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Modeling of sediment transport and self-cleansing in sea outfalls 
 

I. Ibro * and T. Larsen * 
*Department of Civil Engineering, Aalborg University, Sohngaardsholmsvej 57, DK- Aalborg, 
Denmark 
(E-mail: tl@civil.aau.dk and iibro09@student.aau.dk) 
 

Abstract  
The paper describes an on-going project on modeling of sediment transport in 
outfalls with special focus on the self-cleansing problem occurring due to the daily 
flow variations seen in outfalls. The two central elements of the project is the 
development of the numerical model and a matching physical model in the 
laboratory. The numerical model covers both sediment transport over bed 
accumulations as well as transport over clean bottom. The physical modeling 
emphasizes on measurement of the non-steady removal and transport of well-
defined and limited accumulations along the pipe. The paper contains results from 
both the physical and the numerical modeling. Preliminary conclusions will be 
given.  

Introduction and background 

A sea outfall can be understood as the last part of an urban sewer system and the design of the outfall 
follows in most ways the same principles. The objective of the design of the pipe itself has two 
principal points: The outfall shall have the necessary hydraulic capacity and also have the necessary 
capacity for the removal of sediments that for various reasons has entered the pipeline. Self-cleansing 
in respect to sediments for sea outfalls is essential for the design especially because of the 
inaccessibleness of the pipeline and the diffuser. Accordingly the self-cleansing aspect has always 
been treated rather conservatively. 

From a theoretical viewpoint sediment transport in sea outfalls do not differ from transport in normal 
sewers and pumping mains. Furthermore the research has shown that the general principles for 
modeling sediment transport in rivers and channels with the necessary adaptation can cover sewers as 
well. In the 90-ties sewer sediment transport was included in the commercial computer packages for 
example in MOUSE (DHI software, Denmark) and Hydro Works / Info Works CS (Wallingford 
Software, United Kingdom).  It seems well-argumented that these models can cover sea outfalls also. 

On the other hand the design practice regarding self-cleansing is not based fully on rational causal 
considerations. Because of the daily variations in the flow it is difficult to satisfy a minimum standard 
for velocity or shear stress all 24 hours of the day. Most often the criterion is formulated as a 
minimum which has to be fulfilled at least 1 – 2 hours of the day. This implies that an accumulation of 
sediments can built up during the night which then is flushed out during the day. In order to sustain 
self-cleansing in a long-term perspective it is necessary that all sediments are removed every day in 
the high-flow hours. 

The figures 1 and 2 shows the differences in flow velocity and wall shear stress between ordinary 
part-full running sewers and full-running sea outfalls in respect variations in the flow. It is seen that 
that the variations in sea outfalls are considerably larger than in sewers. This indicates that 
experiences from sewer systems only with some caution can be transferred to sea outfalls. 
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Figure 1, Relative flow velocity (V/Vmax) in circular 
pipeline as function of relative flow (Q/Qmax.). The blue 
trendline corresponds to part full pipe where Qmax 
occurs when pipe is running half full. The red trendline is 
full running pipe 
 
Some of the most important reasons for the presence of sediments in sea outfalls:

• Initial sediments left from 
• Sediments carried by the sewage
• Intrusion of sediments from the sea caused by waves, currents and density differences
• Intrusion of sediments from the sea because of transients caused by pump operations, surge 

towers etc. 
• Intrusion of sediments because of damage of diffuser from anchors and fishing gears etc.
• Flocculation due to salinity gradients.

 

Objective of study 

The objective of the project is to model the sediment transport including deposition as well as erosion 
in a 24-hour flow cycle in order to clarify when and why self
find a way to formulate the self-
will give relatively similar results as experimental work.

 

Sediment transport in full running pipes

Sediment transport  can be classified by the following flow regimes  (in a succession corresponding to 
increasing flow velocity): 

• Flow with a stationary bed 
• Flow with a continuous moving bed
• Flow with separated dunes moving along the clean bottom
• Flow with sediments in suspension often denoted wash load)

This succession phenomenon corresponds to uniform sediments with the s
of mixed sediments more regimes can exist simultaneously. 

Experiences from sewers systems show that depositions of sediment significantly increase the flow 
resistance primarily because of the influence of the bed forms.
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flow velocity (V/Vmax) in circular 

pipeline as function of relative flow (Q/Qmax.). The blue 
trendline corresponds to part full pipe where Qmax 
occurs when pipe is running half full. The red trendline is 

Figure 2, Relative wall shear stress (
circular pipeline as function of relative flow 
(Q/Qmax.). The blue trendline corresponds to part full 
pipe where Qmax occurs when pipe is running half full. 
The red trendline is full running pipe

 

important reasons for the presence of sediments in sea outfalls:

 construction (or repair) works 
Sediments carried by the sewage 
Intrusion of sediments from the sea caused by waves, currents and density differences

sediments from the sea because of transients caused by pump operations, surge 

Intrusion of sediments because of damage of diffuser from anchors and fishing gears etc.
Flocculation due to salinity gradients. 

the project is to model the sediment transport including deposition as well as erosion 
hour flow cycle in order to clarify when and why self-cleansing can be insufficient. Hence, 

-cleansing criteria with a formula that can be used in the model and 
will give relatively similar results as experimental work. 

Sediment transport in full running pipes 

Sediment transport  can be classified by the following flow regimes  (in a succession corresponding to 

Flow with a continuous moving bed 
Flow with separated dunes moving along the clean bottom 
Flow with sediments in suspension often denoted wash load) 

This succession phenomenon corresponds to uniform sediments with the same grain size. For the transport 
of mixed sediments more regimes can exist simultaneously.  

Experiences from sewers systems show that depositions of sediment significantly increase the flow 
resistance primarily because of the influence of the bed forms. 
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, Relative wall shear stress (τ/τmax) in 

circular pipeline as function of relative flow 
(Q/Qmax.). The blue trendline corresponds to part full 
pipe where Qmax occurs when pipe is running half full. 
The red trendline is full running pipe 

important reasons for the presence of sediments in sea outfalls: 

Intrusion of sediments from the sea caused by waves, currents and density differences 
sediments from the sea because of transients caused by pump operations, surge 

Intrusion of sediments because of damage of diffuser from anchors and fishing gears etc. 

the project is to model the sediment transport including deposition as well as erosion 
cleansing can be insufficient. Hence, to 

that can be used in the model and 

Sediment transport  can be classified by the following flow regimes  (in a succession corresponding to 

ame grain size. For the transport 

Experiences from sewers systems show that depositions of sediment significantly increase the flow 
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Influence of deposits in sea outfalls 

In the main pipe (upstream the diffuser) the risk of blockage from depositions is small because the increased 
flow velocity and sediment transport capacity caused by the reduction of the cross-section area. In the 
diffuser section depositions can disturb the flow balance in the system. If for example a multiport diffuser 
has depositions in the outer half part (seaward side) the increased friction in this part will reduce the flow 
here because more water will pass out through the landward ports. In this way a deposition may enhance the 
tendency for further deposition. For this reason self-cleansing is critical especially in the diffuser section. 

 

Experimental work and analysis of data 

The experimental work was carried out in both rectangular 300 mm wide channel and a 240 mm 
diameter flowing full Plexiglas pipe, both with flat fixed smooth beds. Both channels were provided 
with sloping and recirculation facilities.  

The flow was supplied to the pipes by an adjustable pump that could give a maximum discharge up to 
20 l/s. To ensure that the required flow depth, y0, (for full running conditions) was achieved, a 
rectangular thin plate weir was used. A flat false bed made up of aluminum plates, was placed in the 
bottom of the rectangular flume covering a length from the upstream till reaching the weir (6.8m), to 
create smooth pipe conditions. No bed roughness was applied in the circular pipe. The bed thickness 
varies from the pipes and it is maintained constant during different experiments.  

 

The non-cohesive sediment (d ranging from 0.075 mm to 0.25 mm and d50 = 0.2 mm) placed into the 
invert bottom, was located about 1.5 m from the upstream end to give a sufficient entry length to 
obtain a fully developed uniform flow. Three different time-running were chosen for carrying out the 
experiments in circular as well as in rectangular pipes (respectively 5 min, 10 min and 20 min), where 
the amount of sediment was kept constant during all experiments (Qs = 1000 g).  

 

Existing formulas 

The sediment transport is often represented by non-dimensional parameters. Several relationships for 
bed load transport under steady flows have been proposed where the rate is mostly related to 
dimensionless bottom shear stress or Shields parameter.  

Meyer – Peter and Muller (1948)    = 8888*((((θθθθ----    θcrθcrθcrθcr))))32323232     

Einstein – Brown (1950)     = f(1/Ψ)  

Engelund – Hansen (1967)    = 0000....1111////ffff*    θθθθ5/25/25/25/2 

where θθθθcr is the critical Shields parameter and 1/Ψ = τ* 

These models give relatively similar results for non-cohesive particles with homogeneous diameter in 
uniform flow. 

Nevertheless, in this paper, non-steady state conditions are assumed. Ackers - White sediment 
transport formula for circular pipes is used, and calibrated to have better agreement with laboratory 
data. The sediment transport relationship of Ackers and White is expressed; 

Ggr = C*((Fgr/A) – 1)m 
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Fgr = u*n/g*D50*(s-1)*[V/�32 �  !g ("#$%

&'(
)]1-n 

and 

Dgr = D50*[g*(s-1)/*2]1/3 

where Fgr is the mobility parameter Dgr is the dimensionless grain diameter, u* is the shear velocity 
given as g*R*S=V* f/8 , f is the friction factor, V is the limiting deposit velocity, g is the 
acceleration due to gravity, R is the hydraulic radius, S is slope, D50 is the median diameter, y0 is the 
flow depth, s is the relative density of solid phase to fluid phase and * is the kinematic viscosity of  
water (temperature dependent). 

The coefficients C, A, m, and n are determined as functions of Dgr. (Ackers, 1991) 

 

It is important to be mention that, there are not many data regarding fully running pipelines, 
nevertheless, the basic physics of sediment transport of non-cohesive sediment is the same both in 
pipe-lines or alluvial channels. Therefore, this paper gives brief information regarding sediment 
hydraulics in pipe-lines by calibrating the basic formulas through a build-up model. 

 

Modeling of non-cohesive sediment in pipes 

The transport of sediment particles is mostly based on a numerical approach given by the continuity 
equation for bed sediment. This numerical model is based on a finite difference scheme. Bearing in 
mind that just few laboratory experiments have been carried out regarding sediment transport in pipes 
running full, it is not easy to establish a general relationship for the sediment transport in such regime. 
Hence, a modeling approach is made to describe this phenomenon: 

 

For simplification of the calculations the internal bottom of the pipe is assumed to have a trapezoidal 
shape (see Figure 3). Initial conditions for modeling set up are based on experimental data gathered 
previously.  

 

 

 

 

 

 

 

 

Figure 3, Cross section of pipe with the deposited sediment 
 

Another assumption in setting up the model was to apply a specified initial sediment capacity which 
in the future will be the main parameter to be calibrated. By applying Engelund – Hansen correction 

D 

B0 

h 

B 
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factor (V0/V)5, it is possible to have a relationship between the sediment transport and sediment 
capacity. 

gs= gs0*(V0/V)5 

If the flow rate is constant then the formula can be transformed; 

gs= gs0*(A0-As/A0)5 

 

where g0 is the initial sediment capacity, gs is the sediment capacity calculated, A0 is the clean pipe 
cross section equals (B0 *h + h2), As is the sediment cross section, B, B0 are respectively the sediment 
width and the lower side of the trapezoidal shape, and h is the sediment height. 

 

The sediment transport rate is given as shown; 

 

qs= gs*B* (A0-As/A0)5 

Below a simple scheme to introduce the finite difference equations used in a Pasqual numerical model 
is presented; 

 

 

 

 

 

 

 

 

Figure 4, One dimensional scheme of the numerical model approach 
 

h[i,j+1] = h[i,j]+(qs[i,j]-qs[i+1,j])*dt/(dx*B[i,j]) 

 

where i, j are respectively the space and time loop in the programming language. 

 

Results from experiments and numerical modeling for sediment transport 

The sediment was spread uniformly into the rectangular and circular invert bottom by filling 
respectively 50 cm and 100 cm length of test pipe, using the same amount. For preserving undisturbed 
sand conditions while the uniform flow conditions were established, the water inflow and velocity 
were set at minimum. Once the water depth was bigger than pipe radius/pipe height, the flow 
discharge at the required flow conditions (depth and velocity) was then set. At this moment the time 
was recorded. Sediment transport rates were taken after the time readings were made at 20 cm and 40 

 

 

 

 
   

  

1 2 i - 1 i  i + 1 imax 

Q 

qs1 qs2 qsi-1 qsi qsi+1 qsimax qsimax 
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cm intervals over the length of pipe test (6.8 m and 5.6 m respec
leaving the pipe was then calculated and showed graphically.

A comparison with the existing data sets is also shown in a way so it could be possible to investigate 
sediment transport formula (especially bed load transport)

 

Table 1
 

Authors Pipe conditions

Novak-Nalluri (1975) Half Full  

May (1982) Full/Half Full

Mat Suki (1987) Full 

Larsen-Ibro (2011) Full 

 

Figure 5, Mass of sediment deposited in the first scenario 
(t = 5 min) 

 
 

Figure 7, Mass of sediment deposited in the third scenario 
(t = 20 min) 
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cm intervals over the length of pipe test (6.8 m and 5.6 m respectively). The amount of sediment 
leaving the pipe was then calculated and showed graphically. 

A comparison with the existing data sets is also shown in a way so it could be possible to investigate 
sediment transport formula (especially bed load transport) 

1 Experimental Work in Circular Clean Channels 

Pipe conditions Velocity 
V(m/s) 

Material Pipe diameter 
(mm) 

0.45-0.75 Uniformly graded  305 

 0.5-1.2  77-300 

0.5-1.11  164-253

0.39-0.5 Sand 244 

 

 

Circular Pipe Data 

 

 
, Mass of sediment deposited in the first scenario  Figure 6, Mass of sediment deposited in the second scenario 

(t = 10 min)
 

  
, Mass of sediment deposited in the third scenario  
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tively). The amount of sediment 

A comparison with the existing data sets is also shown in a way so it could be possible to investigate 

Pipe diameter d50 (mm) 

0.53-8.4 

 0.64-7.9 

253 1.3-8.0 

0.18-0.25 

 
, Mass of sediment deposited in the second scenario  

(t = 10 min) 
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Figure 8, Experimental set up for the pipe running full 

 
 

 
 

 

 

 

 

 

 

 

 

Figure 9, Initial conditions and creation of the sediment dunes inside the pipe ( D = 240 mm).  
Water flow velocity V = 0.4 m/s 

 

  

D = 240 mm 



International Symposium on Outfall Systems, 15 

 

Ibro Ibro Ibro Ibro & & & & LarsenLarsenLarsenLarsen    

Figure 10, Mass of sediment deposited in the first scenario
(t = 5 min) 

 

 

Figure 12, Mass of sediment deposited in the third scenario 
(t = 20 min) 

 

Figure 14, Creation and spreading of the 

B = 300 mm 
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Rectangular Flume Data 

 

 
, Mass of sediment deposited in the first scenario Figure 11, Mass of sediment deposited in the second scenario 

(t = 10 min)
 

 
, Mass of sediment deposited in the third scenario  Figure 13, Initial conditions set up in the flume

(width B = 300 mm)
 

 

 

 

 

 

 

 

 

 

 

 

, Creation and spreading of the sediment dunes inside the flume (width B = 300 mm

Ls = 50 cm

y0 = 0.17 cm 
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, Mass of sediment deposited in the second scenario  

(t = 10 min) 

 
, Initial conditions set up in the flume 

(width B = 300 mm) 

dunes inside the flume (width B = 300 mm, velocity V = 0. 5 m/s) 

= 50 cm 
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Modeling results 

The numerical model was calibrated against the experimental results presented previously. The model 
constant parameter initial sediment 

As the figures below indicates the calculated results of the sediment mass transported in each section 
of the pipe lie within an acceptable range.

The curves from the calculation indicate good agree
the measurements lie in a range between 0
This might result as course of simplifications made in the numerical model.

Figure 15, Modelled mass of sediment deposited in the
first scenario (t = 5 min)

 

 

Figure 17, Modelled 

 

Considering the lack of time no verification with Shields number was made in this model. 
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The numerical model was calibrated against the experimental results presented previously. The model 
sediment capacity is gs0 = 0.000011 m2/s/m and it is a result of calibration.

As the figures below indicates the calculated results of the sediment mass transported in each section 
of the pipe lie within an acceptable range. 

indicate good agreement with experimental measurements; however 
the measurements lie in a range between 0-8 g/cm while the calculated values lie between 0
This might result as course of simplifications made in the numerical model. 

 
, Modelled mass of sediment deposited in the 

first scenario (t = 5 min) 
Figure 16, Modelled mass of sediment deposited in the

second scenario (t = 10 min)
 

 
Modelled mass of sediment deposited in the third scenario 

(t = 20 min) 

Considering the lack of time no verification with Shields number was made in this model. 
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The numerical model was calibrated against the experimental results presented previously. The model 
and it is a result of calibration. 

As the figures below indicates the calculated results of the sediment mass transported in each section 

ment with experimental measurements; however 
8 g/cm while the calculated values lie between 0-10 g/cm. 

 
, Modelled mass of sediment deposited in the 

second scenario (t = 10 min) 

mass of sediment deposited in the third scenario  

Considering the lack of time no verification with Shields number was made in this model.  
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Conclusions 

 

• Preliminary analyses on the present data at the limit of deposition show that the self-cleansing 
velocity (V) is affected by the volumetric sediment concentration (Cv), flow depth (yo), 
particle size (d50), surface roughness (k0) and pipe size (D). 

 
• It is important to mention that, like in sewer pipes, in sea outfalls the required self-cleansing 

velocity decreases as particle size increase and increases with the increase of the volumetric 
sediment concentration. 

 
• The presence of a rougher surface could either increase or decrease the required self-cleansing 

velocity depending on whether the effects of the increase in flow resistance or the additional 
turbulence due to secondary currents is more dominant. The sediment transport also causes the 
increase in friction factor. 

 

• It is necessary to have a specific minimum velocity/shear stress at least 1 hour per day to avoid 
blockage of the outfall pipe 

 

• The literature shows that, the minimum velocity estimated necessary to flush the sediment is V 
= 0.45 – 1 m/s for pipes with D = 240 mm which is in good agreement with experimental 
results gathered in this study. 
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