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Convenient Model for Systems with Hystereses-Control

Rafael Wisniewski and John Leth

Abstract— We establish a model of a system with hystereses,
which allows for standard stability analysis of fixed points
and closed orbits. To this end, we represent a system with
hystereses as a piecewise-affine switched system that consists of
a family of dynamical systems defined on disjoint polyhedral
sets. The discrete transitions are realized by reset maps defined
on the facets of these polyhedral sets. We have shown that
the state space of a resulting switched system is a smooth
manifold, the Cartesian product of a torus with an Euclidean
space. Additionally, we construct the charts explicitly. Thereby,
the analysis of a system with hystereses can be seen as the
analysis of a dynamical system on a manifold. This dynamical
system in a chart corresponds to a differential equation with
discontinuous right hand side, which solution is shown to exist
and to be unique.

I. I NTRODUCTION

Modeling of systems with hystereses were studied in [1],
[2], [3], [4]. In these works, scalar hysteresis operators,
including Preisach and Duhem operators, were examined.
Furthermore, existence and uniqueness of solutions of ordi-
nary and partial differential equations coupled with hysteresis
operators were investigated.

We study in this work systems with multiple hystereses,
seen as switched system. By a hysteresis, we understand a
binary mechanism that switches the dynamics whenever a
state reaches either its upper or lower limits.

As for the study of any phenomena in dynamical systems,
the very first challenge is to establish a convenient definition
of a state space and a notion of a trajectory such that existing
theories may be applied. For this purpose, we model a system
with hystereses as a switched system. A switched system is
a hybrid system which consists of several subsystems and
a rule that orchestrates the switching among them. In this
paper, the state space of a switched system is a disjointed
union of polyhedral sets. The discrete transitions are realized
by reset maps defined on the facets of the polyhedral sets.
The reset maps are regarded as generators of an equivalence
relation allowed by gluing the polyhedral sets together. The
resulting quotient state space is a quotient space. This idea
has been used before in [5], [6] and [7]; whereas, the original
contribution of this work is to show that the quotient state
space of a system with hystereses can be described as a
smooth manifold with system dynamics given by piecewise
smooth trajectories. Ifn is the number of states andm ≤ n is
the number of hystereses, then this manifold is the Cartesian
product of anm-torus and an(n−m)-dimensional Euclidean
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space. An advantage of the current approach is that this
construction allows for the application of standard methods
from analysis of differential equations with discontinuous
right hand side [8], [9] in the study of systems with multiple
hystereses.

Furthermore, we construct explicitly coordinate charts
on the studied manifold. In specific applications, this is a
valuable tool, as it allows for concrete analytical studiesand
numerical computations. For example, stability analysis of
a critical point can be carried out by means of Lyapunov
stability [9], [10], [11]. Moreover, stability analysis and
control synthesis of periodic orbits can be conducted by
means of a Poincaré map [12], [13], [14], [15] and [16],
[17].

The article is organized as follows. Section II sets up
the notation and terminology. Section III is divided into
four parts. In the first two subsections, we establish the
foundations: a system with hystereses is modeled as a
switched system, and system trajectories are defined. The
next subsection contains the first main result stating that the
quotient state space of the resulting switched system is a
smooth manifold. The final subsection contains the second
main result, which shows that the dynamics of a system
with hystereses can be equivalently expressed as a dynamical
system on this manifold.

II. PRELIMINARIES

We writeF � P to indicate thatF is a face of a polyhedral
setP , andF ≺ P to indicate thatF is a proper face ofP
(F � P and F 6= P ). A map f : P → P ′ is said to
be polyhedral if it is a continuous injection, and if for any
F � P there isF ′ � P ′ with dim(F ) = dim(F ′) such that
f(F ) ⊆ F ′.

For a given subsetU of a topological spaceX, by cl(U),
int(U) and bd(U) we denote the closure, the interior and
the boundary ofU in X, respectively.

We denote byR+ the set of non-negative reals[0,∞[, by
Z+ the set of non-negative integers{0, 1, 2, . . .}, and byN
the set of natural numbers{1, 2, . . .}.

III. H YSTERESES ASSWITCHED SYSTEMS

We consider ann dimensional system withm hystereses

ẋ = ξ(x; δ1, . . . , δm) = ξδ(x). (1)

The value of eachδi is either0 or 1 and is determined by
m hystereses

δi =











1 if xi ≥ Xu
i

0 if xi ≤ X l
i

δi if X l
i < xi < Xu

i ,

(2)



whereXu
i and X l

i are the predefined, respectively, upper
and lower limit forxi. By convention,δi = 0 for any initial
conditionxi(t0) ∈]X l

i , X
u
i [ for (1).

A. System with Hystereses as a Switched System

To begin with, we consider the following scenario. Let

x(t0) ∈ ]X l
1, X

u
1 [× . . .×]X l

m, X
u
m[×R

n−m;

hence, by conventionδ = 0. Suppose now that at timet,
xi reaches the upper limitXu

i , then δi = 1. This scenario
indicates that the system withm hystereses comprises2m

dynamical systems

ẋ = ξδ(x), δ ∈ 2
m, (3)

with 2 = {0, 1} and ξδ(x) = ξ(x; δ), defined on the
polyhedral set

Q = [X l
1, X

u
1 ]× . . .× [X l

m, X
u
m]× R

n−m. (4)

A discrete transition between these systems takes place
whenever a trajectory reaches the boundary ofQ. This
description goes with the concept of a switched system.

Definition 1 (Switched System):A switched system (of
dimensionn) is a triple (P,S,R) where

• P = PD is a finite family of polyhedral sets
P = {Pδ ⊂ R

n | Pδ a polyhedral set, dim(Pδ) =
n, δ ∈ D}, andD is a finite index set.

• S is a finite family of smooth vector fields
S = {ξδ : Pδ → R

n | Pδ ∈ P, δ ∈ D}.
• R = RJ is a finite family of polyhedral maps, called

reset maps,
R = {Rj : F → F ′ | F ≺ P ∈ P, F ′ ≺ P ′ ∈
P, dim(F ) = dim(F ′) = n − 1, j ∈ J}, andJ is a
finite index set.

Next, we demonstrate that a system withm hystereses is a
switched system(P,S,R). The setP consists of2m copies
of the polyhedral setQ in (4)

P = {Pδ = Q× {δ}| δ ∈ 2
m}. (5)

Formally, in (5), we have separated (made disjoint) each of
the copies ofQ.

Let δ0[a, b] = {a}, andδ1[a, b] = {b}. For a system with
m hystereses, the facets on the polyhedral set

Q = [X l
1, X

u
1 ]× . . .× [X l

i , X
u
i ]× . . .× [X l

m, X
u
m]×R

n−m

(6)
are

Fαi = Fαi (Q) = [X l
1, X

u
1 ]× . . .× δα[X l

i , X
u
i ]× . . .

. . .× [X l
m, X

u
m]× R

n−m (7)

for i ∈ {1, . . . ,m} andα ∈ 2. The facet operators commute
in the following sense

Fαi ◦ F βj (Q) = F βj−1 ◦ F
α
i (Q), i < j, α, β ∈ 2.

Example 1:For a three dimensional system with two
hystereses, the polyhedral setQ has four facets (α ∈ 2)

Fα1 = Fα1 (Q) = δα[X l
1, X

u
1 ]× [X l

2, X
u
2 ]× R

Fα2 = Fα2 (Q) = [X l
1, X

u
1 ]× δα[X l

2, X
u
2 ]× R

This particular case will be used to exemplify the concepts
introduced throughout the paper.

The setS consists of2m systems given by (3). Whereas,
the setR of reset maps is

R = {Ri(δ)| (i, δ) ∈ {1, . . . ,m} × 2
m}.

To define the mapsRi(δ), let a mapl : {1, . . . ,m}×2
m →

2
m be given by

l(i, δ) = (δ1, . . . , δi−1, δi + 1, δi+1, . . . , δm),

where the results of the summation are computed modulo2.
Intuitively, the mapl takes a polyhedral set enumerated byδ
to the future polyhedral set. Notice that onlyith coordinate of
δ is changed, which indicates that the switching takes place
as a result ofxi having reached its upper or lower boundary.

The reset map

Ri(δ) : F
li(i,δ)
i × {δ} → F

li(i,δ)
i × {l(i, δ)}

is subsequently defined by

Ri(δ) (x, δ) = (x, l(i, δ)).

Example 2:To characterize the setR of a three dimen-
sional system with two hystereses, the mapl is given by

l(i, δ) = (l1(i, δ), l2(i, δ)) =

{

(δ1 + 1, δ2) if i = 1
(δ1, δ2 + 1) if i = 2.

The setR = {Ri(δ)| (i, δ) ∈ {1, 2} × 2
2} consists of eight

reset maps. The switched system is illustrated in Fig. 1. Here,
each element ofQ has been (orthogonally) projected onto the
(x1, x2)-space. Hence, the polyhedral setsPδ are represented
by squares. The three squaresP(0,1), P(1,0), P(1,1) have been
vertically and/or horizontally reflected. The stippled lines in
the drawing indicate the reset maps inR.
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Fig. 1. Thex1x2-state space of a system with two hystereses, where for
clarity of illustration we assume(Xl

i , X
u
i ) = (0, 5). The reset maps are

indicated by the stippled lines. The last(n − m) coordinates have been
suppressed; thus, eachPδ = Q× {δ} is illustrated by a square. By abuse
of notation, the facets ofPδ are denoted byFα

i (instead ofFα
i × {δ}).



B. Trajectories of a System with Hystereses

A vital object for studying the behavior of any dynamical
system is its trajectory. In order to introduce the notion ofa
trajectory of a switched system, we bring in a concept of a
time domain.

In the following, we denote sets of the form{a, . . . } with
a ∈ Z+ as {a, . . . ,∞}. Let k ∈ N ∪ {∞}; a subsetTk ⊂
R+ × Z+ will be called a time domain if there exists an
increasing sequence{ti}i∈{0,...,k} in R+ ∪ {∞} such that

Tk =
⋃

i∈{1,...,k}

(Ti × {i})

whereTi = [ti−1, ti] if i ∈ {1, . . . , k − 1}, and

Tk =

{

[tk−1, tk] if tk <∞

[tk−1,∞[ if tk = ∞.

Note thatTi = [ti−1, ti] for all i if k = ∞. We say that the
time domain is infinite ifk = ∞ or tk = ∞. The sequence
{ti}i∈{0,...,k} corresponding to a time domain will be called
a switching sequence.

Definition 2 (Trajectory):A trajectory of the switched
system(PD,S,RJ ) is a pair(Tk, γ), wherek ∈ N ∪ {∞}
is fixed, and

• Tk ⊂ R+ × Z+ is a time domain with corresponding
switching sequence{ti}i∈{0,...,k},

• γ : Tk → X =
⋃

δ∈D Pδ is continuous (X has the
disjoint union topology) and satisfies:

1) For eachi ∈ {1, . . . , k−1}, there existδ 6= δ′ ∈ D
such thatγ(ti; i) ∈ bd(Pδ), and γ(ti; i + 1) ∈
bd(Pδ′).

2) For eachi ∈ {1, . . . , k}, there existsδ ∈ D such
that the Cauchy problem

∂

∂t
γ(t; i) = γ̇(t; i) = ξδ(γ(t; i)), (8)

γ(ti−1; i) ∈ Pδ

has a solution onTi ⊂ Tk.
3) For eachi ∈ {1, . . . , k − 1}, there existsj ∈ J

such thatRj(γ(ti; i)) = γ(ti; i+ 1).

A trajectory atx is a trajectory(Tk, γ) with γ(t0; 1) = x.

C. State Space as a Manifold

To study any dynamical system, the starting point is a
convenient definition of the state space. It was suggested in
[6] and [7] to glue the state spaces of respective subsystems
of a switched system together on the subsets identified
by the reset maps. We adapt this concept in this article,
and additionally, we impose a differentiable structure on
the resulting space. This is essential for any analysis of
dynamical systems.

For a switched system(P,S,R), we define the state space
which is the union of polyhedral sets

X =
⋃

δ∈22

Pδ.

with disjoint union topology. Let∼⊂ X × X be the
equivalence relation generated by the relationsx ∼ R(x)
for all reset mapsR ∈ R and all pointsx in the domain
of R. The quotient state space of the switched system is the
quotient space

X∗ = X/ ∼,

which we will refer to in the sequel simply as the state space.
The equivalence class ofx ∈ X is denoted by

[x] = {y ∈ X| ∃R1, . . . Rl ∈ R ∪R−1 such that

y = Rl · . . . ·R1(x)}

with R−1 = {R−1| R ∈ R}.
Example 3: In particular, for a three dimensional system

with two hystereses, letx ∈ X. If x ∈ int(Pδ) for
some δ ∈ 2

2, the equivalence class[x] = {(x; δ)}. If
x ∈ int(F 1

1 × {(0, 0)}), then [x] = {(x; 0, 0), (x; 1, 0)},
and if x ∈ (F 1

1 ∩ F 1
2 ) × {(0, 0)}, we have [x] =

{(x; 0, 0), (x; 1, 0), (x; 0, 1), (x; 1, 1)}. Furthermore,X∗ is
the product of a 2-torus with the reals,X∗ = T

2×R; Fig. 1
illustrates this situation.

Theorem 1:The state spaceX∗ of ann-dimension system
withm hystereses is the Cartesian product of anm-torus with
(n−m)-dimensional Euclidean space,X∗ = T

m × R
n−m.

Proof: We only give a sketch of proof since details
involve lengthy but straight forward combinatorics.

Let Ii(δ) denote the interval[X l
i , X

u
i ] in the definition of

Pδ in (6) and (5). Note that identifications take place between
elements ofIi(δ) andIj(δ′) iff i = j andδ 6= δ′. Therefore,
without loss of generality, we can restrict our attention to
Ii(δ), δ ∈ 2

m for fixed i ∈ {1, 2, . . . ,m}.
Consider anIi(δ) with δi = 0. By means of the reset

mapsRj(δ), j 6= i, the whole intervalIi(δ) is identified
with m− 1 intervalsIi(δ′) with δ′i = 0 and δ′j = δj except
for precisely onej. This procedure also applies for each of
the intervalsIi(δ′). Continuing this way, we conclude that
the2m−1 intervals corresponding to the deltas having values
0 at the i’th entry are all identified. The same conclusion
also holds for the2m−1 intervals corresponding to deltas
having 1 at the i’th entry. Therefore, we are left with only
two intervals corresponding toδi = 0 andδi = 1. These are
identified at their endpoints, by reset mapsRi(δ), δ ∈ 2

m,
which gives rise to a one-sphere. This completes the proof.

In the following, we will explicitly construct a differ-
entiable structure on the state spaceX∗ of a system with
hystereses. At the outset, we define a set

Kl = {F � Pδ| Pδ ∈ P, dim(F ) = l},

and for S ⊂ Q with Q given in (4). For an arbitrary but
fixed δ′, let

Kl(S) = {F ∈ Kl| π−1 ◦ π(S × δ′) ∩ F = ∅}

with the mapπ : X → X∗ denoting the canonical pro-
jection π(x) = [x]. Hence, the setKl(S) consists of alll-
dimensional faces inP that do not contain points identified,



via ∼, with S × {δ′}, i.e., all l-dimensional facesF ∈ P
such that[F ] ∩ [S × {δ′}] = ∅.

Example 4: In particular, forn = 3 andm = 2,

K3 = P, {Fαi × {δ}| (α, i, δ) ∈ 2× {1, 2} × 2
2} ⊂ K2,

and
K2 (F σ1

1 ◦ F σ2
2 (Q)) , for σ ∈ 2

2

contains all the facets of polyhedral sets inP that do not
contain the line

F σ1
1 ◦ F σ2

2 (Q) = δσ1 [X l
1, X

u
1 ]× δσ2 [X l

2, X
u
2 ]× R

For σ ∈ 2
m, let

Uσ = X −Kn−1 (F σ1
1 ◦ . . . ◦ F σm

m (Q)) ,

and defineψσ : Uσ → R
n by ψσ(x; δ) = Jδ(x− rσ), where

Jδ is n by n diagonal matrix

(Jδ)ij =











0 for i 6= j

(−1)δi for i = j, i ≤ m

1 for i = j, i > m

and

(rσ)i =

{

Xu
i σi +X l

i(1− σi) for i ≤ m

0 for i > m.

Specifically, the new coordinatesy = ψσ(x) for i ∈
{1, . . . ,m} are

yi = (−1)δi(xi −Xu
i σi −X l

i(1− σi)),

and thusyi ∈]X l
i − Xu

i , X
u
i − X l

i [. We refer to the pair
(Uσ, ψσ) defined above as a chart onX. Figure 2 illustrates
the image ofψσ for a system with two hystereses.

5

−5

−5

5

ψσ(Uσ ∩ P(1−σ1,σ2)) ψσ(Uσ ∩ P(σ1,σ2))

ψσ(Uσ ∩ P(σ1,1−σ2))ψσ(Uσ ∩ P(1−σ1,1−σ2))

Fig. 2. For(Xl
i , X

u
i ) = (0, 5), the setψσ(Uσ) =] − 5, 5[×] − 5, 5[ is

projected to they1y2-space. Each of the four the quadrants indicates where
ψσ maps the polyhedral setUσ ∩ Pδ to.

Proposition 1: Let σ ∈ 2
m.

1) The setsUσ and U∗
σ = π(Uσ) are open inX (with

disjoint union topology) andX∗ (with quotient topol-
ogy), respectively. Moreover,X∗ =

⋃

σ∈2m U∗
σ and

X =
⋃

σ∈2m Uσ.

2) For anyx andx′ ∈ Uσ, ψσ(x) = ψσ(x
′) if and only

if x ∼ x′. Moreover,ψσ is a continuous.
3) For anyP ∈ P, the restrictionψσ|Uσ∩P is a restriction

of an affine isomorphismRn → R
n.

4) Let V = ψσ(Uσ). There is a homeomorphismψ∗
σ

completing the diagram (ψσ = ψ∗
σ ◦ π)

Uσ

ψσ

��

πσ
// U∗
σ

ψ∗

σ}}

V

(9)

Proof: Properties 1), 2) and 3) follow immediately from
the definitions. Whereas, Property 4) follows from Corollary
22.3 in [18].

We make the following two observations based on Propo-
sition 1. For anyσ, σ′ ∈ 2

m and anyδ ∈ 2
m, the compo-

sition ψ∗
σ′ ◦ ψ∗

σ
−1

∣

∣

ψσ(Uσ∩Uσ′∩Pδ)
is an affine isomorphism.

Thus, ψ∗
σ′ ◦ ψ∗

σ
−1 is piecewise affine onψσ(Uσ ∩ Uσ′).

Moreover, the family of (affine) charts{(U∗
σ , ψ

∗
σ)}σ∈2m

constitutes a differentiable structure onX∗.
Henceforth, we refer to a pair(U∗

σ , ψ
∗
σ) defined in diagram

(9) as an affine chart onX∗.
So far, we have described the state space for a system

with hystereses as a single smooth manifold with explicitly
given charts. Now, we are ready for the next step, which
is to formulate the dynamics of the system on the resulting
manifold.

D. Dynamics on the State Space Manifold

In the present case, the resulting manifold has a partition
induced by the polyhedral sets of the switched system.
In each cell of the partition, the dynamics is smooth but
discontinuous on the facets. This complicates the analysisvia
local charts beyond the theory of smooth dynamical systems.
To resolve this problem, we employ the concept of a local
switched system, which is defined on the image of the local
chart. The next definition formalizes this notion.

Definition 3 (Local Switched System):A local switched
system (of dimensionn) is a triple (W, C,F) where

• W is a polyhedral set of dimensionn in R
n.

• C = {Qi| i ∈ I} is a family of polyhedral sets which
partitionW .

• F is a family of smooth functionsF = {fi : Qi →
R
n | i ∈ I}.

The dynamics of the local switched system(W, C,F) is
governed by the following differential inclusions

ẏ(t) ∈ F (y(t)) (almost everywhere) (10)

where the set valued mapF is defined by

F : W → 2R
n

; y 7→ {v ∈ E| v = fi(y) if y ∈ Qi}

with 2R
n

the power set ofRn. Basic properties and stability
of local switched system were studied in the authors previous
work [20]. In the next proposition, we show that the system
with hystereses looks locally like a local switched system;
recall that the dynamics of the system is given byξδ in (3).



Proposition 2: Let (Uσ, ψσ) be a chart onX. For any
n-dimensional polyhedral setW ⊂ V = ψσ(Uσ), let

C ={Qδ| Qδ =W ∩ ψσ(Pδ ∩ Uσ), δ ∈ 2
m}

F ={fδ : Qδ → R
n | fδ = Dψδξδ ◦ (ψ

δ)−1,

ψδ = ψσ|ψ−1
σ (Qδ)

, δ ∈ 2
m}

then the triple(W, C,F) is a local switched system.
Figure 3 illustrates Proposition 2 for a system with two

hystereses.
Proof: SinceW ⊂ V andUσ ⊂

⋃

δ∈2m Pδ we have
W =

⋃

δ∈2m Qδ. Hence, to complete the proof we need
to show that theQδ ’s are indeed polyhedral sets, but this
follows directly from Property 3) of Proposition 1.

5

−5

−5

5

Q(1−σ1,σ2)

Q(σ1,σ2)

Q(σ1,1−σ2)

Q(1−σ1,1−σ2)

Fig. 3. The figure illustrates the setW in Proposition 2. The setW ,
bounded by the thick line, is insideV = ψσ(Uσ), the square, in the
x1x2-space. Here,(Xl

i , X
u
i ) = (0, 5). The direction of the vector fieldfδ

satisfying Condition (14) in Proposition 4 is indicated by the dark shaded
triangles.

We shall call a triple(W, C,F) as in Proposition 2 a local
switched system generated by the chart(Uσ, ψσ).

We calculate the vector fields inF explicitly. The vector
fields fδ ∈ F are given by

fδ(y) = Jδξδ(x), wherex = J−1
δ y + rσ.

and in coordinates

〈fδ(y), ei〉 =

{

(−1)δi〈ξδ(x), ei〉 for 1 ≤ i ≤ m

〈ξδ(x), ei〉 for m < i ≤ n,
(11)

whereei, i ∈ {1, . . . , n}, are canonical basis vectors inRn,
e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1). In particular,ξδ is
transversal to a facetF of Pδ at x ∈ F if and only if fδ is
transversal to the facetψσ(F ), providedx is in the domain
of ψσ.

In the next proposition, we characterize solutions of a local
switched system generated by a chart. A crucial question
is whether such a solution is the same as a solution of the
original switched system. Indeed, the next proposition shows
that in any chart, a trajectory of a system with hystereses is
exactly the solution of the local switched system generated

by this chart. Thus, the analysis of the system with hystereses
can be carried out in the charts covering the spaceX.

Proposition 3: Let (W, C,F) be a local switched system
generated by the chart(Uσ, ψσ) onX (of the switched sys-
tem (P,S,R)), and let(Tk, γ) be a trajectory of(P,S,R)
with γ(t0; 1) = x0 such thatγ(t; i) ∈ ψ−1

σ (W ) for all
(t; i) ∈ Tk. Then

y(t) = ψσ(γ(t; i)) (12)

is a solution of the Cauchy problem

ẏ(t) ∈ F (y(t)) a.e., y(0) = ψσ(x0). (13)

Conversely, ify(t) is a solution of the Cauchy problem (13)
in W then there is a trajectory(Tk, γ) of the switched system
(P,S,R) such that (12) holds.

Proof: Let {ti}i∈{0,...,k} be the switching sequence
corresponding toTk. For eachi ∈ {1, ..., k} there exists
δ ∈ 2

m such thatγ̇(t; i) = ξδ(γ(t; i)) for all t ∈ [ti−1, ti].
Recall that

ψδ = ψσ|ψ−1
σ (Qδ)

, δ ∈ 2
m.

The vector fieldsfδ ∈ F andξδ ∈ S areψδ-related, i.e.,

fδ = Dψδξδ ◦ (ψ
δ)−1.

Thus γ and the solutiony of the Cauchy probleṁy(t) =
fδ(y(t)), y(ti−1) = ψσ(γ(ti−1; i)) commute in the following
senseψσ(γ(t; i)) = y(t) for t ∈ [ti−1, ti]. This completes the
first part of the proof sinceψσ(γ(ti; i)) = ψσ(γ(ti; i + 1))
by Property 3) in Definition 2.

To prove the second statement, lety be the solution of the
Cauchy problem (13) on[0, T ] with 0 < T <∞, and define
δ̄ : [0, T ] → 2

m a.e. by

δ̄(t) = δ if and only if ẏ(t) = Dψδξδ ◦ (ψ
δ)−1(y(t)).

Let {ti}i∈{0,..,k} with k ∈ N+ ∪ {∞} be the increasing
sequence of points in[0, T ] where δ̄ is not well defined.
Hence,δ̄ is constant onIi+1 =]ti, ti+1[, and so it may be
(trivially) extended to a continuous map oncl(Ii). Now, for
eachi ∈ {1, . . . , k}, we define the mapγi on Ii by γi(t) =
(ψδ̄(t))−1(y(t)) and extend it to a continuous map oncl(Ii).
Hence, the time derivative ofγi on Ii is

γ̇i(t) = ξδ̄(t)(γi(t)).

The trajectory (Tk; γ) is now defined by Tk =
⋃

i∈{1,...,k} cl(Ii) andγ(t; i) = (γi(t), δ̄(t)).
In the next proposition, we show that under the following

condition
{

〈ξ(x; δ), ei〉〈ξ(x; l(i, δ)), ei〉 < 0

∀i ∈ {1, . . . ,m}, ∀δ ∈ 2
m, ∀x ∈ F

li(i,δ)
i × {δ}

(14)

the solution of the Cauchy problem in (13) is unique.
Condition (14) means that at any interior point of each
facet of any polyhedral setPδ, after gluing polyhedral sets
together, there is exactly one vector field pointing into and
one vector field pointing out ofPδ. We find this condition
natural for systems with hystereses as switching provoked by



xi crossing the upper limitX l
i or the lower limitXu

i should
change the direction of the flow to the opposite. Specifically,
if xi were increasing before the switching then it would
decrease after the switching, and vice versa.

Proposition 4: Suppose that Condition (14) holds. Let
(W, C,F) be a local switched system generated by the chart
(Uσ, ψσ). Then, for anyy0 ∈ int(W ), there exists a unique
solution aty0. That is, there exist0 < T <∞ and a unique
absolutely continuous functiony : [0, T ] → W ; t 7→ y(t)
which solves the Cauchy problem

ẏ(t) ∈ F (y(t)) a.e., y(0) = y0.

Proof: If y0 ∈ int(Qδ) for someδ, then there is an open
neighborhoodO of y0 such thatF (y) is a singleton for any
y ∈ O thus the proposition follows from the Picard-Lindelöf
Theorem.

If y0 6∈ int(Qδ), for any δ, then y0 ∈ {(a, b) ∈ R
m ×

R
n−m | ∃i ∈ {1, . . . ,m} such thatai = 0}. Hence, from

Condition (14) and equation (11), we conclude thatF (y0)∩
TQδ

(x0) = {fδ(y0)} for someδ, where, in generic notation,
TS(x) denotes the contingent cone to the convex setS at
z ∈ S. In other words,TS(x) is the closure of the cone
spanned byS \ {z}. This implies the existence of a unique
solution aty0.

We have the following corollary form the proof of Propo-
sition 4.

Corollary 1: If F in Proposition 4 is replaced byF c :
W → 2R

n

; y 7→ co(F (y)), whereco(F (y)) is the convex
hull of F (y), then the statement of the proposition still
holds. Furthermore, the unique solutions of the two Cauchy
problemsẏ(t) ∈ F (y(t)) and ẏ(t) ∈ F c(y(t)) with y(0) =
y0 coincide.

By combining Proposition 4 with Proposition 3, we con-
clude under inherent assumptions that the trajectories of
a system with hystereses can be represented uniquely as
solutions of a local switched system generated by a chart.
This is formalized in the theorem below.

Theorem 2:Suppose that Condition (14) holds. Let
(W, C,F) be a local switched system generated by the chart
(Uσ, ψσ) onX. Then(Tk, γ) is a trajectory of(P,S,R) with
γ(t0; 1) = x0 such thatγ(t; i) ∈ ψ−1

σ (W ) for all (t; i) ∈ Tk
if and only if

y(t) = ψσ(γ(t; i))

is the unique solution of the Cauchy problem

ẏ(t) ∈ F (y(t)) a.e., y(0) = ψσ(x0).

IV. CONCLUSION

We have shown that the state space of ann-dimensional
system withm hystereses can be modeled as a smooth
manifold, the Cartesian product of anm-torus and an
(n−m)-dimensional Euclidean space. The charts have been
constructed explicitly, making the results of this work ready
for use in concrete applications. Moreover, the dynamics of

the system with hystereses have been shown to be equivalent
to a dynamical system defined in a chart by means of a
differential inclusion.
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