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Abstract

In various network services (e.g., routing and instances of context-sensitive net-
working) remote access to dynamically changing information elements is a required
functionality. Three fundamentally different strategies for such access are investi-
gated in this paper: (1) a reactive approach initiated by the requesting entity, and
two versions of proactive approaches in which the entity that contains the infor-
mation element actively propagates its changes to potential requesters, either (2)
periodically or (3) triggered by changes of the information element. This paper
develops probabilistic models for these scenarios, which allow to compute a num-
ber of performance metrics, with a special focus on the mismatch probability. In
particular, we use matrix-analytic methods to obtain explicite expressions for the
mismatch probability that avoid numerical integration. Futhermore, limit results
for information elements spread over a large number of network nodes are provided,
which allow to draw conclusions on scalability properties. The impact of different
distribution types for the network delays as well as for the time between changes
of the information element on the mismatch probability are obtained and discussed
through the application of the model in a set of example scenarios. The results of
the model application allow for design decisions on which strategy to implement for
specific input parameters and specific requirements on the performance metrics.
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1 Introduction

Timely, remote access to dynamically changing information elements is a com-
mon problem for a large range of functionalities in different layers of modern
telecommunication networks:

• On the link-layer, efficient radio-resource management at base-stations re-
quires information about channel state and buffer filling as measured in
mobile devices.

• On the network layer, routing decisions require the knowledge about the ex-
istence and the characteristics of links between remote intermediate nodes.
This is particularly relevant when topology changes are rather frequent such
as in wireless multi-hop networks [14].

• Network services, such as dynamic distributed data-bases as used in cer-
tain name-services in mobile networks, require knowledge about (remotely
performed) updates of the name to address mapping [16].

• Context-sensitive services require access to typically remotely obtained con-
text information. Context information may thereby be used both during
service execution [20] as well as for the service discovery process [7].

• For highly dependable networks and services, resilience is obtained by repli-
cation of services, which requires state-updates at remote replicants in order
to avoid inconsistency [21,5,3] .

Common to all these use-cases of access to remote information is that basic
design decisions on how to efficiently implement such access need to be taken.
Efficiency is thereby typically measured by access delay, probability of using
’correct’ information, and network traffic overhead created by the remote ac-
cess strategy. In order to quantitatively support such design decisions, this
paper presents the analysis of a set of important base cases for such remote
information access. The abstracted scenario is thereby shown in Figure 1.

Interconnecting

network (e.g. IP)

1

2

N

...

Information provider

nodes

Remote

computation

node

R

Fig. 1. Abstracted scenario for remote information access.
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The node, called requester, on the left-hand side of Figure 1 has to execute
a computation for which it needs N input variables, which are dynamically
changing and whose values are known at corresponding N remote nodes. The
latter are called information providers in this paper. The information provider
can send messages to the requester (downstream) through an interconnecting
network, which imposes some delay and possible message loss and re-ordering
of the downstream messages. If needed, also the requester can send messages
to the information providers, here referred to as ’upstream’ communication.

The assumptions in this paper regarding the specific type of information are
rather general, in particular, no assumptions on the semantics are made, see
[13,18] for specific use-cases:

• The information element at the information provider changes value at dis-
crete points in time. Thereby two cases are distinguished later: (1) The
information element never changes back to a previous value, as e.g. occur-
ring for monotonous changes such as time and (2) the information element
takes a finite set of values and can also possibly change back to a previously
taken value.

• Neither the requester nor the information provider can influence the tim-
ing of the changes of the information element. This is e.g. the case for
environment information provided by sensor devices, and it needs to be dis-
tinguished from cases of distributed implementations of shared variables,
which can benefit from commitment or concurrency control protocols [9].

• It is irrelevant for the analysis in the paper whether the information element
is a single-valued real or integer variable or a very complex data-structure.

Two basic types of solutions for such remote access are well known, see e.g.,
[10,14,19]:

(1) Reactive, ’on-demand’ access: Whenever the requestor needs a certain
piece of remote information, it sends a request message to the information
provider, which responds by sending the value of the information element.
This in principle implements a client-server architecture.

(2) Proactive distribution of information: The information provider will
proactively distribute updates of the value of the information element
to potential ’requesters’. Thereby, two underlying sub-strategies can be
distinguished
(a) Event-driven proactive updates: Whenever the information element

changes value, an update is triggered. For a further differentiation
with respect to the semantics of these updates, see Section 2.3.

(b) Periodic proactive updates: After certain time-intervals, the current
value of the information element is distributed to potential request
processes.
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In [19] a methodology for analysis was developed and quantitative results were
obtained in a number of special cases: Only the case of N = 1 information
providers was considered analytically and mainly for Poisson assumptions on
event process and network delay processes, see Section 2.2 for a summary.
Furthermore, the analysis in [19] focused on scenarios in which the information
element never changes back to previous values. This paper, however, provides
generalizations in a number of ways. More general distributions for event as
well as delay processes are treated. Moreover it is shown how an analysis can be
obtained for non-monotonous event processes as well as multiple information
sources.

The paper is organized as follows: In Sections 2 and 3, an overview is given
of the various access strategies and previous results from [19] as well as some
mathematical preliminaries and the system model including the event, update
and request processes. The analysis is done on general distribution types with
particular focus on processes with matrix-exponentially distributed marginal
distributions in Section 4. In Sections 5 and 6, the multiple source case and
the case of information elements that can change back to a previous value are
treated, respectively. The paper is concluded with a number of quantitative
results in Section 7 and a summary and outlook in Section 8.

2 Description of different access strategies and previous results

This section provides an abstracted description of the access procedures to
remote information using stochastic processes. This description allows to ana-
lytically obtain different performance metrics, in particular the so-called mis-
match probability.

2.1 System abstraction

The abstracted model contains three parts:

• The N remote information elements are maintained by remote nodes (in-
formation providers) and they dynamically change their values at certain
discrete points in (continuous) time, described by the point processes E

(n) =

{E
(n)
i , i ∈ Z}, where E

(n)
i is an increasing sequence of event times for in-

formation element n, n = 1, ..., N , numbered such that E
(n)
0 is the event

just before 0. The process E
(n) is called the event process for information

element n. E(n)(t) denotes the value of the information element at time t.
• All N remote information elements are required by a certain entity (the

requester/client) at certain moments in time, identified by the request
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process, R = {Rk, k ∈ Z}, which in turn is a point process denoted in

the same way as the E
(n)
i ’s. Depending on the selected update strategy, an

event of the request process may trigger an actual request to the remote
server (reactive approach), or it may lead to an instantaneous access to the
local replication of the information element in the proactive approaches.

• Communication between the requesting entity and the information provider
n is described by stochastically varying upstream delays, {U

(n)
k , k ∈ Z} and

downstream delays, {D
(n)
k , k ∈ Z}.

Random variables with the upstream and downstream delay distributions
are denoted generically as U

(n) and D
(n), respectively. These delay distrib-

utions correspond to the end-to-end delays between information provider n
and the requester. Hence cases of wireless multi-hop communication can be
included via appropriate choice of U

(n) and D
(n). Also, message drops can be

included via degenerated distributions (with probability mass at infinity).

2.2 Base cases, performance metrics and previous results

In this paper we consider the following three performance metrics, where focus
is put on the mismatch probability:

(1) Network overhead: The amount of data transmitted on the network for
the remote access strategy.

(2) Access delay: The time interval from the moment when the N information
elements are needed at the requester until they are finally available for
use. For the proactive access strategies, this delay is zero. Processing
times are neglected (or assumed to be included in the communication
delays) in this paper.

(3) Mismatch probability: The probability that any of the N values of the
information elements that are used at the requester does not match the
current true value at the remote location. The consequence of such a
mismatch depends on the specific application, see e.g. [13,18] for use-
cases and their interpretation.

Figures 2, 3, and 4 illustrate the three base cases, reactive access, proactive
event-driven access, and proactive periodic, respectively, for the case of N = 1
information providers.

Request process

Event process

R
k

R
k+1

E
l

E
l+1

E
l+2

Time

Time

x x x

x x

Fig. 2. Reactive access: In the example, the k’th access, Rk, leads to a ’correct’
value, while the k + 1’th access causes a mismatch event.
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x
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x
E
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Fig. 3. Proactive event driven update: the request at time Rk results in a correct
value, while the subsequent request leads to a mismatch, since the updated value is
in transfer when the user accesses the current value.

Request process

Event process

R
k

R
k+1

E
l

E
l+1

Time

Time

x x

x x

Fig. 4. Proactive periodic update using a deterministic period: Rk results in mis-
match, while Rk+1 leads to a correct result.

The proactive event-based strategy is further distinguished in [19] in a case

with incremental updates as opposed to full update messages, with sizes s
(i)
d

and s
(f)
d , respectively. Incremental updates, e.g. sending only the difference to

the last value, may lead to smaller message sizes, s
(i)
d < s

(f)
d , at the cost of

increased mismatch probability for some cases, see Section 4.2.

A summary of results under special assumptions on the three base cases from
[19] is given in the following table

Reactive Proact. event Proact. event Proact.

Full update Incremental Periodic

mmPr Numeric

Exponential λ
λ+ν

λ
λ+ν 1− e−λ/ν solution of

delay Markov chain

Deterministic 1− e−λD 1− e−λD 1− e−λD Not treated

delay in [19]

Overhead µ(su + sd) λs
(f)
d λs

(i)
d τs

(f)
d

Access

delay IE(U) + IE(D) > 0 0 0 0

Thereby the limitations are: only N = 1 information providers are considered;
the event process is a Poisson process with rate λ, the downstream delays are
independent and identically exponentially distributed with rate ν (first row) or
deterministic with constant value D (second row). The periodic approach uses
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a Poisson process for the moments of sending updates. The request process is
only relevant for overhead in the reactive strategy; it can be a general process
with average inter-request time 1/µ. The upstream delay is only relevant for
access delay in the reactive strategy; the only assumption is that its first
moment exists.

2.3 Subcases and scope of this paper

As already identified in [19], the case of full update messages, containing the
complete information, need to be distinguished from a strategy that uses in-
cremental updates, e.g. transmitting only changes in the information element.
Although such an incremental strategy could also be implemented for a reac-
tive approach, the actual implementation would be rather complicated, since
all information providers then need to keep track of the last requests for every
requester. Therefore the incremental updates appear more useful for the proac-
tive approaches. Another distinction is necessary in the proactive approach
regarding the ordering of update messages at the requester, if the network al-
lows for reordering (as we assume here). The requester could order the received
updates according to receive time, or according to sender sequence numbers.
The latter has the advantage that the latest sent message can be used, but at
the cost of increased message sizes through sequence numbers. Hence such an
approach reduces mmPr at the cost of overhead.

Reactive
Proactive

Event-driven Periodic

Strategies

Full updates Incremental

updates

Ordered by 
sender SEQno

Ordered by 
receive time

Ordered by 
sender SEQno
(or commutative
increments)

Full updates Incremental

updates

Sender
SEQno

Receive
time

If non-FIFO

network

(as IP!)

sender SEQno
(or commutative

increments)

Fig. 5. Overview of the different cases. Those cases encircled are those we will focus
on in this paper. The circled cases are the main focus of the paper.

Figure 5 summarizes the different cases in a tree-like structure. The incremen-
tal update cases are thereby only considered for messages ordered by sender
sequence numbers, or for cases in which the actual order does not matter, e.g.
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for additive increments. Reason for this limitation is that otherwise a single
reordering event at any time in the past would lead to persistent mismatches
in the future.

3 Notation and mathematical preliminaries

We first introduce a notation to refer to the different subcases of the remote
access scenarios and subsequently introduce the relevant mathematical con-
cepts.

3.1 Notation

For convenience we use the Kendall notation with / when we are classifying
queueing systems and introduce a Kendall-alike notation with |, when we are
classifying information retrieval systems.

More specifically, the remote access scenario is described by specifying the
event process, the delay process, and the number of information providers as
E|D|N . This part is the always present pre-fix, e.g., M |M |1 for the single
information provider, Poisson event process, and exponentially distributed
downstream delays. If nothing else is specified, then it is the event-driven, full
update, ordered by sender sequence number case by default.

Otherwise, the prefix can be extended as E|D|N|RS|US|order where ’RS’
is the request strategy and can be either ’react(U)’ with specification of the
upstream delay process, or for the proactive strategies ’event’, or ’periodic(P)’,
where P is specifying the period. ’US’ is by default ’full’ but can also be
specified to be ’incr’ (incremental). Ordering is by default by sender sequence
numbers (’sSeq’), but can also be receive time (’rTime’). The event process
by default never changes back to previous values (E[mono]) but can also be
specified as MAP[rec], which should stand for a recurrent Markovian process.
Here recurrent is used in the sense that the process may return to at least
some of the states.

Examples:

• M |M |4|Periodic(M): Monotonous-type Poisson event process, exponen-
tially distributed downstream delay, four information providers, proactive
periodic strategy with Poisson period.

• MAP [rec]|GI|1|React(M): Recurrent Markov process as event process, GI
downstream delays, one source, reactive access strategy with exponential
upstream delay.
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• ME|ME|4|event|incr|rT ime matrix-exponential renewal processes for event
and downstream delay, event-driven strategy with incremental updates, or-
dered by receive time.

3.2 Mathematical preliminaries

Let X = {Xi, i ∈ Z} be the times of occurrences of some phenomenon, where
Xi is an increasing sequence of event times numbered such that X0 is the
event just before 0. If we put Yi = Xi − Xi−1, i ∈ Z and assume that the
sequence of Yi’s are independent and identically distributed (iid) then X is
called a renewal process.

With an abuse of notation, a random variable with the distribution of the Yi’s
is denoted generically as X. We denote the cumulative distribution function
(cdf) and the complementary cdf of X by FX and FX = 1−FX , respectively.
If the probability density function (pdf) of the distribution function exists, it
is denoted by fX .

If we further assume X is stationary (i.e. for every r = 1, 2, . . . and all
bounded (Borel) subsets A1, . . . , Ar of the real line, the joint distribution of
{|A1 + t|, . . . , |Ar + t|} does not depend on t (−∞ < t < ∞), [6, Definiton
3.2.I]). Then define the forward recurrence time Y = X1 and the backward re-
currence time U = −X0 and their distribution functions as BX(t) = IP(Y ≤ t)
and AX(t) = IP(U ≤ t). Whenever X is stationary the distribution of the back-
wards recurrence time is the same as the forward recurrence time, [1, p. 150].
Moreover,

bX(t) =
FX(t)

IE(X)
and aX(t) =

FX(t)

IE(X)
. (1)

3.3 Matrix-exponential distributions

Consider now a vector-matrix pair < p,B > and a row-vector ε of ones. A
distribution with cdf F which can be expressed as

F (t) = 1− p exp(−tB)ε′

is said to have a matrix-exponential representation with generator or repre-
sentation < p,B >, see [17,11].

Special cases of matrix-exponential distributions are Hyper-Exponential dis-
tributions and Erlangian distributions, see Appendix. A special version of the
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former, namely truncated Power-Tail (TPT) distributions [8], are used in Sec-
tion 7 to illustrate the mmPr behavior for scenarios with high variance in
inter-event and downstream delay processes. The Erlangian distributions are
used to illustrate the behavior when the variance of participating distributions
is decreasing.

4 Analytic results for single information provider and monotonous-

type event processes

Before addressing more general scenarios, we focus on the case of a single
information provider (N = 1) for an information element that does not change
back to a previous value.

4.1 Reactive on-demand access

In [19], the mismatch probability for the monotone event process and reac-
tive strategy was derived. Assume E is a stationary event process and con-
struct the right-continuous stochastic process E(t) = i, t ∈ [Ei, Ei+1). For-
mally, in this setting we attach to each arrival in the event process the state
E(Ei) and to each request the upstream and downstream delays (Uk, Ek).
This leads to a system consisting of the following two marked point processes
{(Ei, E(Ei)), i ∈ Z} and {(Rk, Uk, Ek), k ∈ Z}. Then by stationarity we have
the following probability of mismatch upon reception of the message for any
request at time Rk

mmPr = IP (E(Rk + Uk + Dk) 6= E(Rk + Uk))

= IP (E(Dk) 6= E(0))

= 1−
∫

IP(E(Dk) = E(0)|Dk = t)FD(dt)

= 1−
∫

BE(t)FD(dt).

As the mismatch probability does not depend on Rk we can define the mis-
match probability in the reactive case to be

mmPr = 1−
∫

BE(t)FD(dt). (2)

Although, the mmPr is independent of the request process, the process R will
influence statistical properties of corresponding estimators of mmPr. Note
also, the mmPr is not depending on the upstream delay process.
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Equation (2) where BE(t) is the cdf of the backwards recurrence time of the
event process, can be simplified for a large class of processes, with relevant
examples listed below.

With the above Equation (2), any stationary event process is covered for a
general downstream delay, i.e. the G|G|1|react(G) case.

Notice that the case of correlated delays is also taken care of, since those do
not influence the stationary mmPr. One should also notice that the case of
dropped packets in principle can be treated with the set-up presented above.
One possibility is to assume that a dropped packet has infinite delay time and
then put an atom of the delay distribution at infinity.

4.1.1 Event process is Poisson

Under the assumption that the event process, E, is a Poisson process with rate
λ we obtain:

mmPr = 1−
∫

e−λtFD(dt)

= 1− L{FD}(λ) (3)

where the last term is the Laplace-Stieltjes transform of the cdf of the down-
stream delay, evaluated at λ. Hence, Equation (3) covers the M |G|1|react[G]
case.

4.1.2 Event and delay processes are matrix-exponential

Assume E is a matrix-exponential (ME) event process with representation
< pE,BE > and D is a ME process with representation < pD,BD >. Then

mmPr = 1−
1

IE(E)

∞∫

0

∞∫

t

FE(s) ds FD(dt)

= 1−

∞∫

0

pEVE

pEVEε
′
E

exp(−BEt)ε′E pDBD exp(−BDt)ε′D dt.

The integral can be solved using a Kronecker product representation (at the
cost of expanding the matrix dimensions):

mmPr
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= 1−
1

pEVEε
′
E

∞∫

0

[(pEVE)⊗ (pDBD)] exp [−(BE ⊕BD)t] [ε′E ⊗ ε
′
D] dt

= 1−
(pEVE)⊗ (pDBD)

pEVEε
′
E

[BE ⊕BD]−1
ε
′
dim(BE)·dim(BD). (4)

Hence, the equation above solves the ME|ME|1|react[G] case. The analysis in
Section 4.2 shows that the proactive event-driven approach with full updates
(ordered by sender sequence numbers) actually results in exactly the same
stationary mismatch probability. A slightly different, but equivalent matrix-
exponential representation results from the derivation, see Equation (8).

Simplified formulas for Poisson case: In case one of the two processes,
event or downstream delay, is a Poisson process, the ME representation of that
renewal process reduces to scalars and Equation (4) simplifies accordingly:

Poisson event process: M |ME|1|react

mmPr = 1− pDBD [BD + λI]−1
ε
′
D.

Exponential downstream delay: ME|M |1|react

mmPr = 1−
ν

IE(E)
pEVE [BE + νI]−1

ε
′
E.

Delays with constant offset: The case of a shifted delay distribution is
particularly interesting, since frequently there is a minimum network delay, d0,
to which the variable delay, Dv, caused by congestion is added. This means
the total delay D is given by

D = d0 + Dv

whereby

fD(t) =





0 for 0 ≤ t < d0

fDv
(t− d0) for t ≥ d0.

Hence, Equation (2) and its ME equivalent are modified correspondingly:

mmPr = 1−
1

IE(E)

∞∫

0




∞∫

t+d0

FE(s)ds


 fDv(t)dt,
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which in the matrix-exponential case becomes

mmPr = 1−
(pEVE exp [BEd0])⊗ (pDBD)

pEVEε
′
E

[BE ⊕BD]−1
ε
′
dim(BE)·dim(BD).

I.e. the only modification as opposed to Eq. (4) is the term exp(BEd0) in the
left term of the vector Kronecker product.

4.1.3 Events changes according to a Markov jump process

Assume E are the points of state-transitions of a Markov process with matrix
Q, which has steady state probability πi and state-leaving rates λi = −Qi,i

for i = 1, ..., S:

mmPr = 1−
S∑

i=1

πi

∞∫

0

e−λitFD(dt). (5)

This can be written integral-free when D has a matrix-exponential represen-
tation, i.e. for the MJ |ME|1|react(G) case:

mmPr = 1−
S∑

i=1

πipDBD [BD + λiI]
−1

ε
′
D . (6)

4.2 Proactive event based update

For the proactive event-based updates, we need to further distinguish between
incremental and full updates. In both cases we assume that either the ordering
of the messages at the requester does not matter (for the incremental case) or
is performed via sender sequence numbers.

4.2.1 Full updates

If a single update message contains all information so that previous updates
are not needed at the requester, it is only important that the update message
of the last event has reached the requester.

The probability of mismatch for the requesting time Rk is derived by condi-
tioning on the situation that no event has happened in the interval [t, Rk] and
that the message is not delayed more than Rk − t time units, consequently by
stationarity and inter-change of integration

13



mmPr = 1−

∞∫

0

IP(D ≤ t|B = t)BE(dt)

= 1−

∞∫

0

t∫

0

FD(ds)BE(dt) (7)

= 1−

∞∫

0

BE(s)FD(ds)

which is the same as Equation (2). This fact can also be explained intuitively
as in the reactive case the mmPr is the probability that the forward recurrence
time is less than the delay time. Moreover, in the proactive full updates case
the mmPr is the probability that the backwards recurrence time is less than
the delay time. As the forward and backward recurrence times are the same,
the conclusion follows.

For the matrix-exponential case the mmPr then equals (4). It is also possible
to use the following alternative representation and arrive at

mmPr = 1−

∞∫

0

IP(D ≤ t)BE(dt)

= 1/IE(E)

∞∫

0

FD(t)FE(t)dt

=
1

pEVEε
′
E

∞∫

0

pD exp(−BDt)ε′DpE exp(−BEt)ε′E dt,

which again can be simplified using product spaces:

mmPr =
pD ⊗ pE

pEVEε
′
E

[BD ⊕BE]−1
ε
′
dim(BD)·dim(BE). (8)

This is the same result as Equation (4), so it is left to the reader to decide
which one is more esthetic. See Section 4.1 for special cases.

As a general, important conclusion: The mmPr in the G|G|1|react(G) case
is exactly the same as in the corresponding G|G|1|event|full|sSeq case and
given by Equation (2).

4.2.2 Incremental updates

In this scenario, the requester only accesses the correct information, if all
update messages from previous events have been successfully received. In this
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case, a mismatch would occur, if any of the update messages is still in transit.
In this system we consider the marked point process {(Ei, E(Ei), Di), i ∈ Z}
and the series of request times R.

Let the stochastic process Qt denote the number of updates in transit at time
t. Then the G/G/∞-queueing model can be used to describe the model, as
the Ei’s are the arrivals times of customers, each arrival requires Di amount
of service, and Qt is the number of busy servers. Henceforth, the mismatch
probability at request Rk is the probability that QRk

is strictly greater than
zero. By stationarity we have

mmPr = IP(QRk
> 0) = IP(Q0 > 0).

This is equivalent to the probability that an G/G/∞ queue is in a busy period
(a customer being served in the queue is equivalent to an update in transit).
Hence, the mismatch probabilities can be computed as

mmPr = IP(E/D/∞ queue is busy). (9)

By Little’s formula the mismatch probability can, under suitable ergodicity
assumptions, be calculated as

mmPr =
b

b + c
, (10)

where b and c are the mean busy period and mean busy cycle, respectively.

Busy period problems for infinite server queues have been studied quite ex-
tensively by various authors, as many problems can be recast as infinite server
queues, see e.g. [15] for a recent application in network related areas. In [12]
general relations are given for the length of the busy cycle, busy period and
idle period. Renewal arguments are used to derive explicit formula for the
Laplace transforms of a) P ∗

0 (t), the probability that at time t the system is
empty, b) the busy cycle, and c) busy period distribution functions. Although,
b and c can be derived by the moment-generating properties of the Laplace
transform, explicit formulas have only been obtained in the GI/D/∞ and
M/GI/∞ cases, hence solving the GI|D|1|event|incr and M |GI|1|event|incr
cases, see Equations (11) and (12) below, respectively.

Utilizing results for the queue-length probabilities of the M/GI/∞ queue, the
M |GI|1|event|incr access strategy, with Poisson assumptions on E (with rate
λ) and general independent (GI) assumptions for the downstream delay D

(with mean D̄), results in a mismatch probability of

mmPr = 1− exp(−λD̄). (11)
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4.3 Scenarios without message loss and reordering

In case of deterministic downstream delay, the mmPr actually is identical for
the event-driven incremental strategy and the event-driven full update strat-
egy, since no reordering and no message loss can occur. Also, the ordering of
messages at the requester, rTim or sSeq, is equivalent in this case. Continuing
the investigations on the queueing representation for the event-driven incre-
mental case from the previous section, under the general independent (GI)
assumption for E and a deterministic delay time of size D the mmPr is given
by [12, Corollary 2]

mmPr =
(1− FE(D))−1

∫D
0 xFE(dx) + D

λ−1(1− FE(D))−1
(12)

where λ = (
∫∞
0 xFE(dx))−1 is the arrival rate of E. An equivalent representa-

tion of this result can be obtained also from Eq. 2.

Matrix-exponential event process: Assuming a matrix-exponential re-
newal event process with representation < pE,BE >, and a deterministic
downstream delay of constant size D, Equation (12) can be written integral-
free as:

mmPr = λE

D∫

0

pEBEx exp(−Bex)ε′ dx + DλE pE exp(−BeD)ε′

= 1− λEpE

(
DI + B−1

E

)
exp(−BeD)ε′ + DλE pE exp(−BeD)ε′

= 1− λEpEB−1
E exp(−BeD)ε′. (13)

This equation provides the integral-free expression to the ME|D|1|event|incr
scenario, which is identical to the ME|D|1|event|full which in turn has the
same mmPr as the ME|D|1|reactive(G) strategy. Formulated more general:
In scenarios in which no message loss and no packet ordering can result, all
three strategies lead to the same mmPr.

4.4 Proactive, periodic update

In this scenario the information provider informs the request process pe-
riodically about the value of the information element. These periodic up-
dates are subject to the downstream network delay. Formally, we consider
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a system consisting of the marked point processes {(Ik, Dk), k ∈ Z} and
{(Ei, E(Ei)), i ∈ Z}. Define for any t the following stopping time (with re-
spect to the natural filtration, [1, Chapter I.8]),

τt = max{n| In + Dn ≤ t}.

Then by stationarity we have the following probability of mismatch upon
request at time Rk:

mmPr = IP(E(UτRk
) 6= E(Rk))

= IP(E(Uτ0) 6= E(0))

=

∞∫

0

IP(no useful update received in [0,t])AE(dt)

Consider the G|GI|1|periodic(M)|full|sSeq system. For this case a general
formula is derivable: Consider an event process which is a stationary renewal
process, whose backwards recurrence time has cdf AE, iid downstream delays
with cdf FD, and the updates are assumed to be a stationary Poisson point
process with intensity τ . Without loss of generality (by stationarity) we assume
the request time is 0 and consider the point process of useful updates received
before 0. Henceforth, they can be viewed as a thinned non-stationary Poisson
point process where the thinning probability at time t is given by FD(t). The
intensity function of the thinned Poisson point process is given by

τ(t) = τFD(t). (14)

Hence, the general formula for the mismatch probability under Poisson as-
sumption for the process of sending updates becomes

mmPr =

∞∫

0

exp


−

t∫

0

τFD(s) ds


AE(dt). (15)

Hence, this is the solution for the mmPr of the G|GI|1|periodic(M) system.

For matrix-exponential delay distributions, the inner integral in Equation (15)
can be simplified to

mmPr =

∞∫

0

exp
[
−τ(t− D̄ + pDB−1

D exp(−BDt)ε′
]
AE(dt),
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which under matrix-exponential assumption on the event process can be rewrit-
ten as

mmPr =
eτD̄

Ē

∞∫

0

e−τt · exp
[
−τpDB−1

D exp(−BDt)ε′D
]
· [pE exp(−BEt)ε′E] dt.

This expression can be simplified further using Kronecker products, however
without getting rid of the integral completely. Therefore, we use numeric inte-
gration later in Section 7. Note that in some cases, with a special structure on
BD, it may be possible to express the matrix-exponential as a closed-form ex-
pression involving exponential functions and thereby integral-free expressions
can be derived.

4.4.1 Poisson event process and exponential downstream delays

Under further assumptions, namely for the M |M |1|periodic(M) case, Equa-
tion (15) specializes to

mmPr = λ

∞∫

0

exp
(

τ

ν

(
1− e−νt

))
exp(−(τ + λ)t) dt, (16)

whenever the event process is a Poisson process with intensity λ and the
downstream delays are iid exponentially distributed with mean 1/ν.

The expression in (16) can alternatively be expressed as (substituting t with
e−νt)

mmPr =
λ

ν
exp

(
τ

ν

) Γ
(

τ+λ
ν

)

(
τ
ν

)(τ+λ)/ν
FΓ( τ+λ

ν
, τ

ν )
(1), (17)

where FΓ(a,b) is the cdf of a gamma distribution with parameters a and b.

4.4.2 Markov Model Approach

Another way of modelling the M |M |1|periodic(M) case derived in (16) and
(17) is to consider a stochastic process {Xt, t ∈ R} describing the result of
at a request at time t. The process is a Markov jump process with states (1)
and (0, i), i = 0, 1, 2, . . . where state (1) denotes no mismatch and the state
(0, i) denotes a mismatch and number of updates, started after the last event
which is in in transit. The transition diagram is depicted in Figure 6. This
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Fig. 6. Transition diagram for the M |M |1|periodic(M) case.

model leads to the following generator matrix

Q =




−λ λ 0 0 0 · · ·

0 −τ τ 0 0 · · ·

ν λ −(ν + τ + λ) τ 0 · · ·

2ν λ 0 −(2ν + τ + λ) τ · · ·

3ν λ 0 0 −(3ν + τ + λ) · · ·
...

...
...

...
...

. . .




.

From which the following steady-state probability vector π can be derived
(solving πQ = π and

∑∞
i=1 πi = 1).

π1 =
ν
λ

∑∞
n=3(n− 2)

∏n−2
i=1

τ
iν+τ+λ

1 + ν
λ

∑∞
n=3(n− 1)

∏n−2
i=1

τ
iν+τ+λ

= 1−mmPr (18)

π2 =
1

1 + ν
λ

∑∞
n=3(n− 1)

∏n−2
i=1

τ
iν+τ+λ

πn =

∏n−2
i=1

τ
iν+τ+λ

1 + ν
λ

∑∞
n=3(n− 1)

∏n−2
i=1

τ
iν+τ+λ

, n ≥ 3.

4.5 Summary

The results in this section allow to compute analytically the mmPr for the
scenario of N = 1 information providers, at which the information element
never changes back to a previous value. The following cases can be analytically
calculated:

• Reactive approach: Equation (2) is the general solution when the event
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process is a general process. The upstream delay and the request process
are both irrelevant. The downstream delay process is a general process.
Equation (4) or equivalently Equation (8) is the integral-free representation
for matrix-exponential processes.

• Proactive event-driven strategy with full updates (and sender sequence num-
bers for ordering): the mmPr is identical to the one in the reactive case, so
all the statements from the item above hold.

• Proactive event-driven with incremental updates (and order irrelevant or
can be re-created by sender sequence numbers): Equation (11) provides the
mmPr for a Poisson event process and GI downstream delays.

• In scenarios without message loss and message reordering, all three strate-
gies, reactive, proactive event-driven incremental, and proactive event-driven
with full updates show exactly the same mmPr; the special case of deter-
ministic downstream delay is treated as relevant example in (12). Also, the
ordering of messages at the requester, rTim vs. cSeq, is irrelevant in this
case.

• The proactive periodic strategy with full updates is covered by Equation
(15) for the case of a GI event process and GI downstream delay, but Poisson
assumptions on the period of sending updates. Integral-free representations
exist in Equations (18) and (17) when all three participating processes are
assumed to be Poisson.

The other performance metrics, access delay and networking overhead, are
straightforward and were already presented in [19], see Section 2.2 for a sum-
mary. They hold for the general G|G|1|x|y|z cases, hence are insensitive to the
actual distribution types.

5 The case of multiple information providers

Now we consider the case of N > 1, i.e. the remote information elements
are provided by N independent event sources E(1), . . . , E(N) and a correct
computation at the requester is obtained only if the correct values are obtained
from all N information providers. For all three basic access strategies, explicit
results for the mmPr are obtained in Section 5.1. Furthermore, scenarios with
very large N can be approximated using limit results that are derived in
Section 5.2. Convergence to these limits is subject to appropriate scaling of
system parameters. This scaling behavior allows to conclude on scalability of
the strategies with respect to an increasing number of information providers.
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5.1 Finite N

This time, we start with the proactive cases, since they are rather straightfor-
ward under appropriate independence assumptions.

5.1.1 Proactive cases

In all the proactive cases a mismatch is obtained if at least one of the in-
formation providers yields a mismatch. As the event sources are independent
the probability of mismatch can be obtained by the following function of the
individual mismatch probabilities,

mmPrN = 1−
N∏

i=1

(1−mmPri), (19)

where each mmPri is obtained by the corresponding equations in Sections
4.2 and 4.4. We chose here and subsequently the notation mmPrN for the
total mmPr in this case of multiple information providers, to distinguish it
for mmPrN which reflects the mmPr for the part of the information element
maintained by information provider N .

5.1.2 Reactive case

In the reactive scenario, the requestor sends out a request message to each in-
formation provider. The requests are sent out at the same time-instant (multi-
cast), but may arrive at the information providers after different upstream
delays, see Figure 7.

Request process

Event process

Rk Rk+1

Time

Time

x x

x

x x

Timex
.

.

.

.

.

.

E
(1)

E
(N)

Fig. 7. Reactive access to multiple information providers: In the example, the k’th
access, Rk, leads to a ’correct’ value, while the k + 1’th access causes a mismatch
event.

Assume t = 0 is the time of sending out the request. Then the information will
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be finally processed at the requester at time M̃N = max(U1+D1, ..., UN +DN),
see Figure 7. The mmPrN is:

mmPrN

= 1− IP(E
(1)
1 (M̃N) = E

(1)
1 (U1), . . . , E

(N)
1 (UN) = E

(N)
1 (M̃N))

= 1−

∞∫

0

IP(E
(1)
1 (t− U1) = E

(1)
1 (0), . . . , E

(N)
1 (t− UN) = E

(N)
1 (0)|M̃N = t)

F
M̃N

(dt).

As M̃N is dependent on the Ui’s it seems difficult to simplify this expression.
However, if we assume that the same upstream delay is imposed on all request
messages for all information providers, i.e. the request reaches all information
providers at the same time instant, we can obtain rather explicit results and
also limit theorems based on weak convergence and extreme value theory.
See Section 5.2 for the latter. The assumption of identical upstream delay
holds (approximately) e.g. for deterministic upstream delay, or if we assume a
scenario of broadcast requests and assume that the broadcasting mechanism
reaches all nodes at (approximately) the same time.

Reactive case with equal (deterministic) upstream delay

The requester will send a request that reaches all information providers at the
same time instant. This scenario e.g. occurs, if we assume that the upstream
delays are deterministic with value u. However, the information will only be
processed when all answers reach the requester, e.g. at time M̃N , after the
reading of the information at the providers. For the G|G|N |react(D)-case,

if MN denotes max{D1, ..., DN} and mN denotes min{E
(1)
1 , . . . , E

(N)
1 } (maxi-

mum of the forward recurrence times for the N information elements), we get
the following general formula

mmPrN

= 1−

∞∫

0

IP(E
(1)
1 (t) = E

(1)
1 (0), . . . , E

(N)
1 (t) = E

(N)
1 (0)|MN = t)FMN

(dt)

= 1−

∞∫

0

IP(E
(n)
1 ≥ t1, . . . E

(N)
1 ≥ t)FMN

(dt)

= 1−

∞∫

0

FmN
(t)FMN

(dt). (20)

Notice that (20) resembles (2) as we can interpret the problem as a reactive
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on-demand problem, where the event process has backward recurrence-time
distribution FmN

and a delay process with cdf FMN
.

If we utilize our standing assumption of independent delay and inter-event
times between information providers, we get

FMN
(t) = FD(t)N and FmN

(t) = BE(t)N ,

which of course implies fMN
(t) = NFD(t)N−1fD(t), whenever FD has a pdf

fD. This in turn yields

mmPrN = 1−N

∞∫

0

BE(t)NFD(t)N−1fD(t) dt. (21)

5.2 Limit results

In this subsection we analyze the behavior of mmPrN for N → ∞ under
appropriate scaling on the event rates.

5.2.1 Proactive, periodic updates

If we consider Poisson event and information processes with rate λ and ν
and iid exponentially distributed delays with mean 1/τ and scale down the
individual event processes with rate λN = λ/N we obtain from Equations (17)
and (19)

lim
N→∞

mmPrN = 1− exp


−

λ

ν
exp

(
τ

ν

) Γ
(

τ
ν

)

(
τ
ν

)(τ)/ν
FΓ( τ

ν
, τ

ν )
(1)


 . (22)

Hence, in this M |M |N |periodic(M) case, we obtain the above limit for in-
creasing N when scaling down the event rate linearly with N .

5.2.2 Proactive, event based updates

Now, for the proactive, event based scheme with incremental updates we get
for a Poisson event process, M |GI|N |event|incr, and the scaling λN = λ/N

lim
N→∞

mmPrN = 1− e−λD. (23)

Actually, this is not only a limit result, but it holds exactly for all N .
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For the case of full updates and exponentially distributed downstream delays
with mean 1/ν, M |M |N |event|full, we obtain for the same linear scaling
λN = λ/N :

lim
N→∞

mmPrN = 1− e−λ/ν .

Note that the scaling of the event-rate in the limit creates a scenario in which
the update messages are not subject to reordering any more, since they are
infinitely far apart. As a result, the proactive event-driven full and incremental
strategies are in the limit equivalent except for cases with message loss.

5.2.3 Reactive approach

As opposed to the proactive approaches, the scaling properties of the reactive
schemes are different. Assume for instance the delays to be iid with exponen-
tially decaying tails, i.e. FD(x) ∼ e−νx, as x →∞. This case can conveniently
be noted as M |GI|N |React(D), where the GI has exponentially decaying tails.
Then it can be proved that

MN − bN

aN

with aN = 1/ν, bN = log(N)/ν,

converges in distribution to the Gumbel distribution, [4], with cdf

F (x) = e−e−x

.

Hence, if we scale down the individual event processes by

λN :=
λ

N log(N)
, (24)

we obtain the following limit behavior of the mmPrN (by the definition of
weak convergence, see e.g. [2, (10)]),

lim
N→∞

mmPrN = 1− lim
N→∞

IE(exp

(
−λ

log(N)

((
MN − bN

aN

)
aN + bN

))
)

= 1− e−λ/ν . (25)

Note, that this limit closely resembles the proactive cases, but under different
scaling.
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Now, alternatively assume the delays to be iid with polynomially tails, i.e. for
some α > 0, FD(x) ∼ x−α as x → ∞. This case can conveniently be noted
as M |GI|N |React(D), where the GI has polynomially decaying tails. Then it
can be proved that

MN − bN

aN

with aN = N1/α, bN = 0,

converges in distribution to the Frechet distribution,[4], with cdf

F (x) = e−x−α

.

Hence, if we scale down the individual event processes by

λN :=
λ

N1+1/α
, (26)

and assume X has the Frechet distribution with cdf F , then we obtain the
following limit behavior of the mmPrN (by the definition of weak convergence,
see e.g. [2, (10)])

lim
N→∞

mmPrN = 1− IEe−λX

= 1− α

∞∫

0

e−(λx+x−α)x−α−1dx. (27)

5.3 Summary

In this section, we consider the scenario in which the information element
consists of a vector spread over N > 1 information providers. For an execution
of a computation at the requester, all N parts of this vector are required, and a
mismatch results if any of them does not correspond to the true current value.
For the proactive cases, under assumption of mutual independence of the N
downstream delay processes and the N event processes, the mmPr can simply
be computed from a product expression, Equation (19). For the reactive case,
under similar independence assumption and given that the upstream delays
are identical for the request to reach all N nodes, Equation (21) allows to
compute the mmPr, in most cases involving numerical integration.

Furthermore, limit results have been obtained for the three different cases,
which allow to approximate via simple analytic expressions, under suitable
scaling of the event rate, the mmPrN for an increasing number of information
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providers. The results in the reactive case are summarized in the following
table:

Exp. dec. delay Pol. dec. delay

Scaling λ/(N log(N)) λ/N1+1/α

limN→∞ mmPr
N

1− e−λ/ν 1− α
∫∞
0 e−(λx+x−α)x−α−1 dx

For the proactive cases, the scaling of λ/N is the same for all sub-cases, and
the results can be summarized as

Proact. event Proact. event Proact. perioic

Full Incremental (exp. period)

limN→∞ mmPr
N

Exp. delay 1− e−λ/ν 1− e−λ/ν (22)

Holds for GI delay

As a summary remark on scalability for remote access to an increasing num-
ber of information providers: In the exponential M |M |N |x case, the reactive
approach requires to scale down the Poisson information change rate more
strongly than the proactive scenarios, namely as N log N . This stronger down-
scaling of the event rate becomes even more pronounced for delay distributions
with Pareto tails. This is a consequence of the extreme value statistics for the
downstrem delay that need to be applied in the reactive case.

6 Markov Event Processes

Now we remove the assumption that the information element cannot change
back to a previous value. Instead, the information element is assumed to be
described by the state of a Markov process with generator matrix Q. State
changes at instances of transitions of a Markov chain were already discussed
earlier in Section 4.1.3, but then assuming that the information element is
changing to a previously unobserved value.

For the analysis in this section, we focus on the reactive approach, with ex-
plicit integral-free results for the MAP [rec]|ME|1|react(G) system. For the
proactive approaches, we restrict ourselves to an outlook on the possible ap-
proaches.

As in Section 4, we again focus on the case of a single information provider,
N = 1, but the general result of Equation (19) also applies in this case to the
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proactive strategies. For the reactive case, the result obtained below can be
extended analogously to Section 5.1.2, but without having compact integral-
free representations.

6.1 Reactive approach

In the reactive approach the access leads to a mismatch, if after the down-
stream delay time, the Markov process Q is in a different state as at the time
when the update was sent out (assumed here to be t = 0). Due to stationarity,
the probability of being in state i at time t = 0 is just the steady-state prob-
ability πi. Hence, by conditioning on the downstream delay time, we obtain
the following

mmPr = 1−

∞∫

t=0

S∑

i=1

πi [exp(Qt)]i,i fD(t)dt (28)

Hence, the above equation provides the solution to the MAP (rec)|G|1|react(G)
case. In the following, we treat two special cases for the down-stream delay,
the exponential and subsequently the general matrix-exponential:

6.1.1 Exponential downstream delay

Now D is exponential distributed with rate ν and Equation (28) can be reduced
to

mmPr = 1− ν
S∑

i=1

πi




∞∫

t=0

exp ([Q− νI]t) dt




i,i

= 1− ν
S∑

i=1

πi

[
(Q− νI)−1

]
i,i

.

6.1.2 General matrix-exponential downstream delay

If the downstream delay has a marginal distribution that is matrix-exponential,
i.e.

fD(t) = pDBD exp(−BDt)ε′D,

integral-free expressions for Eq. (28) can be obtained as follows:
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mmPr = 1−

∞∫

t=0

S∑

i=1

πi [exp(Qt)]i,i pDBD exp(−BDt)ε′Ddt

= 1−
S∑

i=1

πi

∞∫

t=0

ei exp(Qt)ei
′ pDBD exp(−BDt)ε′Ddt

= 1−
S∑

i=1

πi [ei ⊗ (pDBD)] [(−Q)⊕BD]−1 [ei
′ ⊗ ε

′
D] . (29)

Hereby, ei is a row vector with all components zero excepts for the i-th com-
ponent, which is equal to one.

6.2 Outlook on proactive strategies

The proactive cases can be further distinguished to event-driven and periodic.
Starting with the periodic approach, MAP [rec]|G|1|periodic(M), a general
formula for the mmPr is obtainable if we condition on the time of the last
event and split the probability of no useful update in the independent (by
the Poisson assumption of the delay process) events 1) no update since last
event and 2) for each possible change at last event πi the last update does
not carry this information. Formally, use the intensity function τ defined in
Equation (14) and define the following stopping time (with respect to the
natural filtration), which denote the last update before time t

τt = sup{Ik|Ik ≤ t, k ∈ Z},

where {Ik, k ∈ Z} is the update process defined in Section 4.4.

Furthermore, if we let Q̃ denote the time-reversed version of Q (see [1, page.
58]), then

mmPr =

0∫

−∞

IP(I ∩ [t, 0] = ∅, E(τt) 6= E(t))AE(dt)

=

0∫

−∞

IP(I ∩ [t, 0] = ∅)IP(E(τt) 6= E(t))AE(dt)

=

0∫

−∞

e−
∫

0

t
τ(s)ds

n∑

i=1

(1− πiIP(E(τt) = E(t)|E(t) = i)) AE(dt)

=

0∫

−∞

e−
∫

0

t
τFD(−s)ds

n∑

i=1


1− πi

t∫

−∞


∑

j 6=i

[eQ̃(t−s)]jiq̃ij


Fτt

(ds)


AE(dt).
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Although, this formula apparently always require some sort of numerical inte-
gration, one can in special cases obtain considerably simplified expressions. A
detailed study of this periodic case with numerical examples is left for future
research.

For the proactive event-driven approaches with full or incremental updates,
one approach is to analyze the process of receiving updates at the requester.
This process is the output process of an E/D/∞ queue. Unfortunately, the
output process of this queue is not known for general E, so we have to limit
ourselves to the Poisson case, i.e. the information element is a Markov process
with generator Q such that the state-leaving rate is the same for all states,
i.e.

diag (Q) = −λε
′.

For this Poisson assumption, the output process of the M/GI/∞ queue is also
Poisson, hence the process of receiving updates is Poisson with rate λ and both
its forward and backwards recurrence time are exponentially distributed with
same rate λ. An extended approach as in Sections. 4.2.1 and 4.2.2 appears
promising for such a scenario, but its study is left for future research.

6.3 Summary

In this section we consider ways to compute analytically the mmPr for the
scenario of N = 1 information providers, at which the information element
can change back to previous values, as described by a continuous time Markov
process. In summary, we can conclude:

• Reactive approach: For MAP (rec)|G|1|react(G), a general formula, Eq.
(28) for the mmPr was derived and simplified to an integral-free expression,
Eq. (29), in the case where the downstream delays are matrix-exponential
distributed.

• Proactive strategies: For the periodic case a general formula was given for
the MAP [rec]|G|1|periodic(M) case, and it was indicated how one could
proceed to get simplified expressions. This is left for future research. The
event driven case was only touched upon as a more detailed analysis involves
the study of output processes for general queueing systems.

7 Quantitative results and validation

This section uses the models from Sections 4, 5, and 6 to obtain and discuss
numerical results for selected example scenarios.
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7.1 Single information provider, monotonous type event process

First, we consider the case of a single information provider, but while varying
the distributions of the inter-event process and downstream delay process. In
particular, we want to investigate numerically the impact of different distrib-
ution types, namely Erlangian distributions with smaller coefficient of varia-
tion than an exponential, and truncated Power-Tail distributions with a tail-
exponent of α = 1.4 which leads to unboundedly growing variance for increas-
ing number of phases. See the appendix for details about these distribution
types.

7.1.1 Parametric study for the Poisson event process
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Fig. 8. Comparison of mismatch probabilities in the different remote access strategies
for a Poisson event process and varying downstream delay [19].

Exponential network delays: First, we focus on the case of a Poisson
event process together with exponential or deterministic downstream delay
of varying rate, i.e. the M |M |1|x and M |D|1|x cases: Figure 8 shows the
results for the mmPr as computed by the analytic models for the different
remote access strategies, for the assumption of a Poisson event process with
rate λ = 1. In the proactive periodic case, the period is iid exponentially
distributed with varying rate τ = 10−2, ..., 10. As the analysis in Section 4.2.1
shows, the reactive and the proactive event-driven strategy with full updates
lead to exactly the same mmPr (dashed curve). The proactive event-driven
strategy with incremental updates shows a slightly higher mmPr (solid curve).
According to the analysis in Section 4.2.2, this mmPr in the event-driven
incremental case for the considered Poisson event case is insensitive of the delay
distribution; consequently, the M |D|1|event|incr case is also represented by
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the same solid curve. Furthermore, according to Section 4.3, the event-driven
strategy with full updates and hence the reactive strategy with deterministic
downstream delay are also captured in this solid curve. Hence, only two curves
are needed to represent the six cases for reactive strategies and proactive event-
driven strategies.

An additional set of dashed-dotted curves reflects the mmPr of the periodic
cases, M |M |1|periodic(M), with different rate τ of the period. The following
additional observations can be made from Figure 8:

• The reactive strategy in the case of deterministic downstream delays, D ≡
1/ν, (solid line) leads to a higher mmPr than in the case of an exponentially
distributed delay with same mean (dashed line). In contrast to intuition
from other analytic models, e.g. in queueing models in which deterministic
delays typically lead to shorter waiting times, here the deterministic case
is not the best case scenario. This observation is investigated further below
via the use of Matrix-exponential distributions.

• For very short downstream delays (large ν) the mmPr of both the re-
active and the proactive event-driven strategies decay asymptotically as
mmPr(λ, ν) ∼ λ/ν for both deterministic and exponential delays, and also
independently of incremental or full updates. Hence, asymptotically for
ν → ∞, all proactive event-driven and reactive strategies behave equally.
This is explainable with the arguments in Section 4.3, since no message
reordering will occur for infinitely fast networks.

• In the limit case ν → ∞, the proactive periodic approach shows a limit of
limν→∞ mmPr(λ, ν, τ) = λ/(λ+τ) > 0. Consequently, for large ν eventually,
the periodic approach will at some point always perform worse than the
event-driven and reactive approaches.

Non-exponential network delays: Figure 9 shows the impact of different
network delay distributions. For the reactive strategy, M |ME|1|react(G), two
curves are shown in the bottom of the figure, which are identical for the
proactive event-driven strategy with full updates, M |ME|1|event|full. Since
the down-stream delay distribution is irrelevant for the proactive event-driven
incremental strategy, M |GI|1|event|incr, it results in a horizontal line, shown
dashed-dotted in the figure.

The upper of the two curves for the reactive strategy (marked with circles) rep-
resents the case of an Erlangian-T delay distribution in the reactive/proactive-
event-driven-full approach, i.e. with increasing T on the x-axis, the coefficient
of variation is reduced as 1/T converging to a deterministic distribution. This
decrease in variance actually results in an increased mmPr. The lower curve
(marked with ’+’) shows the mmPr for a TPT-T distributed network delay.
The TPT distribution uses a tail-exponent of α = 1.4 < 2, hence for an in-
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Fig. 9. Mismatch Probability for reactive and the two different proactive strategies
for downstream delay process which are renewal processes with matrix-exponential
representation: Shown for Erlangian and TPT distributions with increasing number
of phases along the x-axis.

finite number of phases, it shows infinite variance. The mmPr decays with
increasing T but appears to converge to a value slightly below 25%.

The upper two curves in Figure 9 show the periodic case, M |ME|1|periodic(M),
with a Poisson rate of τ = 2 for the period. For this choice of τ , the mmPr
values are always higher than for the other strategies. The qualitative behavior
when increasing the number of phases of the Erlangian and TPT delay distrib-
ution is the same as for the reactive strategy, namely with increasing variance
(TPT case), the mmPr drops but converges to a value slightly above 0.45;
for decreasing variance (Erlangian case), the mmPr increases and converges
towards a value close to 0.6, provided by the M |D|1|periodic(M) case.

7.1.2 Matrix-exponential event processes

Similar qualitative behavior as in the previous section is observed when dis-
tribution of the inter-event times is varied, see Figure 10: The change from
exponential towards a deterministic distribution (Erlangian with many phases)
actually results in a significant increase of the mmPr for all strategies, while
the use of TPT distributed inter-event times actually reduces the mmPr. The
middle two curves (green colour) thereby represent the case of deterministic
downstream delays, in which four of the strategies are actually equivalent, see
Section 4.3.

When both processes, the event and the downstream delay, are represented
by TPT respectively Erlangian distributions, the impact on the mmPr is
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Fig. 10. Mismatch Probability for reactive and proactive (full) strategy for event
process which are renewal processes with matrix-exponential representation: Shown
for Erlangian and TPT distributions.
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Fig. 11. Mismatch Probability for reactive and proactive (full) strategy for event and
delay processes which are renewal processes with matrix-exponential representation:
Shown for Erlangian and TPT distributions.

strongest, i.e. the worst case in the considered candidate set occurs, when
both distributions are Erlangian, i.e. the D|D|1|x case, see Figure 11.
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Fig. 12. Mismatch Probability for reactive strategy for an event process which is an
ON/OFF process with same average duration of the ON+OFF cycle.

7.2 Recurrent event process: ON/OFF process

We now look at the mmPr in cases that the information element can change
back to a previous value. We use the example of a binary information element,
e.g. the state of a device being either busy or idle, here also called ON and
OFF. Therefore, the event process is a two-state continuous time Markov
chain, where the average change rate is kept consistent with the parameter
settings at the end of the previous settings, namely, ON + OFF = 2 so that
the average inter-event time is still kept at Ē = 1. However, ON-and OFF
state leaving rates are varied so that they show different holding times, i.e. we
vary the ratio

κ =
OFF

ON

while keeping their sum constant.

Figure 12 shows the resulting mmPr for three different delay distributions: Erl-
20 in the upper set of curves, exponential in the intermediate curves, and TPT-
20 in the lower curves. For each delay distribution, three curves are given: the
recurrent MAP process (solid) which shows a lower mmPr than a monotonous-
type Markov Jump process (dashed), since there is some probability that an
even number of changes has happened since sending the response, which then
would lead to a match of the remote information element. The mmPr has a
maximum when ON and OFF period show same average duration, at which
point the information element changes form a homogeneous Poisson process,
i.e. the MJ |ME|1|react case is equivalent to a M |ME|1|react case at κ = 1.
The latter is shown as dotted horizontal line in Figure 12.
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Fig. 13. Mismatch Probability for multiple information providers, all Processes are
Poisson. The event-rate per IP is scaled down by a factor of N so that the total
event rate remains constant.

When κ goes to zero or infinity, the mmPr approaches zero, since in these
limit cases, the ON/OFF process is actually only dominated by one of the two
states, namely OFF if κ = 0, and ON for κ →∞.

7.3 Multiple information providers

Finally, we provide numerical results for multiple information providers, N > 1
thereby also showing empirically the accuracy of the approximations by the
limit theorems. We restrict ourselves to exponential distributions here, i.e.
M |M |N |x cases.

Figure 13 shows the resulting mmPr. Note that although the reactive case
results in the same mmPr as the proactive event-driven case with full updates
for N = 1, this is not the case any more for larger N . In fact, for the applied
linear scaling in the figure, the mmPr of the reactive case grows to 1 when
N →∞.

Also, it becomes obvious, that the difference between full updates and incre-
mental updates for the event-driven strategies vanishes for larger N . Both
cases have the same limit, see Section 5.2. Furthermore, the limit approxima-
tion is actually exact for the event-driven incremental strategy, while it is only
an approximation for the case of full updates.
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8 Summary and outlook

This paper has developed a methodology and explicit analytic solutions for the
quantitative analysis of different strategies for remote access to dynamically
changing information elements.

The analytic results lead to the following conclusions:

• For a single information provider and monotonous-type event processes, the
mmPr of the reactive strategy and the proactive-event driven strategy with
full updates are identical.

• The mmPr of the proactive event-driven strategy with incremental updates
is smaller or equal to the full update case. In the case of a Poisson Event
process the mmPr is independent of the downstream delay and described
by the busy probability of an M/G/∞ queue.

• For networks without loss and re-orderings (FIFO type networks), the re-
active strategy and all proactive event-driven strategies lead to the same
mmPr.

• For the proactive, periodic strategies, an explicite solution Equation (15) has
been obtained for the scenario, when the instances of sending updates form
a Poisson process. Integral-free solutions (17) or equivalently (18) result,
when all participating processes are Poisson.

• The mmPr for the reactive case in case of recurrent Markov Event processes
(which may change back to previous values) is obtained in general integral-
free form, Equation (29). An outlook on how the proactive strategies may
be approached is furthermore given in Section 6.2.

• The case of multiple information providers is treated for all strategies in
Section 5 and limit results are obtained that allow to identify interesting
differences in scaling behavior as well as allow to obtain simple approxima-
tive expressions.

The analysis has subsequently been applied to scenarios with general matrix-
exponential distributed inter-event times and network delays. The numerical
results show that for the given settings, the high-variance case (truncated
Power-tail distributions for the events/delays) actually leads to smaller mis-
match probability than the exponential case, except for the case of event-
driven incremental updates, which is insensitive to the delay distribution for
a Poisson event process. Analogously, the use of Erlangian distributions and
in the limit deterministic distributions increases the mismatch probability for
all schemes.

Furthermore, the analysis was applied to the case of a binary information
element, which toggles between 2 values, e.g. an ON/OFF process. The mis-
match probability is in this case smaller than for a monotonous-type event
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process and it is largest, if the average of the ON duration and OFF dura-
tion are identical. Finally, also the case of multiple information elements has
been analysed numerically, showing the different scaling behavior of the reac-
tive strategy (factor N log N in case of exponential delays) and the proactive
strategies (factor N), and the accuracy of approximations that were obtained
from the limit theorems.

Other relevant scenarios, e.g. when ordering update messages according to
receive time as opposed to using sequence numbers created at the information
provider, will be considered in future work. Furthermore, the proactive cases
for recurrent event processes have to be analysed further as outlined in Section
6.2. Finally, the application of the mmPr analysis to the actual use-cases of
routing, context-sensitive networking, and replicant consistency for optimistic
replication strategies will likely lead to further model refinements.
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A Candidate matrix-exponential distributions

A.1 Erlangian distribution

An Erlangian-T distribution is the convolution of T identical exponentials,
i.e. the distribution of the sum of T iid exponential random variables. Its
probability density function is:

f(x) = µ
(µx)T−1

(T − 1)!
e−µx. (A.1)

Note that the density at the origin x = 0 is f(0) = 0 as opposed to Hyper-
exponential distributions, whose density has its maximum at the origin.

It follows for the first two moments of the Erlangian-T distribution:

IE(X) =
T

µ
=: x̄, IE(X2) =

T 2 + T

µ2
. ⇒ C2 =

1

T
< 1.

An Erlangian-T distribution with high T can be used as approximation for a
deterministic distribution. An Erlangian-T distribution can be represented as
a matrix-exponential with matrix representation:

p = [1, 0, . . . , 0], B = µ




1 −1

1 −1
. . . . . .

1 −1

1




·
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A.2 Truncated power-tail distribution

In order to model distributions with large variance, frequently hyper-exponential
distributions are used, whose pdf is a linear combination of different exponen-
tial densities. Choosing the weights and the rates of the exponential phases in
a special way, namely both geometrically decaying, but with different factors,

RYT
(x) =

1− θ

1− θT

T−1∑

i=0

θi exp

[
−µT

γi
x

]
, (A.2)

the resulting complementary distribution functions show Power-law behavior,
R(x) ∼ x−α for some orders of magnitude before they drop off exponentially,
see [8]. The higher the number of phases, T , the later the drop-off occurs. The
exponential drop-off is characterized in more detail in [22] by the so-called
Power-Tail Range.

The variable θ can be chosen freely in the range 0 < θ < 1. For larger value
of θ, more phases are necessary to obtain the same PT Range as for lower θ.
In order to show Power-Law behavior with exponent α, and to have mean x̄,
the other constants in (A.2) have to be (see [8]):

γ =
(

1

θ

)1/α

,

µT =
1− θ

1− θT

1− (θγ)T

1− θγ

1

x̄
.

The truncated powertail distribution admits the following matrix-exponential
representation:

pT =
1− θ

1− θT

[
θ0, . . . , θT−1

]
.

BT = µT




1/γ0 0

. . .

0 1/γT−1




.
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