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Incremental Closed-loop Identification of Linear Parameter Varying
Systems

Jan Bendtsen Klaus Trangbaek

Abstract— This paper deals with system identification for
control of linear parameter varying systems. In practical
applications, it is often important to be able to identify small
plant changes in an incremental manner without shutting down
the system and/or disconnecting the controller; unfortunately,
closed-loop system identification is more difficult than open-
loop identification. In this paper we prove that the so-called
Hansen Scheme, a technique known from linear time-invariant
systems theory for transforming closed-loop system identifica-
tion problems into open-loop-like problems, can be extended to
accommodate linear parameter varying systems as well.

I. I NTRODUCTION

Industrial control systems are typically in operation for
extensive periods of time, amongst other things due to the
fact that once a functioning system has been commissioned
and brought into operation, it is very costly in terms of
engineering manpower and loss of production output (and
hence income) to take the system out of action in order
to maintain and update it. On the other hand, most large-
scale industrial systems are subject to frequent changes and
modifications, which may change the dynamics of various
subsystems of the overall plant. Thus, it is often the case that
a control system can be improved after initial commissioning,
as more actual operation data becomes available.

Assuming that a good, or at least acceptable, model for
the original system already exists, however, it seems wasteful
to estimate the total model from scratch in case of limited
structural modifications. Motivated by this observation, we
look at incremental modelling for control of plants running
in closed loop in this paper.

In particular, we look at the so-calledHansen scheme
[1], [2], [3], which, given a nominal system model and
controller, allows open-loop-like system identification of any
‘missing’ dynamics parameterised by a stable system in a
particular feedback structure with the nominal system and
controller, the so-calleddual Youla-Kucera factorisation—
see the survey paper [4] and the references therein for further
details.

In this paper, we show how the Hansen scheme can be
reformulated to deal withlinear parameter varying(LPV)
systems [5], [6].

There are already a number of methods for identification of
LPV systems available in the literature. [7] presents a simple
ARX method; [8] proposes a control-oriented identification
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framework that relies on solution of a set of Linear Matrix
Inequalities. [9] considers robust invalidation of candidate
LPV models. [10] discusses an approach where linear local
models in a number of operating points are found by ap-
plying standard identifications procedures for linear systems
in time domain. Next, an LPV model with linear fractional
dependency on the measured variables is fitted with the
condition of containing all the linear models identified in
the previous step (differential inclusion). The fit is carried
out using nonlinear least squares algorithms. [11] takes a
non-parametric approach to the LPV identification problem.
[12] examines interpolation methods for SISO LPV models.
[13] shows that one can achieve bias-free estimation by using
an instrumental variables-based approach, at least in the
SISO case. [14] refines the instrumental variables method for
Box-Jenkins-type models. [15], [16], [17] and [18] propose
various subspace-based approaches to identification of LPV
systems. Finally, [19] examines how to choose optimal
orthonormal basis functions for LPV system identification.

The main contribution of the present paper is to show that
the Hansen scheme can be formulated for LPV systems in
a non-conservative setting using the notions ofLPV stability
shown viapolyhedral Lyapunov functions[20]. The work
presented here is related to results presented in [21] and
[22], which presented similar results in a quite general,
nonlinear setting. However, by restricting the class of systems
under consideration here, we are able to present an explicit
methodology for the identification and control design, which
is suitable for controller updating as it focuses on incremental
modelling. In principle, any of the above-mentioned methods
can be employed for LPV identification of the dual Youla-
Kucera parameter and avoid some of the specific closed-loop
difficulties.

The outline of the rest of the paper is as follows. Section
II provides some important preliminary results on the notion
of LPV stability employed in the rest of the paper. Section
III then presents a Youla-Kucera parametrisation of LPV
systems, after which Section IV shows how the Hansen
scheme is cast in this framework. Section V illustrates the
applicability of the method on a simple simulation example.
Finally, Section VI sums up the conclusions of the work.

Our notation is standard; in particular,0 andI denote zero
and identity matrices andFu (G,∆) denotes theupper linear
fractional transformationof G wrt. ∆, see e.g., [23, Chap.
10]. Furthermore, forx ∈ R

n ‖ · ‖∞ denotes the infinity
norm defined by‖x‖∞ = max1≤i≤n |xi|. (·)θ indicates that
(·) depends on the parameterθ.



II. LPV STABILITY

In this work, we consider discrete-time linear parameter-
varying (LPV) systemsGθ with a minimal state space
realisation given by matrix functionsAθ ∈ R

n×n, Bθ ∈
R

n×m, Cθ ∈ R
p×n and Dθ ∈ R

p×m, mapping an input
signal vectoru ∈ R

m to an output measurement signal
y ∈ R

p. Specifically, we deal with systems of the form

Gθ : xk+1 = Aθ(k)xk +Bθ(k)uk (1)

yk = Cθ(k)xk +Dθ(k)uk (2)

whereθ(k) ∈ R
q is an external scheduling parameter, which

is allowed to vary as a function of time but not as a function
of the system statesx. Since we only allowθ to depend on
k, we will simply write θ rather thanθ(k) in the following.
We require thatθ belongs to the bounded compact set

Θ =

{

θ ∈ R
q

∣

∣

∣

∣

∣

θi ≥ 0,

q
∑

i=1

θi = 1

}

and thatAθ, Bθ, Cθ andDθ are continuous, bounded func-
tions of θ ∈ Θ (only).

For notational convenience, we will use the shorthand

Gθ =

[

Aθ Bθ

Cθ Dθ

]

for the LPV system (1)–(2) in the sequel.1

If Dθ is nonsingular, i.e.,D−1
θ is well defined for allθ,

the LPV systemGθ has an inverse operator

G−1
θ =

[

Aθ +BθD
−1
θ Cθ BθD

−1
θ

D−1
θ Cθ D−1

θ

]

in the sense thatGθG
−1
θ = G−1

θ Gθ = I for any trajectory
of θ. We will ensure invertibility by construction whenever
necessary in the sequel.

With this notion of inverse LPV system in place, theupper
fractional transformationcan be naturally extended from LTI
theory – see [23, Chap. 10] – to linear time varying operators.

Next, consider the autonomous LPV systemxk+1 =
Aθxk along with the Lyapunov function candidateV (x) =
‖Wx‖∞, whereW ∈ R

µ×n is a constant matrix of rankn.
V (x) is obviously a positive definite function withV (0) = 0.
Computing the sample-to-sample difference yields

V (xk+1)− V (xk) = ‖Wxk+1‖∞ − ‖Wxk‖∞

= ‖WAθxk‖∞ − ‖Wxk‖∞

which is negative ifAθ is sufficiently small; this can be
tested via algebraic means. If the autonomous part of an
LPV system admits such a Lyapunov function for allθ ∈ Θ,
we say that it isLPV stable.

In particular, it is known that apolytopicLPV system, i.e.,
a system whereAθ, Bθ, Cθ andDθ are given as convex com-
binations of fixed matricesAi, Bi, Ci andDi, i = 1, . . . , q,
admits a polyhedral Lyapunov function if the associated

1Please note that this notation should not be confused with “transfer
functions”; throughout the paper we strictly consider operators defined in
state space, as given by (1)–(2), withx0 = 0 unless otherwise noted.

matrix equalities hold for each vertex system. Furthermore, it
is shown in [20] that the existence of a polyhedral Lyapunov
function is in factequivalentto LPV stability for polytopic
LPV systems. That is, this class of Lyapunov functions is
non-conservative, as opposed to e.g. quadratic Lyapunov
functions in the sense that one may find examples of stable
polytopic LPV systems that do not permit a quadratic Lya-
punov function, but it is not possible to find stable polytopic
LPV systems that do not permit a polyhedral Lyapunov
function. We require the following technical result:

Lemma 1:V (x) = ‖Wx‖∞ is a (polyhedral) Lyapunov
function for the polytopic autonomous LPV systemxk+1 =
Aθxk if and only if there exist matricesQi ∈ R

µ×µ such
thatWAi = QiW and‖Qi‖∞ < 1 for i = 1, . . . , q.

Proof: See [20].
Based on Lemma 1 we can show the following simple,

yet important result for connection of LPV systems.
Lemma 2:Suppose two autonomous LPV systems

x1,k+1 = A11
θ x1,k and z2,k+1 = A22

θ z2,k are LPV stable;
then for any continuous and boundedA21

θ of appropriate
dimensions, the autonomous LPV system

[

x1,k+1

x2,k+1

]

=

[

A11
θ 0

A21
θ A22

θ

] [

x1,k

x2,k

]

(3)

is also LPV stable.
Proof: According to Lemma 1, since the systems

x1,k+1 = A11
θ x1,k and z2,k+1 = A22

θ z2,k are LPV stable,
there exist matricesW 1,W 2, Q1

θ, Q
2
θ of appropriate dimen-

sions with‖Q1
θ‖∞ < 1, ‖Q2

θ‖∞ < 1 such that
[

W 1 0
0 W 2

] [

A11
θ 0
0 A22

θ

]

=

[

Q1
θ 0
0 Q2

θ

] [

W 1 0
0 W 2

]

for θ ∈ Θ. Also, we have
∥

∥

∥

∥

[

Q1
θ 0
0 Q2

θ

]∥

∥

∥

∥

∞

< 1.

Turning to the combined system (3), if we can find a scalar
β > 0 and aθ-dependent matrixQ21

θ such that
[

W 1 0
0 βW 2

] [

A11
θ 0

A21
θ A22

θ

]

=

[

Q1
θ 0

Q21
θ Q2

θ

] [

W 1 0
0 βW 2

]

and ∥

∥

∥

∥

[

Q1
θ 0

Q21
θ Q2

θ

]∥

∥

∥

∥

∞

< 1

hold for everyθ ∈ Θ, then we can conclude that the system
is LPV stable by invoking Lemma 1. Rewriting the matrix
equality above, we get

[

W 1A11
θ 0

βW 2A21
θ βW 2A22

θ

]

=

[

Q1
θW

1 0
Q21

θ W 1 βQ2
θW

2

]

which is satisfied iffβW 2A21
θ = Q21

θ W 1 ∀θ ∈ Θ.
SinceW 1 has full row rank, it has a left pseudo-inverse

W 1†; thus, we may chooseQ21
θ = βW 2A21

θ W 1† with β

sufficiently small to satisfy
∥

∥

∥

∥

[

Q1
θ 0

βW 2A21
θ W 1† Q2

θ

]∥

∥

∥

∥

∞

< 1 ∀θ ∈ Θ

which is always possible sinceA21
θ is bounded.



III. B ASIC PARAMETRISATION

In the rest of the paper, we will assume that the plantGθ

is strictly proper, i.e.

Gθ =

[

Aθ Bθ

Cθ 0

]

(4)

and that it can be stabilised by an observer-based LPV
controller of the form

Kθ =

[

Aθ +BθFθ + LθCθ −Lθ

Fθ 0

]

(5)

for all θ ∈ Θ, whereFθ andLθ are such that̄xk+1 = (Aθ +
BθFθ)x̄k and x̂k+1 = (Aθ + LθCθ)x̂k are LPV stable.

Any Gθ that satisfies the above assumption for any tra-
jectory of θ ∈ Θ, can be written as a right, respectively left,
coprime factorisation of the form:

Gθ = NθM
−1
θ = M̃−1

θ Ñθ (6)

where Nθ,Mθ, M̃θ and Ñθ are LPV stable operators of
a specific form given below. Correspondingly,Kθ can be
factorised as

Kθ = UθV
−1
θ = Ṽ −1

θ Ũθ (7)

with LPV stableUθ, Vθ, Ũθ, Ṽθ. The factors are given as

[

Mθ Uθ

Nθ Vθ

]

=





Aθ +BθFθ Bθ −Lθ

Fθ I 0

Cθ 0 I



 (8)

[

Ṽθ −Ũθ

−Ñθ M̃θ

]

=





Aθ + LθCθ −Bθ Lθ

Fθ I 0

Cθ 0 I



 (9)

Then, it is possible to check that
[

I 0
0 I

]

=

[

Ṽθ −Ũθ

−Ñθ M̃θ

] [

Mθ Uθ

Nθ Vθ

]

=

[

Mθ Uθ

Nθ Vθ

] [

Ṽθ −Ũθ

−Ñθ M̃θ

]

(10)

holds; this equation is referred to as thedouble Bezout
identity.

We are now able to show the following result; see Figure 1.

GS,θ

Kθ

-

u

�

y

G0,θ

Kθ

-

u

�
y

Sθ

-

�

z ζ

Fig. 1. All LPV systemsGS,θ stabilised by the LPV controllerKθ (left)
can be represented by a nominal systemG0,θ stabilised byKθ and a dual
Youla-Kucera parameterSθ (right).

Theorem 1:Let Gθ = NθM
−1
θ with state space realisa-

tion (4) be LPV stabilised by a feedback controllerKθ =
UθV

−1
θ with state space realisation (5). LetFθ andLθ be

matrix functions such that̄xk+1 = (Aθ + BθFθ)x̄k and
x̂k+1 = (Aθ + LθCθ)x̂k are LPV stable for allθ ∈ Θ.
All such plants stabilised byKθ can be parametrised as
GS,θ = Fu (G0,θ, Sθ), where

G0,θ =





Aθ −Lθ Bθ

−Fθ 0 I

Cθ I 0





andSθ =

[

AS,θ BS,θ

CS,θ 0

]

is any proper LPV stable system.

Sθ is denoted the dual Youla-Kucera parameter.
Proof: We first show that under the given assumptions,

Kθ stabilisesGS,θ. The upper loop in the right part of
Figure 1 is closed, yieldingGS,θ in the left part of the figure:

GS,θ = Fu (G0,θ, Sθ)

=





AS,θ −BS,θFθ BS,θ

−LθCS,θ Aθ Bθ

CS,θ Cθ 0



 (11)

and when connectingKθ as shown to this system, we obtain
the autonomous LPV system





ξk+1

ηk+1

χk+1



 =





AS,θ −BS,θFθ 0
0 Aθ + LθCθ 0

−LθCS,θ −LθCθ Aθ +BθFθ









ξk
ηk
χk





where ξ is the state vector ofSθ, χ is the controller
state vector andη = x − χ is the difference between the
state vector ofG0,θ andKθ. SinceAS,θ, Aθ + LθCθ and
Aθ + BθFθ are all LPV stable, andBS,θFθ, LθCS,θ and
LθCθ are bounded for boundedθ, we can then conclude that
the closed-loop system is LPV stable by applying Lemma 2
twice in succession.

We then show that, given aKθ = UθV
−1
θ , a nominal

Gθ = NθM
−1
θ stabilised byKθ and aGS,θ also stabilised

by Kθ, there exists anSθ (connected as shown in Fig. 1)
such that the interconnection ofG0,θ andSθ is identical to
GS,θ.

We construct the dual Youla-Kucera parameter asSθ =
Fu

(

Ḡθ, GS,θ

)

, where

Ḡθ =





Aθ +BθFθ + LθCθ −Lθ Bθ

Fθ 0 I

−Cθ I 0





First, we note that the(1, 1)-block subsystem ofḠθ is
identical toKθ (cf. (5)); thus, sinceFu (Kθ, Gθ) is LPV
stable,Sθ = Fu

(

Ḡθ, GS,θ

)

is also LPV stable. Secondly, it
is fairly easy to see that

Fu

(

G0,θ, Ḡθ

)

=

[

0 I

I 0

]



which is the upper fractional transformation identity. Thus,

Fu (G0,θ, Sθ) = Fu (G0,θ, Sθ)

= Fu

(

G0,θ,Fu

(

Ḡθ, GS,θ

))

= Fu

(

Fu

(

G0,θ, Ḡθ

)

, GS,θ

)

= GS,θ.

which completes the proof.
Note that knowledge of a specific polytopic Lyapunov

function is not required in the proof; we simply require the
state transformations to be independent of the system states.

By Theorem 1, all LPV systems stabilized byKθ can be
written asGS,θ = Fu (G0,θ, Sθ), with G0,θ given in the
theorem. By inspection, it is seen that

G0,θ =





Aθ −Lθ Bθ

−Fθ 0 I

Cθ I 0





=

[

−M−1
θ Uθ M−1

θ

M̃−1
θ Gθ

]

=

[

−M−1
θ Uθ M−1

θ

Vθ −NθM
−1
θ Uθ NθM

−1
θ

]

where the last equality is obtained by the Bezout identity.
Then, it can be checked that

Fu (G0,θ, Sθ) = (Nθ + VθSθ)(Mθ + UθSθ)
−1

=
(

M̃θ + SθŨθ

)−1 (

Ñθ + SθṼθ

)

(12)

This setup is depicted in Figure 2 and will be used in the
following.

-
u

- M−1

θ
- Nθ

- -
y−

?

ζ

Sθ

�Uθ

6

- Vθ

6

z

Fig. 2. Dual Youla-Kucera parametrisation of all proper polytopicLPV
plants stabilised by the LPV controllerKθ = UθV

−1

θ
.

IV. OPEN-LOOP-L IKE SYSTEM IDENTIFICATION

We assume that a nominal state space LPV model of
an existing system,Gθ, has been found. The system takes
control signalsu as input, and yields corresponding output
measurementsy, which are affected by additive noiseny ∈
R

p. The parameter variationθ is measurable and satisfies the
assumptions in the previous sections.

Based on this model, a stabilising observer-based LPV
controllerKθ of the form (5) with stable observer and state
feedback dynamics has been designed, for instance using the
methods in [24]. However, for some reason, e.g., monitoring

of the plant during operation, it is suspected that there is
additional un-modelled dynamics, which we wish to identify.

SinceKθ stabilisesGS,θ and (12) is afull parametrisation
of all LPV systems stabilised byKθ, Theorem 1 ensures that
there exists an (LPV stable) parameter systemSθ such that
GS,θ can be written as in (12) (or, equivalently, as in (11)).

Consider now the setup shown in Figure 3, whereKθ and
Gθ are shown in their factorised form as in (7) and (6),
respectively.n′ = (M̃θ+SθŨθ)ny is the measurement noise
that would normally affect the measurementsy, relocated
in the block diagram to affect the output of the parameter
system instead, andr1 andr2 are external excitation signals.

-
r2

-u - M−1

θ
- Nθ

- -
y−

?

ζ

Sθ

?� n′

�Uθ

6

- Vθ

6

z

?� r1�Ũθ
�Ṽ −1

θ

6

Fig. 3. ‘Hansen scheme’ setup for closed-loop system identification

From the block diagram, we find the following relations:

(Nθ + VθSθ)ζ = y − Vθn
′ (13)

and

(Mθ + UθSθ)ζ = u− Uθn
′

= r2 + Ṽ −1
θ Ũθ(y + r1)− Uθn

′ (14)

Applying the LPV operators̃Vθ and Ũθ to (13) and (14),
respectively, then yields

Ṽθ(Mθ + UθSθ)ζ = Ũθ(r1 + y) + Ṽθr2 − ṼθUθn
′

Ũθ(Nθ + VθSθ)ζ = Ũθy − ŨθVθn
′

Subtracting the bottom equation from the top equation and
using the Bezout identity then results in

ζ = Ũθr1 + Ṽθr2 (15)

In a similar vein, from the block diagram, we have the
relations

Mθζ = u− Uθz

Nθζ = y − Vθz

Applying the LPV stable filters̃Nθ to the top expression and
M̃θ to the bottom one, subtracting one from the other and
using the Bezout identity then results in

z = M̃θy − Ñθu (16)

Thus, ζ and z can be obtained by filtering measurements
through known, stable LPV filters. Furthermore, assuming



ny is independent ofr1 andr2, thenζ is independent ofn′

as well.
As a consequence, althoughu and y are measured in

closed-loop, the identification ofSθ using the signalsθ, z
andζ becomes equivalent to an open-loop LPV identification
problem.Sθ can in principle be identified using any of the
methods mentioned in the Introduction. When the identifica-
tion is complete,GS,θ may then be recovered by inserting
Sθ in (12), or, more conveniently, in (11).

V. SIMULATION EXAMPLE

We consider the following unstable system with a single
time varying parameter0 ≤ θ ≤ 1:

xk+1 = Aθxk +Buk +Kvk

yk = Cxk + vk,

Aθ =











0.9 0.05 0.1 −0.3 0.4
−0.2− 0.7θ 0.9 0 0 0

0 0.1 0.9 0.1 −0.1
0.3 + θ 0 0 0 0.3 + κ

0 0.3 −0.3 0.3 0.92 + 0.05θ











,

B =











1

0

1

−1

−1











, K =











−0.8
0.3
0

0

−0.7











,

C =
[

0 1 2 1 −1
]

,

with κ = 0.3 and E{vkv
T
k } = 10−6. We assume

that we already have a reasonably accurate nominal model
(Am,θ, Bm, Cm) of the deterministic part.Am,θ is equal to
Aθ, except that the model assumesκ = 0, while the input
and output matrices are correctly identified, i.e.,Bm = B,
Cm = C.

The system is open loop unstable and only barely de-
tectable and stabilisable; in fact, although the model error
may seem small, even a slightly larger error can in fact easily
cause an unstable closed loop.

A stabilising LPV controller

xc,k+1 = (Amθ +BmFθ + LθCm)xc,k − Lθyk

uk = Fθxc,k

with

Fθ =
[

0.11− 0.27θ 0.42 −0.43 0.12 + 0.05θ 0.7
]

Lθ =











0.87− 0.37θ
−0.26− 0.77θ

−0.19
0.47 + 0.4θ

0.87











has been designed for the system. It satisfies the requirements
given in Theorem 1 for allθ ∈ [0 ; 1].

In closed loop operation, excitation in the form of white
noise with variance 1 is added to the input (r2 in Figure 3).
The full output measurement sequence is shown in Figure 4
and a zoom of the signals along with the auxiliary signals
used in the Hansen scheme is shown in Figure 5.

In all the identifications, models on the form̂xk+1 =
Âθx̂k + B̂θuk, ŷk = Ĉx̂k are assumed, witĥAθ and B̂θ

depending linearly onθ.

0

0.2

0.4

0.6

0.8

1

θ

0 1000 2000 3000 4000 5000 6000 7000 8000
−300

−200

−100

0

100

200

300

400

y

sample number

Fig. 4. Measurement data for system identification. Top:θ(k); bottom:yk

−5

0

5

r 2

0

0.5

1

θ

−20

0

20

u

−200

0

200

y

−50

0

50
ζ

3000 3050 3100 3150 3200 3250 3300 3350 3400
−10

0

10

z

sample number

Fig. 5. Zoom of measurement data, indluding auxiliary signals. From top to
bottom:r2,k ; θ(k); uk; yk; ζk; zk

In order to evaluate the obtained models, theν-gap be-
tween the model and the real system is computed. Theν-
gap is a value between 0 and 1 that expresses the difference
between two transfer functions in terms of their similarity
with respect to closed loop operation; that is, if theν-gap
between two plant models is small, then a good controller
designed for one transfer function will also work well with
the other [25]. Theν-gap is only defined for LTI systems, so
the comparisons strictly speaking only hold for fixed values
of θ. However, to the best of the authors’ knowledge, no
other meaningful tools for comparison of closed-loop LPV
model fitness are known. Here, theν-gap is evaluated forθ
frozen at0, 0.5 and1.

The identifications are performed using an increasing
number of samples, in order to evaluate how much excitation
is needed.

Two identification methods, ARX and PBSIDopt, are
tested, both in a direct form and using the Hansen scheme.
The state space matrices are found by minimising the pre-
diction error using least squares methods. Note that we do
not assume any explicit knowledge of which entries inAm

are erroneous, so a direct grey box approach is not possible.
The first identification method examined is the LPV ARX

method found in e.g. [7] and [13]. Here, the state estimate



simply consists of delayed outputs and inputs. In the direct
application, the method is simply fed measured input and
output data and model with 5 delayed outputs and 5 delayed
inputs is identified. We assume a zero-order polynomial
dependence onθ in the identification. The dash-dot line in
Figure 6 shows theν-gap as a function of the number of
samples used. Forθ = 1 the model is acceptable, but for
θ = 0 and θ = 0.5, even large numbers of samples do
not yield acceptable models. Making delayed values ofθ

available to the identification algorithm did not improve the
model, either.
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Fig. 6. ν-gap for different models identified using ARX methods, with
frozen values ofθ.

Next, the ARX method is used to identify a dual Youla
parameter in a Hansen scheme. First the data is filtered as
discussed in Section IV. Then the ARX method is used to
identify Sθ, again with 5 delayed outputs and 5 delayed
inputs, which is then combined with the nominal model as
in Eqn. (11). The resulting model error is shown by the solid
lines in Figure 6. The dotted lines show theν-gap for the
nominal model (which is approximately 0.08 for all frozen
θ), indicating that a significant improvement is achieved with
a reasonably small number of samples.
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Fig. 7. ν-gap for different models identified using PBSIDOpt, with frozen
values ofθ.

The second method examined is PBSIDopt, which is
presented in an LPV version in [16]. In this approach, a

subspace method is used to construct the state estimates, and
consequently requires a lot of computational power.

First PBSIDopt (with a window length of 9) is applied
directly to the measurements to obtain a 5th order LPV
model, and the result, shown by the dash-dot lines in Figure
7, is quite poor. Changing the window length did not improve
the identification noticeably.

Next, PBSIDopt (again with a window length of 9) is
applied to obtain a 7th order LPV model ofSθ in the Hansen
scheme. Theν-gaps of the resulting model is shown with
solid lines in Figure 7; as can be seen, theν-gap drops
below those of the nominal model when more then 3000
samples are used. The result is not as good as for the Hansen
ARX method, but it is a definite improvement over using
PBSIDopt directly.
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Fig. 8. Bode plots for different models identified using PBSIDOpt, with
θ = 0.9.

Figure 8 shows Bode plots for all the models obtained with
the maximum number of samples, withθ frozen at0.9. The
picture is similar for all other values ofθ; the Hansen scheme
is able to capture the spike, whereas the direct methods are
not.

The reason that the Hansen scheme improves on the iden-
tification is likely different for the two different identification
methods. For the ARX case, the closed-loop nature of the
data affects the direct ARX method, and the Hansen scheme
helps to decouple these effects. In PBSIDopt, the main
approximation lies in assuming that the state transition is
zero beyond the window length; in this example this is not
the case. The Hansen scheme, on the other hand, focuses on
the identification of a subsystem, where this assumption is
closer to being satisfied. Finally, it should be noted thatn′

is the output noise filtered through a combination of known
factors and the unknownSθ. As pointed out in [26], this
may be exploited in a grey box setup to further improve the
results with the Hansen scheme.



VI. D ISCUSSION

In this paper we considered incremental system identi-
fication of LPV systems that are modified during online
operation, for instance due to replacement and/or addition
of system components (so-calledplug-and-play control). We
used the notion of polyhedral Lyapunov functions to prove
the existence of a dual Youla-Kucera parameter system for
proper polytopic LPV systems in a non-conservative manner.
Then we showed how the Hansen scheme can be used
for incremental system identification of such LPV systems,
taking the starting point in a nominal system model and
identifying the unknown dynamics by means of identification
of said dual Youla-Kucera parameter in an open-loop-like
setting. The method is an extension of the Hansen scheme
for LTI systems. This particular approach is suited for plug-
and-play control, where system dynamics is changed during
online operation e.g. due to replacement or introduction
of new sensors, actuators or other components; only the
changed dynamics need to be identified, while nominal plant
and controller information may be retained.
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