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Abstract. The treelet transform (TT) is a recent data reduction technique
from the field of machine learning. Sharing many similarities with principal
components analysis (PCA), TT can reduce a multidimensional data set to
the projections on a small number of directions or components which account
for much of the variation in the original data. However, in contrast to PCA,
TT produces sparse components. This can greatly simplify interpretation. We
describe the tt Stata add-on for performing TT. The add-on includes a Mata
implementation of the TT algorithm, alongside other functionality to aid the
practical application of TT. We show how a basic exploratory data analysis
using the tt add-on might look.

Keywords: treelet, PCA, dimension reduction, factor analysis.

1 Introduction

A common task in data analysis is to summarize a multidimensional data set. One popular and
convenient approach is to find a few interesting directions in the data and use the corresponding
linear projections of data as representatives of the original data in plots, regression models etc.
This is known as dimension reduction. Principal components analysis (PCA) is a standard
dimension reduction method which works by calculating the first few eigenvectors (components) of
a covariance or correlation matrix and reducing the data set to a collection of component scores –
the projection of data onto components. This strategy has the optimality property of explaining as
much variation as possible in the original data using as few dimensions as possible. Often, entries
of the components (loadings) are subjected to interpretation. Variables corresponding to ‘large’
loadings are interpreted as being important for describing the original data; variables corresponding
to ‘small’ loadings can be discarded. Such interpretation is complicated by the fact that all
component loadings are nonzero. Various cutoff rules, component rotation strategies etc. have
been developed to simplify interpretation (Jolliffe, 2002) but these largely ad hoc procedures do
not contribute to the transparency and objectivity of PCA.

In the machine learning community, there has been a growing interest in developing alternatives to
PCA which offer more interpretable components by forcing loading patterns where many loadings
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are exactly zero, i.e. by forcing sparse components. For example, Zou et al. (2006) developed a
variant of PCA where sparse components are estimated via penalized regression with automatic
variable selection. The treelet transform (TT) proposed by Lee et al. (2008) is a similar recent
alternative to PCA. TT introduces sparsity among component loadings in an elegant and simple
fashion by combining ideas from hierarchical clustering analysis with ideas from PCA. This leads to
sparse components which, similarly to PCA components, account for a large part of the variation
in the original data and can be used in an analogous manner. In addition, it leads to an associated
cluster tree which provides a concise visual representation of loading sparsity patterns and the
general dependency structure of the data.

We describe in this paper the Stata add-on tt (Gorst-Rasmussen, 2011) which contains a Mata
implementation of the TT algorithm. In addition to the TT algorithm itself, tt includes a number
of other functions to aid in model selection and output analysis in practice. Using the cars data
set which comes with Stata, we provide a small demonstration of how the various functions work
together, and how a complete TT analysis using tt might look.

2 The treelet transform algorithm

This section provides a brief, nontechnical review of the TT algorithm. For a more formal derivation
of TT and its properties, see the original paper by Lee et al. (2008).

Given a collection of p variables, the TT algorithm proceeds as follows:

Variable pairing. Locate the two variables with the largest correlation coefficient.

Local PCA. Merge these two variables by performing PCA on them. Keep the new variable/score
with the largest variance (the ‘sum’ variable), discard the other new variable/score (the
‘residual’ variable).

This yields a new collection of p − 1 variables, namely the sum variable and the remaining p − 2
original variables, on which we then repeat the above two steps. The ‘variable pairing’/‘local PCA’
scheme is repeated for a total of p − 1 times until only a single sum variable is left. This in turn
defines a basic hierarchical clustering algorithm, the output of which is conveniently represented
as a binary tree with p levels (a cluster tree or cluster dendrogram). Variables that are ‘close’ in
this cluster tree, and are merged early, represent groups of more highly correlated variables.

Hierarchical clustering is in itself a well-known technique. The novelty of TT is its use of PCA to
merge variables since it enables us to construct, at each level of the TT cluster tree, a complete
coordinate system for the data. Specifically, viewing TT in terms of its action on components
rather than variables, we start out with a coordinate system consisting of the trivial, one-variable
components (the standard coordinate system of Rp). Each local PCA of two variables corresponds
to performing an orthogonal rotation of two components. It follows that a coordinate system for
the data at a given level of the TT cluster tree is given by the collection of:

1. The components corresponding to sum variables available at the current level and;

2. components corresponding to all previously calculated residual variables and;

3. ‘trivial’ components for variables that have not yet joined the cluster tree.
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The level- and data-specific coordinate system is thus comprised of ‘sum’ components which
encode coarse-grained, low-resolution information about the dependency relationships between
all variables included so far; alongside ‘residual’ components which encode information about the
more local relationships between variables at an increasingly greater resolution. It can be shown
that if TT is applied to a collection of variables with a covariance matrix featuring high intrablock
correlation and low interblock correlation then the loadings of sum components will be constant
on variables within blocks (Lee et al., 2008) in large samples. Hence, TT can help identify groups
of correlated variables.

2.1 Selecting a cut-level

Application of TT to a data set yields, as its basic output, a cluster tree alongside a coordinate
system for the data at each level of the cluster tree. As described above, the coordinate system
combines coarse components not unlike components obtained from PCA, with higher-resolution
components which reflect local dependency relationships. We seek to utilize this collection of
coordinate systems for dimension reduction purposes.

If we knew which cluster tree level (cut-level) to use, we could calculate variances of the level-specific
component scores and retain components corresponding to the highest-variance scores. This is the
approach used in PCA with one difference: TT component scores are generally correlated and
do not lead to a true decomposition of variance. This is a known issue in dimension reduction
(Gervini and Rousson, 2004) since PCA is the only method yielding both orthogonal components
and uncorrelated scores.

Selecting a cut-level for the TT cluster tree amounts to deciding the level of detail desired in the
dimension reduction, i.e. the amount of regularization. A coordinate system close to the leaves of
the cluster tree contains mostly highly sparse components and may not be useful for dimension
reduction in the sense that the high-resolution components are not much more informative than the
original one-variable components. Conversely, a coordinate system close to the root includes coarse-
grained, low-resolution components more suitable for dimension reduction but may be harder to
interpret because of lacking sparsity. We usually prefer a data-driven choice of cut-level. Choosing
a cut-level from data is not trivial since coordinate systems at different cut-levels are equally
capable of describing the data if only we use a sufficiently large number of components. However,
cross-validation methods can be used to find a cut-level at which we can describe the data using
only few components. Suppose that we wish to describe the data using exactly m components.
Then we determine an appropriate cut-level by using the following K-fold cross-validation strategy
(Lee et al. (2008)):

1. Split the data randomly into K roughly equal-sized subsets. For each of these subsets, do
the following:

• For each cut-level 1, . . . , p − 1 calculate the m highest-variance components using all
subsets of data except the current. Next, calculate the sum of variances of scores based
on these components using only the current subset.

2. For each cut-level 1, . . . , p− 1, calculate a cross-validation score by averaging the K sums of
component variances obtained in step 1.
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Data

Fold K

Fold 1

Cut-level 1
Get the m highest-variance TT components using

all data except fold 1 and;

Get variances of scores of these components within fold 1

Cut-level p− 1

Figure 1: Flow chart for the cross-validation strategy for deciding an optimal cut-level.

A flowchart visualizing step 1 of the cross-validation strategy is shown in Figure 1.

Once cross-validation scores have been obtained, a suitable cut-level can be found by locating a
‘knee’ on the graph of cross-validation scores against cut-level, i.e. a point at which increasing the
cut-level does not substantially increase the cross-validation score. In other words, we select the
cut-level at which we can explain almost as much variation as possible, using as low a cut-level as
possible to simplify interpretation of components.

Note that the cross-validation strategy requires us to specify the number of components m to use.
This is not much different from the corresponding problem of selecting the number of components
to retain in PCA; or the number of clusters in a cluster analysis. In Section 4, we propose a simple
data-driven strategy for selecting both cut-level and the number of components.

2.2 Stability assessment

A data analyst may wish to know how much trust to place in a collection of components obtained
using TT. Since a key feature of TT is its ability to produce sparse components, it is of particular
interest to assess the stability of loading sparsity patterns. This can be done by using a subsampling
approach inspired by Ben-Hur et al. (2002).

We first specify a cut-level k and a number m of TT components to retain. Then we repeat the
following subsampling scheme 100 times:

1. Randomly sample 80% of the data.

2. Within this subsample, calculate the m highest-variance TT components at cut-level k of
the cluster tree. For each of these m components, do the following:

• Calculate the sign pattern of the component. For example, a component (−0.1, 0.2, 0, 0.1)
corresponds to the sign pattern (−,+, 0,+).

• Calculate the variance explained by the corresponding component.

• Calculate the rank according to the variance explained by the corresponding component.

The collection of all 100 ·m sign patterns, alongside their variances and ranks, carries information
about the stability and the importance of different sign patterns appearing in the subsampled TT
analyses. As a measure of stability, we count the number of times we see a particular sign pattern
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among all 100 ·m patterns while using the average rank and average variance of the sign pattern
as measures of importance. The final output of the stability analysis is the relative frequency,
average variance, and average rank of each sign pattern occurring in more than 10 out of the 100
subsampled TT analyses. Note that this number is generally different from m.

3 The tt add-on

3.1 Syntax

The main function in the tt add-on (Gorst-Rasmussen, 2011) is implemented as a Mata function
called via a Stata wrapper. It is loosely based on the R-code by Liu (2010) and has syntax:

tt varlist
[
if
] [

in
] [

weight
]
, cut(#)

[
options

]

After calling tt, the user will typically call ttcv which uses the cross-validation strategy of
Section 2.1 to select a cut-level for the TT cluster tree. It has the following syntax:

ttcv varlist
[
if
] [

in
] [

weight
]
, components(#)

[
options

]

A range of different post-estimation commands is also available. As usual with post-estimation
commands, they require an initial call to tt. Stability assessment as described in Section 2.2 is
available in the command ttstab which has syntax:

ttstab
[
, options

]

The TT cluster tree can be plotted by using the following command:

ttdendro
[
, dendro options

]

Scree plot of variances and ‘skyscraper plots’ of component loadings are implemented in the
commands ttscree and ttloading, respectively, with syntax:

ttscree
[
, options scatter options

]

ttloading
[
, options scatter options

]

Finally, ttpredict implements prediction of component scores. As previously described, these
are the projections of the original data onto the relevant TT component and can be informally
interpreted as the degree of ‘adherence’ of a given observation vector to the given component. The
ttpredict syntax is:

ttpredict
[
if
] [

in
]
{stub*|newvarlist}

3.2 tt options

cut(#) is required and specifies the cut-level of the TT cluster tree at which to extract components.
The cut-level influences both the sparsity and composition of components.

components(#) sets the maximum number of components to be retained. tt displays the full set
of components variances but displays loadings only for retained components. The default is the
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number of variables in varlist.

corrrelation or covariance specifies that TT cross-validation be based based on the correlation
matrix or covariance matrix, respectively. The default is correlation. Usually, TT based on the
covariance matrix will be meaningful only if variables are expressed in the same units.

noblanks display zero loadings as 0 instead of blanks; included for readability.

3.3 ttcv options

components(#) is required and sets the number of components to be retained. In practice, this
number may not be known in advance; in which case one should investigate the output of ttcv
for a range of different choices components().

folds(#) specifies the number of folds (test samples) to use in cross-validation. The default
is folds(10).

reps(#) specifies the number of Monte-Carlo repetions of cross-validation. Default is reps(5).
Monte-Carlo repetitions reduce the sampling variation inherent in cross-validation; increase
reps(#) if the output of ttcv appears unstable over different runs.

percent(#) specifies that a “knee” on the graph of cross-validation scores should be sought among
cut-levels for which the score is within #percent of the cross-validation score associated with the
maximal cut-level. Default is percent(10).

corrrelation or covariance specifies that TT cross-validation be based based on the correlation
matrix or covariance matrix, respectively. The default is correlation. Usually, TT based on the
covariance matrix will be meaningful only if variables are expressed in the same units.

force try to force cross-validation even when zero-variance variables are detected in training
samples. This is usually an indication that there is something wrong; use this option with caution.

3.4 ttstab options

reps(#) number of subsamples; default is reps(100).

subsample(#) subsample size in percent of the original sample size; default
is subsample(80).

keep(#) keep sign patterns appearing in more than# percent of replications; default is keep(20).

force tries to force subsampling even when zero-variance variables are found in subsamples. This
is usually an indication that there is something wrong; use this option with caution.

3.5 ttdendro options

dendro options are any of the options allowed by the cluster dendrogram command; see
[MV] cluster dendrogram.

3.6 ttscree and ttloading options

scatter options are any of the options allowed by the graph twoway scatter command; see
[G] graph twoway scatter.
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The following option applies only to ttscree:

neigen plot only the largest first# component variances; default is to plot all component variances

The following option applies to ttloading only:

components plot components in numlist ; default is components(1 2 3).

4 A data example

As a simple illustration of the proposed workflow when using the tt add-on, we consider the 1978
automobile toy data set which comes with Stata. This data set describes various characteristics of
a total of 74 vehicles. We will use the 10 variables described below for the analysis; a total of 69
vehicles have complete observations for these variables.

. sysuse auto
(1978 Automobile Data)

. describe price-gear_ratio

storage display value
variable name type format label variable label

-----------------------------------------------------------------------------
price int %8.0gc Price
mpg int %8.0g Mileage (mpg)
rep78 int %8.0g Repair Record 1978
headroom float %6.1f Headroom (in.)
trunk int %8.0g Trunk space (cu. ft.)
weight int %8.0gc Weight (lbs.)
length int %8.0g Length (in.)
turn int %8.0g Turn Circle (ft.)
displacement int %8.0g Displacement (cu. in.)
gear_ratio float %6.2f Gear Ratio

4.1 Step 1: running tt

To get familiar with the data set, we first make a couple of preliminary runs of tt and the
tt postestimation plotting routines.

. tt price-gear_ratio, cor cut(3) components(3)

Treelet transform/correlation Number of obs = 69
Number of comp. = 3
Cut-level = 3

--------------------------------------------------------------------------
Component | Variance Proportion Cumulative Adj. proportion

-------------+------------------------------------------------------------
TC1 | 3.6404 0.3640 0.3640 0.3640
TC2 | 1.0000 0.1000 0.4640 0.0360
TC3 | 1.0000 0.1000 0.5640 0.0746
TC4 | 1.0000 0.1000 0.6640 0.0344
TC5 | 1.0000 0.1000 0.7640 0.0787
TC6 | 1.0000 0.1000 0.8640 0.0371
TC7 | 1.0000 0.1000 0.9640 0.0652
TC8 | 0.1875 0.0187 0.9828 0.0143
TC9 | 0.1199 0.0120 0.9948 0.0086
TC10 | 0.0522 0.0052 1.0000 0.0031

--------------------------------------------------------------------------
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Components

-------------------------------------------
Variable | TC1 TC2 TC3

-------------+-----------------------------
price |
mpg |

rep78 |
headroom | 1.0000

trunk |
weight | 0.5080
length | 0.5080

turn | 0.4851
displacement | 0.4985
gear_ratio | 1.0000

-------------------------------------------

. tt price-gear_ratio, cor cut(6) components(3)

Treelet transform/correlation Number of obs = 69
Number of comp. = 3
Cut-level = 6

--------------------------------------------------------------------------
Component | Variance Proportion Cumulative Adj. proportion

-------------+------------------------------------------------------------
TC1 | 4.5497 0.4550 0.4550 0.4550
TC2 | 1.6565 0.1657 0.6206 0.0432
TC3 | 1.0000 0.1000 0.7206 0.0800
TC4 | 1.0000 0.1000 0.8206 0.0717
TC5 | 0.6353 0.0635 0.8842 0.0515
TC6 | 0.4555 0.0455 0.9297 0.0328
TC7 | 0.3435 0.0343 0.9640 0.0335
TC8 | 0.1875 0.0187 0.9828 0.0143
TC9 | 0.1199 0.0120 0.9948 0.0086
TC10 | 0.0522 0.0052 1.0000 0.0031

--------------------------------------------------------------------------

Components

-------------------------------------------
Variable | TC1 TC2 TC3

-------------+-----------------------------
price |
mpg | 0.7071

rep78 | 1.0000
headroom | 0.3052

trunk | 0.3639
weight | 0.4471
length | 0.4471

turn | 0.4269
displacement | 0.4387
gear_ratio | 0.7071

-------------------------------------------

. ttdendro

. ttscree

In both calls to tt, we retain 3 components but use different cut-levels 3 and 6, respectively.
The relatively low cut-level of 3 in the first analysis yields more sparse components. In fact,
components 2 and 3 in this first analysis are somewhat uninteresting for the purpose of dimension
reduction since they contain only a single variable. The second analysis uses the cut-level 6 and
leads to less sparse components.

The call to tt returns both the ‘raw’ variances explained by components and variances adjusted
for correlation between scores using the conservative method of Gervini and Rousson (2004). For



9 tt: Treelet transform with Stata

the present data, the first TT component explains the majority of the variation for both cut-levels
3 and 6, irrespective of the method used for variance calculation. In both analyses, this first
component can be informally interpreted as measuring the overall ‘size’ of a vehicle.

The output of the call to ttdendro is shown in Figure 2. The TT cluster tree shows that trunk,
weight, length, displacement, and turn form a tight cluster. With the addition of the variable
headroom, it is this particular cluster that is reflected by the first TT component in the second call
to tt above. It is a general feature of the TT algorithm that cluster membership in the cluster tree
translates to nonzero loadings in some TT component. In other words, the cluster tree provides a
concise visual representation of the possible TT components.

Figure 3 is obtained by calling ttscree. It is a graphical representation, similar to PCA scree
plots, of the (unadjusted) variance explained by components. It is clear from this plot that a single
component suffices to capture much of the variation in the data.

The first TT component in the second call to tt above is very similar to the first component
obtained from the corresponding PCA, as can be seen from the numerical loadings and Pearson
correlation between scores calculated below. However, the first TT component is potentially
simpler to interpret because of its sparsity.

. ttpredict tt1score
(9 components skipped)

. pca price-gear_ratio, cor components(2)

Principal components/correlation Number of obs = 69
Number of comp. = 2
Trace = 10

Rotation: (unrotated = principal) Rho = 0.7389

--------------------------------------------------------------------------
Component | Eigenvalue Difference Proportion Cumulative

-------------+------------------------------------------------------------
Comp1 | 6.31248 5.23618 0.6312 0.6312
Comp2 | 1.0763 .0622654 0.1076 0.7389
Comp3 | 1.01403 .583752 0.1014 0.8403
Comp4 | .430283 .0343745 0.0430 0.8833
Comp5 | .395908 .116712 0.0396 0.9229
Comp6 | .279196 .0229213 0.0279 0.9508
Comp7 | .256275 .130573 0.0256 0.9764
Comp8 | .125701 .0442338 0.0126 0.9890
Comp9 | .0814675 .0531123 0.0081 0.9972

Comp10 | .0283551 . 0.0028 1.0000
--------------------------------------------------------------------------

Principal components (eigenvectors)

------------------------------------------------
Variable | Comp1 Comp2 | Unexplained

-------------+--------------------+-------------
price | 0.2074 0.3876 | .5668
mpg | -0.3394 0.0520 | .2699

rep78 | -0.1830 0.7639 | .1606
headroom | 0.2304 0.3049 | .565

trunk | 0.3003 0.3401 | .3061
weight | 0.3848 0.0095 | .06535
length | 0.3771 0.0432 | .1003

turn | 0.3542 -0.1831 | .1719
displacement | 0.3742 -0.0121 | .1157
gear_ratio | -0.3306 0.1388 | .2895

------------------------------------------------

. predict pc1score
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Figure 2: Cluster tree produced by tt.
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. correlate tt1score pc1score
(obs=69)

| tt1score pc1score
-------------+------------------

tt1score | 1.0000
pc1score | 0.9842 1.0000

4.2 Step 2: running ttcv

From the analysis in step 1, we found evidence that a single TT component suffices to describe the
majority of variation in the data. It turns out that the optimal cut-level for a single-component
solution is 9, the maximal possible; and that the single retained component has all nonzero loadings
for this cut-level.

For the purpose of illustration, suppose instead that we decide to keep 3 components. We can
then find a suitable cut-level by a call to ttcv as follows.

. ttcv price-gear_ratio, cor components(3)

Cross-validation (10 folds, 5 repetitions)
0% 25% 50% 75% 100%
+--------------+--------------+--------------+--------------+
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

TT cross-validation/correlation Number of obs = 69
Number of comp. = 3

Number of folds = 10
Number of reps = 5

Cross-validation scores
-------------------------------------------

Cut-level | Score Proportion
-------------+-----------------------------

1 | 5.3364 0.6509
2 | 6.1585 0.7512
3 | 6.9091 0.8428
4 | 7.2181 0.8805
5 | 7.5062 0.9156
6 | 7.8466 0.9571
7 | 7.7807 0.9491
8 | 7.9603 0.9710
9 | 8.1980 1.0000

-------------------------------------------
Estimated optimal cut-level = 6
(optimal cut-level sought within 10% of highest cut-level score)

Figure 4 shows a plot of the cross-validation scores generated when calling ttcv. Although
not entirely convincing, a ‘knee’ in the graph seems to be located around level 6, indicating
that increasing the cut-level beyond this level will not substantially improve the amount of
variance explained by the 3 components. Thus, for a 3-component solution, a cut-level of 6
appears adequate.

Choosing simultaneously the number of components to retain and a cut-level is easy for the present
data set since a single component-solution seems to be preferable at most nontrivial cut-levels. In
situations where it is unclear how many components to retain, the choice can be more difficult.
The following strategy is recommended:

• Decide on a range of different sensible values of components() in the call to tt via, for
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example, investigation of scree plots.

• Perform ttcv for each of these choices of components().

In our experience, there will often be a reasonably small range of cut-levels that are universally
preferable for the selected range of components(). A parsimonious solution is then to use the
smallest acceptable cut-level among these.

4.3 Step 3: running ttstab

For the choice cut(6) and components(3) in the call to tt, we conclude our analysis by
investigating the stability of the obtained solution via a call to ttstab.

. tt price-gear_ratio, cor cut(6) components(3)

(output omitted )

. ttstab

Subsampling repetitions (100)
0% 25% 50% 75% 100%
+--------------+--------------+--------------+--------------+
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Stability of TT/correlation Number of obs = 69
Number of comp. = 3
Cut-level = 6

Subsample rep. = 100
Subsample frac. = 0.80
Subsample size = 55

Average rank (by amount of variance explained) and frequency of sign patterns
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Displaying results for patterns with frequency >= 10%

---------------------------------------------------------
Sign pattern | Avg. rank Frequency Avg. variance
-------------+-------------------------------------------

1 | 1.000 0.890 4.552
2 | 2.000 0.990 1.656
3 | 3.000 0.350 1.000
4 | 3.000 0.610 1.000

---------------------------------------------------------

Structure of sign patterns

------------------------------------
Variable | 1 2 3 4

-------------+----------------------
price | 0 0 + 0
mpg | 0 + 0 0

rep78 | 0 0 0 +
headroom | + 0 0 0

trunk | + 0 0 0
weight | + 0 0 0
length | + 0 0 0

turn | + 0 0 0
displacement | + 0 0 0
gear_ratio | 0 + 0 0

------------------------------------

The call to ttstab performs 100 subsampling repetitions of TT, keeping the 3 highest-variance
components in each subsampled analysis (at cut-level 6). It then transforms these into their
corresponding sign patterns. Note that ttstab is set to return all sign patterns seen in more than
10% of the subsampling repetitions, here corresponding to 4 sign patterns. In the output, ‘Avg.
rank’ is the the rank (according to explained variance of the corresponding component), averaged
over the 100 subsamples. ‘Frequency’ is the relative frequency of the sign pattern among all
3 · 100 sign patterns returned. Lastly, ‘Avg. variance’ is the variance explained by the component
corresponding to the sign pattern, averaged over the 100 subsamples.

We can see that sign patterns similar to those of the first two components from the original TT
analysis with components(3 and cut(6) appear in almost all subsampling repetitions. If the first
type of sign pattern appears, it corresponds to a component with rank 1. Moreover, the first
component remains by far the most important one in terms of variance explained. Sign patterns
3 and 4, on the other hand, do not appear to be very stable. Increasing the number of retained
components to 4 does lead to a greater stability in terms of frequency of inclusion but does not
improve stability of the rank of the last two components.

5 Concluding remarks

The treelet transform can be viewed as an amalgamation of PCA and cluster analysis. It leads to
components that are sparse and can be easier to interpret than their PCA counterparts. We have
described the tt add-on for Stata which contains all the basic functionality needed to apply the
treelet transform in practice, including an Mata implementation of the treelet transform algorithm.
For a more advanced application example and a detailed comparison with the output produced by
PCA, we refer to the paper by Gorst-Rasmussen et al. (2011).
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