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SUMMARY

The objectives of this study were to characterize the changes of VOC material emission
profiles over time and develop a method to account for such changes in order to enhance a
source identification technique that is based on the measurements of mixed air samples and
the emission signatures of individual building materials determined by PTR-MS. Source
models, including power-law model, double-exponential decay model and mechanistic
diffusion model, were employed to track the change of individua material emission signatures
by PTR-MS over anine-month period. Samples of nine typical building materials were tested
individually for nine months and later in combination to obtain actual mixture emissions.
VOC emissions from each material were measured in a 50-liter small-scale chamber.
Chamber air was sampled by PTR-MS over a 28-day period to determine their emission rate
decay characteristics as well as to establish the initial profile of emission signatures unique to
individual materials tested.

IMPLICATIONS

This study contains the first known experimental attempt for indoor source identification
under laboratory conditions accounting for the effects of VOC emission decay over time. The
new technique has the potential to find the sources invisible/hidden behind indoor surfaces
when a building with problems of indoor air quality is suspected.
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INTRODUCTION

One of the recent important research challenges in indoor air pollution is the identification of
indoor Volatile Organic Compound (VOC) emission sources to clearly pinpoint the sources of
concern in a field condition. In several field studies performed for residential buildings to
measure VOC emissions, it was possible to identify severa active compounds with great
potency to human health and perception, and their chemical measurements were reported.
However, it was hard to trace the emission sources of the detected compounds clearly. As an
example, Hodgson et al. (2000) identified acetic acid as one of the important compounds, but
were not certain about the sources of acetic acid in the studied houses. If there is a VOC
related problem in an indoor air environment, different relevant sources can be identified and
screened individually by an on-line analytical monitoring device, Proton Transfer Reaction —
Mass Spectrometry (PTR-MS), finding the source(s) and eliminating the problem. A study
(Han et al., 2010) demonstrated that unique emission patterns appeared to exist for different
types of building materials, and these patterns could be established by PTR-M S as emission
signatures (ES). With the definition of ESs for different building materials, it is possible to
develop a signal processing technique that can help pinpoint the source materials responsible
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for certain VOCs of concern in indoor air (Han et al., 2011). Since the relative emission rates
of different emitting compounds can change over time, it is necessary to account for such
changes in the estimation and prediction of emission signatures at a given later time. It is
hypothesized in this study that the change of material emission signatures over a long period
of time may be accounted for by using appropriate emission source models. The objectives of
this study were to characterize the change of VOC emission profiles for building materials
over time, and to develop amethodology to account for such signature changesto improve the
source identification method.

MATERIALS and METHODS

Overview. In a previous study, emission sgnatures were determined for nine individual
building materials by small-scale chamber tests with PTR-MS measurements. The signature
is the PTR-M S ion mass (m/z, which is a physical quantity denoting the mass-to-charge ratio
widely used in the electrodynamics of charged species) spectrum of the air sampled from each
material emission test. In this study, emission tests for the nine materials were performed over
a nine-month period. Empirical decay models (power-law and double exponential) and a
mechanistic diffusion model were examined and used to represent the decay characteristics,
and used to project the emission signature at alater time from each initial emission signature.
Actua combined emissions from three multi-material mixtures were then sampled and used in
combination with the projected signatures to identify the individua emission sources using
the two algorithms previously developed based on signal processing principles (Han et al.,
2011).

Environmental chamber conditions. A 50-1 small-scale environmental chamber (0.5 m x
0.4 m x 0.25 m high) made of electro-polished stainless steel was used with a precise airflow
controller and a humidity controller. The chamber was maintained at a constant stable
temperature in the range of 19.87-25.99°C (with a small variation of < +0.02°C during each
sampling period) and at a controlled reative humidity of 31+0.3% RH during the 9-month
period of the experiment. The background concentrations of individual VOCs in the empty
chamber were maintained clean to be less than 1 ng/m”.

Table 1. Flow rates and specimen areas for the PTR-M S experiments.
Flow rate — Q, (I/min) / Specimen area— A (cm°)

Material (ID#) QJ/A (I/s/m?)
Meas. #1 Meas. #2 Meas. #3 Meas. #4 Meas. #5 Meas. #6
Ceiling (3) 0.5% {22990.7 1.55O /‘82990.7 4.642 / 62690.7
Wood (9) 0.5% {32165.5 1.3% /‘82165.5 3.852 / 42265.5 1.210 {7265.5 1.2% / 82065.5
Carpet (7) 1‘23 ég"o
Linoleum (8) 0.50/ 240 1.28/240 3.83/ 240 v 5/3540 v éé 0 l‘zgéé ©
PVC (2) 0.35 0.89 2.66
Palydefine (1)
Gypsum (4) 0.58 é (4)116 1.03 4/1 1116 3.0f /2 :;116
Paint 1 (5) 0.58 é foz 0.93 4/1 1102 2.91 /2 ;oz
Paint 2 (6) 0.5% {14790.2 1.210 /‘44190.2 3.631/‘ 24390.2 1.210 /‘44190.2

* Meas. stands for ‘Measurement’.
* Measurements #1-3: from single material tests.
* Measurements #4-6: from material mixture tests with the selected materials put in the chamber together.

Test specimens. Nine typical building materials were investigated including carpet, celling
material, gypsum board, linoleum, paint 1 (water-based acrylic), paint 2 (with linseed oil),
polyolefine, PVC and wood. Specimens were cut and prepared according to the sizes specified
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in Table 1. The prepared specimens were placed vertically, parallel with the airflow in the
chamber. The range of area-specific ventilation rates was set by adjusting the airflow to the
chamber while keeping the size of specimen unchanged.

PTR-MS setting. A PTR-MS device (lonicon Analytik high-sensitivity model with a
detection limit as low as 1 pptv, Austria) was operated at the standard conditions (Drift tube
pressure: 2.20£1.9e-5 mbar, PC: 355 mbar, FC: 7.0 STP cc/min, U SO: 85V, U S: 120 V,
Drift tube voltage: 600 V and Source: 6.0 mA). Lindinger et al. (1998) describes the detailed
explanations on the device and its principle. The normalized product ion count rate (ncps) was
used to quantify the concentration levels of target VOCs.

Test procedure. The nine building materials were previoudy studied at three different area-
specific ventilation rates (Measurements #1, #2 and #3) to establish an initial ES library by
PTR-MS specific to each individua material. After one year of the experiment for the
establishment of the initial ES library, long-term emission experiments using the same nine
materials sealed and preserved in a well conditioned storage space have been performed for
nine months. Three multi-material mixture emission measurements were collected
(Measurements #4-#8) after the long-term experiments to obtain combined emission
signatures and to assess the effects of the long-term ES change consideration on the source
identification performance of the developed agorithms. Three source models — a power-law
decay model (Zhu et d., 1999), a double-exponential model (Brown, 1999) and a mechanistic
diffusion model (Little et al., 1994) were applied to the collected long-term measurements for
estimating and predicting the long-term VOC emissions and the corresponding material ESs at
a given later period. The corresponding source identification performance was assessed by
using three performance indices — norm error expectation, score and success rate as follows
(The detailed definitions can be found in Han et al., 2011):

Err © E{|du - @yul,}, Score® E{scr(N)}, SR° (N- N, ) 100/N )

where Err is the expected value of the 2-norm of the difference between the estimated value
of signal intensity factor vector (&) and the true one, N is the total number of random samples
for source identification trial for each case, Nz, indicates the number of material identification
failures that occurred during the trial, Score is the expected value of success score (scr), and
SR represents the success rate in source materia identification defined in percentage.

For each measurement, the mass spectra for the background emission signal from the empty
chamber and for the sample emission signal with each prepared specimen inside the chamber
were measured all after three volumetric air changes from the start of ventilation to allow
concentrations in the chamber to reach over 95% of the quasi-steady state level. PTR-MS was
set to scan from myz = 21 to m/z = 250 once every 12 s with an ion mass resolution interval of
50 ms. The total sampling period was 10 min (600 s) with 50 ion mass spectra collected for
each dataset. During each measurement, another set of duplicate mass spectra was scanned to
verify the collected data.

RESULTS

Long-term ES estimations/pr edictions by using sour ce models
Can the long-term emission signatures at a later period of time be estimated by using some
information on the initial material emission signatures?
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Figure 1. Prediction of the long-term emissions at 7, 8 & 9 months by source models with
short-term measurements (< Day 28). (&) Ethanol (m/z=47) from Linoleum. (b) Propanoic
acid (with asmall portion of ethanol, m/z=75) from Paint 2.

The present study investigated the feasibility of the estimation and prediction of long-term
emission signatures by using collected measurements and source models Two materials —
Linoleum and Paint 2 were selected and studied in this aspect, and their results were presented
here as an example because these two materials are representative of two characteristic
material types distinct by a steady (or dow) emission decay and a fast emission decay over
time, respectively. The measurements at tmeas = [1, 14, 24, 29, 34, 39, 44 hours, Day 7, Day 14,
and Day 28] were sampled and utilized for this examinaion. The source models, double-
exponential, power-law decay models and Little's mechanigic diffuson model, were applied
to get the optimal fitting line for each case in terms of least squared error between the
estimated concentrations and the measured ones, by using Powell search agorithm (Powell,
1964) customized via Matlab, and the fitting results were used for predicting the long-term
emission concentrationsa 7, 8 and 9 months. The ES egimation is also possible using the full
measurements collected for the period of 9 months, but the results were not presented here
due to the limited available pages. For the fitting with the power-law modd, only the
measurements after 24 hours were used due to the apparent internal-diffusion controlled
emissions observed after this hour (Refer to the NRC report, Zhu et al., 1999). Figure 1
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demonstrates the prediction performance of the diffusion source model, comparing this
approach with the two empirical source models. Except for outliers, the mean percentage of
prediction error at the target months with the double-exponential model was < 15% for
Linoleum (> 0.59 of R? Note: R? is calculated for al the points presented, which are the
sampled measurements and the future measurements) and < 19.1% for Paint 2 (> 0.91 of R?)
when applied to all ES composing compounds of each material, whereas that with the power-
law was < 3.3% for Linoleum (> 0.93 of R?) and < 4.1% for Paint 2 (> 0.86 of R?) as well.
The absolute magnitude of this prediction error was calculated in percentage with regard to
the concentration level at 24 hours in the profile of each case. Long-term ESs can aso be
predicted at a certain given time by utilizing the source models. Figure 2 exemplifies the
approach for emission signature predictions and the performance result using a source model
for Linoleum at the 9-month period. The figure implies that with some information on the
measured profile of material emission signatures over an early stage, the long-term change of
ESs for a given material at a specific elapsed time can be effectively predicted and may be
used for enhancing the performance of source identification. The prediction performance of
long-term ESs was 3.16% for Linoleum and 6.87% for Paint 2 in terms of error variance when

the power-law decay model was utilized to predict them a the 9-month period (Note: The
percentage value here represents the error variance between the estimated emission signature and the measured one for a

taraet material a aaiven time. The smaller the values. the better the ES prediction performance).
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Figure 2. Prediction of emission signatures exemplified by Linoleum at 9 months via Power.
Reconstructed library of ES (with the power -law decay modd at the 9-month period)
After predicting the long-term ESs for a given set of materia mixtures used, the dataset of

ESs can be re-established, and used in effectively separating and identifying emission
signatures for improving the source identification performance over long-term emissions.

ES separation/identification per for mance with the long-term ES change consider ation
The source ID enhancement with the long-term consideration is summarized in Table 2.

Table 2. Comparison of source ID performance by the ES predictions for various cases.

Ground truths = IDesty 2 @estr” IDestz 2 Aesty” Errl°  Err2° | Scorel Score2 | SR1  SR2

(689 w/ INIT (67 83]02 ([)00;32 017 167 8(‘3’_]15‘: ([)032;‘]7 015 | 042 026 2520 2300 28.00 26.00
g*ﬁogll;“gg 0 [3612[00%038] (368 312(?0 ([)02285]1 01 040 028 2720 66.00 30.00 76.00
(78] W/ INIT [678] éz‘_é;?gl 08%  [678] 82‘59]630 048 | 095 076 | 4500 44.60 50.00 50.00
g%g’lgm] (378 ‘3([)8;]183 034  [378] ‘2‘_8[3;]163 046 0Bl 038 8600 8360 9600 96.00
[89] w/INIT [3689) &[0.05,057, [6789 &[0.70,013, : 1.37 128 | 73.00 66.60 i 88.00 88.00
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2.03; 3.09,] 2.355 3.084]

(89 w/LT [1389] &[0.05026,  [389] & [0.29%2.43
2 [2.504.25] 287:3.79] * 3.66,] * 0.63 0.72 7200 74.20 : 88.00 88.00

* To exemplify the form of the results from the two algorithms, these estimation results (material ID set and the
corresponding signal intensity factor vector) were presented in the table, obtained when applying the
algorithms to the representative (i.e. by averaging the measured 50 samples) emission signature measured for
each given material mixture. However, the three performance indices were calculated using the 50 measured
samples for each mixture, following the definitions shown in Equation (1). ° 1: of Algorithm 1, 2: of Algorithm 2.
*w/ INIT: with initial emission signatures; w/ LT: with the consideration of long-term emissions.

DISCUSSION

The power-law model was simple and efficiently fast, and seemed to properly represent the
physical decay characteristics of long-term VOC emissions. The mechanistic diffusion model
showed a better initial response than the power-law and a similar performance to the double-
exponential. This model well represented the up-and-down characteristic concentration profile
at an early emission stage as illustrated in Figure 1. Itslong-term emission predictions at 7, 8
and 9 months were good and for some cases, better than the power-law. As found in the
double-exponential case, its fitting process was hard and time-consuming (due to partial
differential equations), and even infeasible with bad-conditioned initial parameter guesses.
The good prediction property of this diffusion model for the entire emission period was very
encouraging because the model parameters could also be measured using procedures
completely independent of the chamber studies and their measurements, or obtained from the
comparison with expected values, where possible (Little et a., 1994). Because of this
attractive property, emission measurements shorter even than 28 days might be used to predict
long-term material ESs for a longer period of VOC emissions. The proper prediction of the
long-term ESs using source models seemed to improve the separation/identification
performance as demonstrated in Table 2. However, for very consistent ESs over a long-term
period (i.e. Case [8 9]), the predictions made no marked difference in source identification.

CONCLUSIONS

It was feasible to use the emission decay models to account for the effects of emission decay
on the material’s emission signatures. The adjusted emission signature could be used to
successfully identify the individual emission sources based on the air sample from spaces
where multiple emission sources existed. The source identification technique has the potential
to pinpoint emission sources that may be invisible or hidden from the visua inspection (even)
by experts when a building with air quality problems is concerned.
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