The
latter part must have access to radio hardware that is compat-
ible with that particular subsystem. In order to provide a well
defined interface for connecting arbitrary subsystem protocols,
a common network adaptor interface (CNAI) separates the two
parts. Market actors can develop homeport compatible network
adaptors that implement the subsystem dependent part as an
external module to a bridge component.

Since the functionality of the Bridge device is very basic,
the requirements on the hardware platform is very limited and
therefore the Bridge device can potentially be very cheap to
manufacture and consumes an insignificant amount of power.

6) Service Layer: The responsibility of the service layer is
to present device functionality to the composition layer in a
subsystem independent manner using a common language. A
Gateway device is connected to a number of Bridge devices
and exposes the devices of the subsystems encapsulated by
the bridges through an HTTP based service protocol in the
Representational State Transfer (REST) [8] architectural style.

The Gateway is also responsible for enforcing access poli-
cies for devices. If, for example, a lamp is repeatedly turned
on and off due to a controller loop, it is the responsibility of
the gateway to disable access from the controllers to make
sure that the bulb is not destroyed. It is left as future work to
implement a language for specifying access policies (currently,
they are implemented by hand).

Each device is modelled as a web resource that can
be interacted with by using the HTTP [9] methods GET
and PUT. For example, to read the state of a lamp, a
GET request is sent to the URL representing the lamp
(e.g. /services/lamp-42). In return the Gateway replies
with a representation of the state of the lamp. The encod-
ing of the state is specified by the client by including an
Accept header in the request (e.g. applicaiton/xml,
applicaiton/json, text/html or text/plain).

Having a REST based service oriented architecture ensures
that device functionalities can be composed across subsystem
and ownership domains. When interacting with a device at the
service layer, it is transparent what type of wireless network
it is connected to.

The HTTP protocol is light-weight and implementations
can be found for almost any platform. By using the Accept
header, the client can decide whether the compact and easily
parsable text/plain representation should be used, or if the
more verbose but type safe application/xml should be
used. This enables small scale systems to interact with home
devices while at the same time let the application developer
access services through standard APIs. Another benefit of
using HTTP during development is that a standard Internet
browser can be used to inspect services and interact with
them. For the HomePort system, we have developed a simple
user interface based on Asynchrounous Javascript and XML
(Ajax [10]).

The Gateway running the service platform is implemented
in the Python [11] programming language and uses less than

5 MB of RAM.
7) Composition Layer: In the composition layer, applica-

tions are formed by combining multiple home devices. This
can be done by hand-coding application logic and service
invocations or by using a domain specific service composition
language [7]. In section IV, we give an example of such a
language. To make it possible for users and developers to
inspect which services are connected, it is required that the
composition mechanism makes this information available to
the composition layer.

To support current business models (see section I), an
alternate approach can also be used. For businesses producing
specialized hardware controllers (e.g. light controllers), there
is no value proposition in opening up their domain completely
because this would enable third party controller manufacturers
to compete Instead, we propose that the HomePort service
infrastructure acts as a subsystem to the hardware controller.
Hereby the controller manufacturer is in control of what
is exposed to the world. This could, potentially, imply that
nothing is exposed, but we conjecture that domain specific
businesses see an added value in adding functionality from
other domains. For example, for a business manufacturing light
controllers it would be attractable to integrate with a fire alarm
system to enable automatic lighting in emergency situations or
a system for monitoring energy consumption.

In some scenarios it may be necessary to leave out some of
the layers due to hardware and cost requirements. If, e.g., the
user is interested in a setup that allows for custom composition,
the Bridge layer can be left out. Hereby, the Gateway node
communicates directly with subsystem nodes. If, however, the
user is not willing to pay the price of the Gateway, composites
can be created without involving the service layer. These
composites will, however, have to contain both a bridge level
service discovery and a custom translation module that is able
to translate the relevant set of commands and events. Currently,
bridge level service discovery is left as future work.

In figure 1, a simple configuration is illustrated. A ZigBee
switch is connected to a Bridge node that, via the HomePort IP
protocol, communicates with a running composite. The com-
posite interacts via HTTP/REST with the service framework
on a Gateway node which, in turn, is directly connected to a
Z-Wave lamp.

A. Impact on legacy equipment

For the homeport system to have impact on the situation of
home automation regarding energy conservation, vendors, in
the near future, have to produce homeport compatible devices
i.e. controllers, network adaptors, bridges, gateways. In order
to make it feasible for vendors to produce and market these
devices, we have kept in mind the impact on the design that
our system requires. Figure 2 illustrates how different types
of devices are affected when adopting to homeport.

The figures shows that end-device are not affected at all and
that Homeport compatible products i.e. controllers, bridges and
gateway must be fundamentally changed in order to take fully
advantage of the homeport system by either implementing

Fig. 2. Impact on design on different device types: the area corresponds to
the amount of devices. The larger sensor and actuator group is unaffected by
the homeport integration.

the bridge protocol or the service protocol. Between those
two groups exist another group of devices that is medium
affected, since they today exist as network coordinators that
knows how to interact with the wireless network. They must be
updated somewhat to interface the homeport system. Changes
involve removing the “application layer” part and replacing it
with adaptor software that accepts commands from the serial
port protocol using the common network adaptor interface
protocol.

IV. THE HOMEPORT CONTROL LOGIC LANGUAGE (HCLL)

The control logic is placed in the compositions layer. This
layer consists of an interface to the service layer and an
interpreter that execute the control logic. The specification of
the control logic is based on the language HCLL (Homeport
Control Logic Language). The main control structure in HCLL
is the definition of Finite-state machines (FSM). A FSM, is
a model of behavior which is composed of a finite number
of states, transitions between those states, and actions. The
transitions are governed by events.

In this section a small example is given: A lamp (LampN)
is switched ON and OFF by a push button. If the button is
pushed twice (double push) then all lamps in the house should
switch off. If all lamps are off then the double push should,
as a default light setting, switch Lamp1 and lamp2 ON, i.e.
the user might have a number of lamps that are always turn
on when he/she comes home.

The service layer interface loop use the blocking call in
the service layer to read inputs from devices via the HTTP
protocol. These inputs can be events e.g. a button that is
pushed, a switch that switch from one state to another or they
can be input values e.g. a temperature, a humidity and so on.
If the input is an event the corresponding event in the EI data
is updated. Likewise, if the input is an input value, the input
in the EI data is updated.

The Interpreter loop runs the HCLL program. This loop
starts by locking the EI data when executing the HCLL
program. This locking secures deterministic behavior of the

Fig. 3. Two FSM’s. Öne for LampN and one for the double push function

Gw

B1

Zb-NA

Sw1

B2

Zw-NA

Lmp1

C1 C2

Device layer

Bridging layer

Service layer

Composition layer

1

2
3

4 5

6

7
8

Fig. 4. Prototype system diagram: C1 and C2 are controllers, Gw is a
homeport service gateway, B1 and B2 are bridges, Zw-NA is a Z-wave
network adaptor, Zb-NA is a Zigbee network adaptor, Sw1 is a zigbee switch,
Lmp1 is a Z-wave lamp

FSMs. After executing the program all the set events is reset
and the EI data is released.

V. EXAMPLES

We have made an experiment testing that Z-wave lamps via
our system could be turned on by a zigbee switch.

In figure 4, a deployment diagram describes the experiment.
The equipment used to implement bridge nodes includes:
Zigbee development kit [12] connected to a NSLU2 (B1) using
a USB-serial converter and a Z-wave adapter connected to
another NSLU2 (B2) via USB.

End-devices (sensor/actuator nodes) equipment include: Z-
wave appliance and lamp plug-in modules and another Zigbee
development kit simulates a Zigbee switch. The gateway role
is exemplified using yet another NSLU2 (GW) with Linux
with homeport protocol translation software.

All the bridges and the gateway are connected via LAN
network (i.e. UTP network cables and Ethernet switch) and
during the experiment the composition logic (C1) was running
on the gateway node (GW) using the HTTP service protocol.

Also, for the sake of testing our ideas at the system level,
some of the functionality of the homeport compatible network
adaptors (i.e. z-wave adaptor) was placed on the bridge node
(B2) as a driver module. We envision that in the future this
module is moved to the network adaptors.

The experiment has shown that if the Zigbee switch was
pressed (1) it would send a Toggle-message to the Zigbee net-
work adaptor, that would forward the payload (2) to the bridge
using the common network adaptor interface. When the bridge
receives a broadcast message from a CNAI it will transmit
the payload (3) in UDP broadcast on a predefined port on the
LAN. When the gateway node receives a UDP-broadcast it
translates and uses the IP and port information to determine
which end-device it originates from e.g. 192.168.1.152:9002
= Zigbee switch SW1. Via HTTP streaming commands the
gateway is notifying (4) relevant compositions about the
toggle-message.

Also the experiment has shown that if a composition via
the HTTP interface of the gateway initiates a end-device
command, a corresponding message is send to a predefined
port on a predefined IP. When a bridge receives a message on
port N, the message is forwarded via the z-wave driver to the
z-wave adaptor, that in turn sends a z-wave message to the
lamp.

Using a (switch-lamp) composition, it was verified that the
system was able to turn on a Z-wave lamp when a Zigbee
switch was pressed. Despite the added protocol translation
overhead, the observed delay, from you press the button on
the switch until the lamp turns on, appeared to be instant.

Working with different network technologies and their adap-
tors, we have discovered that the alternative to enforcing the
common network adaptor interface, would not only require
one driver per network technology, but a different driver for
each network adaptor or stack. The reason for this is that
not all wireless network technologies have a well defined
standard remote interface, i.e. a serial port interface for sending
commands to and receiving event from the wireless network.

VI. CONCLUSIONS AND FUTURE WORK

In this article we have shown how home automation can
be based on infrastructure and how multiple protocols such
as Zigbee and Z-wave can coexist. The contribution of the
paper is an architecture design that is capable of handling
multiple protocols and allowing vendors to share interfaces.
From our experiments we can conclude that it is possible
to translate between Zigbee and Z-wave lamps/switch on
on/off basis. Also during this work we have discovered that
commercial vendors are willing to partly open their systems,
as long as they decide the interface. Each technology and
each stack has different serial port interface/protocol, and we
have verified the need for common network adaptor serial
port interface protocol. Regarding protocol evolution, we have
confirmed that a translator gateway only is able to handle the
(wireless network) commands that were known at build time,
i.e. we have build a translator gateway that can translate on/off

commands in different arbitrary protocols, but it is at the time
of this writing unable to translate dimmer commands.

Update costs and incompatible hardware platforms used by
infrastructure device vendors makes software updating difficult
and undesirable in large scale adoption of frameworks in
the industry. The framework we have proposed allows an
installed HomePort system to be updated by installing new
hardware nodes with new functionality such as new types of
sensors, gateways and controllers. However, to do this via auto
configuration is future work.

Until recently, our focus have mainly been on the lighting
domain. To fully realize the environmental and economic
potential of being able to control energy consumption in the
home, it is necessary to include other domains into the system.
For example, context information from an alarm system could
be used to turn off heating when nobody is at home. While
it is relatively easy to ensure safe operation of devices from
the lighting domain, the same cannot be said for all devices in
other domains. To be able to ensure safe and correct interaction
with other types of end-devices, we plan on designing a
language for defining access policies. Such a language will
be interpreted by the gateway that will enforce the defined
rules.

REFERENCES

[1] G. Kastner W. Neugschwandtner and H. Soucek, S. Newmann, “Com-
munication systems for building automation and control,” Proceedings
of the IEEE, vol. 93, no. 6, pp. 1178–1203, 2005.

[2] Zwave Alliance, “Z-wave protocol,” http://www.z-wave.com.
[3] Zigbee Alliance, “Zigbee wireless technology (ieee 802.15.4),”

http://www.zigbee.org.
[4] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practise,

2nd ed. Addison-Wesley, 2003.
[5] V. Miori, L. Tarrini, M. Manca, and G. Tolomei, “An open standard

solution for domotic interoperability,” Consumer Electronics, IEEE
Transactions on, vol. 52, no. 1, pp. 97–103, 2006.

[6] J. Bourcier, C. Escoffier, and P. Lalanda, “Implementing home-control
applications on service platform,” Consumer Communications and Net-
working Conference, 2007. CCNC 2007. 2007 4th IEEE, pp. 925–929,
2007.

[7] J. Brønsted, K. M. Hansen, and M. Ingstrup, “Issues in Service Com-
position for Pervasive Computing,” Accepted for publication in IEEE
Pervasive Computing.

[8] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
2000.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “RFC 2616: Hypertext transfer protocol–HTTP/1.1,”
http://www.ietf.org/rfc/rfc2616.txt, June 1999.

[10] M. Mahemoff, Ajax design patterns. O’Reilly Media, Inc., 2006.
[11] M. Lutz, Programming python. O’Reilly Media, Inc., 2006.
[12] Microchip.com, “Picdem z,” http://www.microchip.com/zigbee.

http://www.ietf.org/rfc/rfc2616.txt

