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Convenient Model for Systems with Hystereses-Control

Rafael Wisniewski and John Leth

Abstract—We establish a model of a system with hystereses, space. An advantage of the current approach is that this
which allows for standard stability analysis of fixed points  construction allows for the application of standard method
and closed orbits. To this end, we represent a system with 5 analysis of differential equations with discontingou

hystereses as a piecewise-affine switched system that consigts o . . . . .
a family of dynamical systems defined on disjoint polyhedral right hand side [8], [9] in the study of systems with multiple

sets. The discrete transitions are realized by reset maps defined hystereses. o _
on the facets of these polyhedral sets. We have shown that Furthermore, we construct explicitly coordinate charts

the state space of a resulting switched system is a smooth on the studied manifold. In specific applications, this is a
manifold, the Cartesian product of a torus with an Euclidean 5juable tool, as it allows for concrete analytical studies

space. Additionally, we construct the charts explicitly. Thereby, merical computations. For example. stability analvsis o
the analysis of a system with hystereses can be seen as th u : putat ) xample, ity ysl

analysis of a dynamical system on a manifold. This dynamical @ critical point can be carried out by means of Lyapunov
system in a chart corresponds to a differential equation with ~ stability [9], [10], [11]. Moreover, stability analysis en
discontinuous right hand side, which solution is shown to exist control synthesis of periodic orbits can be conducted by

and to be unique. means of a Poincarmap [12], [13], [14], [15] and [16],
|. INTRODUCTION [17].

Modeling of systems with hystereses were studied in [1][h The article is organized as follows. Section Il sets up

: e notation and terminology. Section Ill is divided into
[2], [3], [4]. In these works, scalar hysteresis operator . . :
: . . . ur parts. In the first two subsections, we establish the
including Preisach and Duhem operators, were examined. L ) .
Pundatlons. a system with hystereses is modeled as a

Furthermore, existence and uniqueness of solutions of ordl . : : .
nary and partial differential equations coupled with hgesi switched system, and system trajectories are defined. The
5 next subsection contains the first main result stating tiat t

operators were investigated. uotient state space of the resulting switched system is a
We study in this work systems with multiple hysteresesq € sp , 9 >d Sy
mooth manifold. The final subsection contains the second

seen as switched system. By a hysteresis, we understand a . .
: . . . main result, which shows that the dynamics of a system

binary mechanism that switches the dynamics whenever a . .

state reaches either its upper or lower limits. with hysteresgs can_be equivalently expressed as a dyrlamica
As for the study of any phenomena in dynamical systemg,yStem on this manifold.

the very first challenge is to establish a convenient dedimiti 1. PRELIMINARIES

of a state space and a notion of a trajectory such that egistin e write 7 < P to indicate that" is a face of a polyhedral
theories may be applied. For this purpose, we model a systejgt P, and F < P to indicate thatF is a proper face of?
with hystereses as a switched system. A switched system('p < PandF # P). Amapf : P — P’ is said to

a hybrid system which consists of several subsystems agd polyhedral if it is a continuous injection, and if for any
a rule that orchestrates the switching among them. In thig < p there isf” < P’ with dim(F) = dim(F") such that
paper, the state space of a switched system is a disjointy(ip) Cr.

union of polyhedral sets. The discrete transitions arezeal For a given subsél’ of a topological spacé’, by cl(U),

by reset maps defined on the facets of the polyhedral setst (/) and bd(U/) we denote the closure, the interior and
The reset maps are regarded as generators of an equivalefigeboundary of/ in X, respectively.

relation allowed by gluing the polyhedral sets togethee Th e denote byR , the set of non-negative reds, o[, by
resulting quotient state space is a quotient space. The idg_ the set of non-negative integefs, 1,2,...}, and byN
has been used before in [5], [6] and [7]; whereas, the originghe set of natural numberd, 2,...}.

contribution of this work is to show that the quotient state Il HYSTERESES ASSWITCHED SYSTEMS
space of a system with hystereses can be described as a :

smooth manifold with system dynamics given by piecewise We consider am dimensional system witm hystereses
smooth trajectories. i is the number of states amd < n is i =E(x;61,. .., 0m) = & (). (1)
the number of hystereses, then this manifold is the Cartesia

product of ann-torus and arfn —m)-dimensional Euclidean The value of eacld; is either0 or 1 and is determined by
m hystereses
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where X* and X! are the predefined, respectively, upper This particular case will be used to exemplify the concepts

and lower limit forz;. By convention,y; = 0 for any initial
conditionz;(to) €)X}, X¢[ for (1).
A. System with Hystereses as a Switched System
To begin with, we consider the following scenario. Let
z(ty) € | XL, XU[x ... x| XL, XY [xR"™;
hence, by conventiod = 0. Suppose now that at time
x; reaches the upper limX!, thené; = 1. This scenario

7

indicates that the system withh hystereses comprisex”
dynamical systems

z =& (x), 6 € 2™,

with 2 = {0,1} and &(z) =
polyhedral set

Q=[XL, XY x...x[X X“]xR"™™,

®)
&(x;9), defined on the

(4)

introduced throughout the paper.
The setS consists of2™ systems given by (3). Whereas,
the setR of reset maps is

R ={R;(d)| (:,0) e {1,...,m} x 2™}
To define the map®;(¢), leta mapl : {1,...,m} x 2™ —
2™ be given by
1(i,6) = (61, - .. ,Om),

where the results of the summation are computed mo2lulo

Intuitively, the mapl takes a polyhedral set enumeratedsby

to the future polyhedral set. Notice that oritls coordinate of

0 is changed, which indicates that the switching takes place

as a result ofr; having reached its upper or lower boundary.
The reset map

Ri(6) : FI'% s {5} — F'O0 s {1(i, 6)}

,51;_1,57; -+ 1,57;4_1,...

A discrete transition between these systems takes place

whenever a trajectory reaches the boundary(bf This
description goes with the concept of a switched system.
Definition 1 (Switched System} switched system (of
dimensionn) is a triple (P, S, R) where
e P ="Pp is a finite family of polyhedral sets
P = {Ps C R" | Ps apolyhedral setlim(Ps) =
n, 6 € D}, and D is a finite index set.
« S is a finite family of smooth vector fields
S={&:Ps—>R"| PscP, 6 €D}

reset maps,

R={R;: F - F |F<PeP, F' <P ¢
P, dim(F) =dim(F")=n—-1, j€ J},andJ is a
finite index set.

is subsequently defined by

Example 2:To characterize the s&® of a three dimen-
sional system with two hystereses, the nidp given by
. . . . . ((51-1—1,(52) if i=1
G,0) = (17, 0), 123, 9)) = {(51,52 )i =2

The setR = {R;(8)] (i,0) € {1,2} x 22} consists of eight

R = R, is a finite family of polyhedral maps, called 'eset maps. The switched system is illustrated in Fig. 1eHer

each element af) has been (orthogonally) projected onto the
(z1,x2)-space. Hence, the polyhedral s&sare represented
by squares. The three squatésg ), 1 ,0), F%1,1) have been
vertically and/or horizontally reflected. The stippledelnin

Next, we demonstrate that a system withhystereses is a the drawing indicate the reset maps7

switched systenfP, S, R). The setP consists o™ copies
of the polyhedral se) in (4)

P={Ps=Qx {5} 6 €2m}. ®)

Formally, in (5), we have separated (made disjoint) each of

the copies ofQ.

Let 6°[a,b] = {a}, and§'[a, b] = {b}. For a system with
m hystereses, the facets on the polyhedral set
Q=[XL, X" x. ... x[XLX"]x...x[X X% xR"™

(6)
are

FO=FYQ) = [XL, XY x ... x 6%[XL, X" % ...

X XL, XM xR (7)

forie {1,...,m} anda € 2. The facet operators commute

in the following sense
FroFl(Q)=F) o FQ), i<j, a,f€2.

......

Fig. 1. Thez;x2-state space of a system with two hystereses, where for

Example 1:For a three dimensional system with tWO(:Iarity of illustration we assuméx!, X*) = (0,5). The reset maps are

hystereses, the polyhedral sgthas four facets( € 2)
F{=F{(Q) = 6[X1,X{] x [X3,X3] xR
Fg=F(Q) = [X1, X{]x6%[X}, X3] xR

indicated by the stippled lines. The lagt — m) coordinates have been
suppressed; thus, eadly = Q x {4} is illustrated by a square. By abuse
of notation, the facets aP; are denoted by’ (instead ofF;* x {4}).



B. Trajectories of a System with Hystereses with disjoint union topology. Let~C X x X be the

A vital object for studying the behavior of any dynamical€duivalence relation generated by the relations- R(z)

system is its trajectory. In order to introduce the notiorof fOF @ll reset mapsiz € R and all pointsz in the domain
trajectory of a switched system, we bring in a concept of gf R: The quotient state space of the switched system is the
time domain. guotient space

In the following, we denote sets of the forfa, ...} with X' =X/~

a € Zy as{a,...,o0}. Letk € NU {oo}; a subsetTx C  which we will refer to in the sequel simply as the state space.
R, x Z, will be called a time domain if there exists anThe equivalence class of € X is denoted by
increasing sequenci; }icyo,... 3 IN Ry U {oo} such that

[z] = {y € X| 3Ry,... R, € RUR ™" such that

ie{1,....k}
N with R~ = {R~!| R € R}.
whereT; = [t;—1,t;] if i € {1,...,k—1}, and Example 3:In particular, for a three dimensional system

i ] if tr < o0 with two hystereses, let € X. If =z € int(FP;s) for

Ty =4 Fbk Lk some§ € 22, the equivalence clasg] = {(z;0)}. If
f

[tk-1,00[ i By = oo. x € int(Ff x {(0,0)}), then [z] = {(z;0,0), (x;1,0)},

H 1 1 _

Note thatl; = [t;_1, ;] for all i if k = co. We say that the and if © € (Fy N Fy) x {(0,0)}, we have [”3]* =

time domain is infinite i — oo or ¢, — co. The sequence 1(:0:0),(z;1,0), (z;0,1), (z;1,1)}. Fgrthergnorer_ IS

{ti}icqo,.. 1) corresponding to a time domain will be callegthe product of a 2-torus with the reals,” = T* x R; Fig. 1
a switching sequence. illustrates this situation.

Definition 2 (Trajectory): A trajectory of the switched

system(Pp, S, R,) is a pair(Tx,v), wherek € NU {00} \yith 1, hystereses is the Cartesian product ofiatorus with
Is fixed, and (n — m)-dimensional Euclidean spac¥,* = T™ x R"~™,
o Tk C Ry X Zy is a time domain with corresponding Proof: We only give a sketch of proof since details
switching sequencét; }ic(o,... k) involve lengthy but straight forward combinatorics.
o v : Tk - X = Usep Ps is continuous X has the  Let I;(§) denote the intervalX!, X] in the definition of
disjoint union topology) and satisfies: Ps in (6) and (5). Note that identifications take place between
1) Foreach € {1,...,k—1},there exist # &' € D  elements ofl;(§) and;(¢’) iff i = j ando # §". Therefore,
such thaty(t;;i) € bd(Ps), and y(t;;4 + 1) €  without loss of generality, we can restrict our attention to

Theorem 1:The state spac&* of ann-dimension system

bd(Ps/). I;(9), 6 € 2™ for fixed i € {1,2,...,m}.
2) For eachi € {1,...,k}, there existsy € D such Consider anl;(§) with §; = 0. By means of the reset
that the Cauchy problem maps R;(d), j # 4, the whole intervall;(d) is identified
P with m — 1 intervals I;(¢") with 9] = 0 and’; = §; except
—(t;1) = A(t;4) = Es(vy(¢;4)), (8) for precisely onej. This procedure also applies for each of
ot . the intervalsZ;(¢’). Continuing this way, we conclude that
Y(ti-137) € Bs the 2™~ intervals corresponding to the deltas having values
has a solution off; C 7y.. 0 at thes'th entry are all identified. The same conclusion
3) For eachi € {1,...,k — 1}, there existsj € J also_ holds for the2™~! intervals corresponding to deltas
such thatR; (y(t;;)) = y(ti;i + 1). having 1 at thei'th entry. Therefore, we are left with only

two intervals corresponding #® = 0 andé; = 1. These are
identified at their endpoints, by reset maRgd), 6 € 2™,
C. State Space as a Manifold which gives rise to a one-sphere. This completes the proof.

. . N u
To study any dynamical system, the starting point is a In the following, we will explicitly construct a differ-

convenient definition of the state space. It was suggested é'?]tiable structure on the state spaké of a system with

[6] and [_7] to glue the state spaces of respective Su_bsys_te_'ﬁystereses. At the outset, we define a set
of a switched system together on the subsets identifie

by the reset maps. We adapt this concept in this article, K'={F X Ps| Ps € P, dim(F) =1},
and add|t!onally, we impose a dlffe_renuable structure_ Orc’!\tnd for S C Q with Q given in (4). For an arbitrary but
the resulting space. This is essential for any analysis Q )
. Ixed ¢, let
dynamical systems.
For a switched systertP, S, R), we define the state space K\(S)={FeK!|7ton(Sxd)NF =0}
which is the union of polyhedral sets

A trajectory atz is a trajectory(7,v) with y(¢p; 1) = x.

with the mapn : X — X* denoting the canonical pro-
X = U Ps. jection 7(z) = [z]. Hence, the sek(S) consists of alll-
sca? dimensional faces ifP that do not contain points identified,



via ~, with S x {¢’}, i.e., all [-dimensional faced” € P
such thatl F] N [S x {§'}] = 0.
Example 4:In particular, forn = 3 andm = 2,

K? =P {F x {6}] (,i,0) € 2 x {1,2} x 2°} C K,

and

K?(F{' o F5*(Q)), for o€ 2?

contains all the facets of polyhedral sets7nthat do not

contain the line

F7' o F32(Q) = 67 [X], X{] x 672[X3, X3] x R

Foro € 2™, let

Up=X K" Y F*o...0 F7"(Q)),

and definey, : U, — R™ by ¢, (x;0) = Js(x —

Js is n by n diagonal matrix

0
(J5)ij = { (—1)%
1

and

XZuO'1+Xll 170’1'
m)z:{ e

0

Specifically, the new coordinateg = ,(x) for i €

{1,...,m} are

yi = (—1)% (z; — XJ'oy — XL(1 = 03)),

and thusy; €]X! — X*, X* — X![. We refer to the pair
(Us, 1) defined above as a chart . Figure 2 illustrates
the image ofy,, for a system with two hystereses.

fori#£j

fori=4j, i<m
fori=j, i>m

Yo (U 0 Plgy 05

fori<m
for i > m.

{ Yo (Uo N Pa_oy 1—09))

Fig. 2. For(X}, X") = (0,5), the setys (Us) =] — 5,5[x] — 5,5[ is
projected to they; y2-space. Each of the four the quadrants indicates where

Yo (Uo N Poy),1-05))

1 maps the polyhedral séf, N Pj to.

Proposition 1: Let o € 2™,

1) The setsU, and U} = =(U,) are open inX (with
disjoint union topology) andy* (with quotient topol-
ogy), respectively. MoreoverX* = J

X =U,com Us.

oc2m

2) For anyz andz’ € Uy, v, (x) = ¢, (2') if and only
if z ~ 2’. Moreover,1), is a continuous.

3) For anyP € P, the restriction), |y, ~p is a restriction
of an affine isomorphisnR™ — R™.

4) Let V = 4,(U,). There is a homeomorphisni
completing the diagramy(, = ¥} o )

U, —==U; )

wal
P
1%

Proof: Properties 1), 2) and 3) follow immediately from
the definitions. Whereas, Property 4) follows from Corollary
22.3in [18]. ]

We make the following two observations based on Propo-
sition 1. For anyo, o’ € 2™ and anyé € 2™, the compo-
sition 7, °¢;_1|¢0(Ugnva,npé) is an affine isomorphism.
Thus, ¥, o ¢~ is piecewise affine ony, (U, N U,).
Moreover, the family of (affine) chart(UZ,¢%)}seom
constitutes a differentiable structure ofi .

Henceforth, we refer to a paft/, 1)) defined in diagram
(9) as an affine chart oX*.

So far, we have described the state space for a system
with hystereses as a single smooth manifold with explicitly
given charts. Now, we are ready for the next step, which
is to formulate the dynamics of the system on the resulting
manifold.

D. Dynamics on the State Space Manifold

In the present case, the resulting manifold has a partition
induced by the polyhedral sets of the switched system.
In each cell of the partition, the dynamics is smooth but
discontinuous on the facets. This complicates the analysis
local charts beyond the theory of smooth dynamical systems.
To resolve this problem, we employ the concept of a local
switched system, which is defined on the image of the local
chart. The next definition formalizes this notion.

Definition 3 (Local Switched System local switched
system (of dimensiom) is a triple (W, C, F) where

o W is a polyhedral set of dimensianin R™.

o C ={Q;| ¢ € I} is a family of polyhedral sets which

partition .
o F is a family of smooth functions¥ = {f; : Q; —
R™ | i€ I}.

The dynamics of the local switched systéi,C, F) is

governed by the following differential inclusions

y(t) € F(y(t)) (almost everywhere) (20)
where the set valued map is defined by
F:W—2% y—{veElv=fiy) if y € Q;}

with 28" the power set oR™. Basic properties and stability
of local switched system were studied in the authors previou
work [20]. In the next proposition, we show that the system
with hystereses looks locally like a local switched system;
recall that the dynamics of the system is givengpyin (3).



Proposition 2: Let (U,,v,) be a chart onX. For any by this chart. Thus, the analysis of the system with hysesres

n-dimensional polyhedral sét’ Cc V = ¢, (U, ), let can be carried out in the charts covering the sp&ce
" Proposition 3: Let (W,C, F) be a local switched system
C={Qs| Qs =W N¢e(PNTVs), 6 €2} generated by the chaft/,,,) on X (of the switched sys-
F={fs:Qs > R" | f5 = Dy’& 0 (¥°) 7, tem (P,S,R)), and let(Tx,v) be a trajectory of P, S, R)
P = Yolyo1(0y » 0 € 2™} with ~y(tp;1) = o such thaty(t;i) € ¢, 1(W) for all

(t;1) € Tr. Then
then the triple(W,C, F) is a local switched system.

Figure 3 illustrates Proposition 2 for a system with two y(t) = o (v(t:17)) (12)
hystereses. is a solution of the Cauchy problem
Proof: SinceW C V andU, C [Uscom Ps We have _
W = Uscam @s. Hence, to complete the proof we need y(t) € F(y(t)) ae, y(0) = ¢y(z0). (13)

to show that theQ)s’s are indeed polyhedral sets, but this

. - C ly, ify(¢) i luti f the Cauch bl 13
follows directly from Property 3) of Proposition 1. [ ] onversely, ify(?) is a solution of the Cauchy problem (13)

in W then there is a trajectoryy, ) of the switched system
(P,S,R) such that (12) holds.

Proof: Let {t;}icqo,...xy b€ the switching sequence
corresponding td7;. For eachi € {1,...,k} there exists
§ € 2™ such thaty(t;i) = (v (t;4)) for all t € [t;-1, ;).
Recall that

P = Yoly1(0s)» 0 € 2™

The vector fieldsfs; € F and¢s € S are®-related, i.e.,
fs = Dy’& 0 (v0) 7",

Thus v and the solutiory of the Cauchy problenj(t) =
Fs(y(), y(ti—1) = o (v(t;—1;1)) commute in the following
sense), (y(t;1)) = y(t) for ¢ € [t;—1,;]. This completes the
3 3 first part of the proof since, (y(ti;7)) = Vo (v(ti;7 + 1))
e — T — 3 by Property 3) in Definition 2.

Fig. 3. The figure illustrates the s&V in Proposition 2. The seW, To prove the second statement, jee the solution of the

bounded by the thick line, is insid¢” = +,(Us), the square, in the 9auchy problem (13) of0, 7'] with 0 < T' < oo, and define
r1x2-Space. Here(Xf,X;‘) = (0,5). The direction of the vector fields J: [0, T] — 2™ g.e. by
satisfying Condition (14) in Proposition 4 is indicated Ihetdark shaded

triangles. 5(t) =g if and only if §(t) = Dy&s o (v°) " (y(t)).

. ) » Let {ti}ico,..ky With & € Ny U {oo} be the increasing
We shall call a triple(W, C, F) as in Proposition 2 a local gequence of points iff), ] where  is not well defined.

switched system generated by the cHart, ¢;). Hence,d is constant onl;,; =]t;,t;11], and so it may be
~ We calculate the vector fields i explicitly. The vector (yjyially) extended to a continuous map ok(Z;). Now, for
fields f5 € 7 are given by eachi € {1,...,k}, we define the map, on I; by v;(t) =

() =1(y(t)) and extend it to a continuous map olz; ).
Hence, the time derivative of; on I; is

Fi(t) = &5y (i (1))

—1)% ;) for1<i< _ _ .

(fs(y),ei) = {Ef ()) <£5>($)’ i) for *<Z f<m (11) The trajectory (7x;v) is now defined by 7, =
x),e; m<1t<n, LAY — 5

o Uieqr,...ny L) andy(t:4) = (vi(t),0(t)). u
er = (1,0,...,0),...,e, = (0,...,0,1). In particular,&; is  condition
transversal to a facef' of Ps atx € F if and only if f5 is (€(2;8), e €213, 6)), ) < 0

A A . . I » - ) ) » - ) 14

g?Tpsversal to the facet, (F'), providedz is in the domain Vie{l,...,m}, Voe2m Vo e FiD g} (14)

In the next proposition, we characterize solutions of allocahe solution of the Cauchy problem in (13) is unique.
switched system generated by a chart. A crucial questid@ondition (14) means that at any interior point of each
is whether such a solution is the same as a solution of ttiacet of any polyhedral sePs, after gluing polyhedral sets
original switched system. Indeed, the next propositiomsho together, there is exactly one vector field pointing into and
that in any chart, a trajectory of a system with hystereses @e vector field pointing out of?’;. We find this condition
exactly the solution of the local switched system generatathtural for systems with hystereses as switching provoked b

fs(y) = Js&s(x), wherex = ngy + 7.

and in coordinates



x; crossing the upper limif! or the lower limitX* should

the system with hystereses have been shown to be equivalent

change the direction of the flow to the opposite. Specificallfo a dynamical system defined in a chart by means of a
if =; were increasing before the switching then it wouldifferential inclusion.

decrease after the switching, and vice versa.

Proposition 4: Suppose that Condition (14) holds. Let
(W,C,F) be a local switched system generated by the charil]
(Usy1s). Then, for anyy, € int(W), there exists a unique

solution aty,. That is, there exish < 7" < co and a unique [2]
absolutely continuous functiop : [0,7] — W; t — y(t)
which solves the Cauchy problem 3]
§(t) € F(y(t) ae, y(0) = yo. a
(5]
Proof: If yo € int(Qs) for somed, then there is an open
neighborhood) of y, such thatF(y) is a singleton for any
y € O thus the proposition follows from the Picard-Lindél [g]
Theorem.

If yo & int(Qs), for any d, thenyy € {(a,b) € R™ x
R™™ | 3i € {1,...,m} such thatas; = 0}. Hence, from
Condition (14) and equation (11), we conclude thdt,) N (7]
To,s(xo) = {f5(yo)} for somed, where, in generic notation, (8]

Ts(z) denotes the contingent cone to the convex Seit

z € S. In other words,Ts(z) is the closure of the cone
spanned byS \ {z}. This implies the existence of a unique [9]
solution atyy. [ ]

We have the following corollary form the proof of Propo-
sition 4.

Corollary 1: If F' in Proposition 4 is replaced by :

W — 28" y = co(F(y)), whereco(F(y)) is the convex

hull of F(y), then the statement of the proposition stillttH!
holds. Furthermore, the unique solutions of the two Cauchy
problemsy(t) € F(y(t)) andy(t) € Fe(y(t)) with y(0) = [12]
Yo coincide.

By combining Proposition 4 with Proposition 3, we con-
clude under inherent assumptions that the trajectories Bl
a system with hystereses can be represented uniquely as
solutions of a local switched system generated by a chart.
This is formalized in the theorem below. [14]

Theorem 2:Suppose that Condition (14) holds. Let; ¢
(W,C, F) be alocal switched system generated by the chart
(Us, 1) on X. Then(Ty, ) is a trajectory of P, S, R) with
v(to; 1) = g such thaty(t;i) € v, (W) for all (¢;4) € Ty
if and only if

[10]

[16]

y(t) = o (v(t;))

is the unique solution of the Cauchy problem

y(t) € F(y(t)) a.e, y(0) = 1y (o).

[17]

(18]
[19]
IV. CONCLUSION
We have shown that the state space ofnadimensional
system withm hystereses can be modeled as a smootboj
manifold, the Cartesian product of am-torus and an
(n —m)-dimensional Euclidean space. The charts have been
constructed explicitly, making the results of this workdga
for use in concrete applications. Moreover, the dynamics of
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