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Robust Structured Control Design

via LMI Optimization ⋆

Fabiano Daher Adegas, Jakob Stoustrup

Dept. of Electronic Systems, Aalborg University, Denmark.
(e-mail: fda@es.aau.dk)

Abstract: This paper presents a new procedure for discrete-time robust structured control
design. Parameter-dependent nonconvex conditions for stabilizable and induced L2-norm
performance controllers are solved by an iterative linear matrix inequalities (LMI) optimization.
A wide class of controller structures including decentralized of any order, fixed-order dynamic
output feedback, static output feedback can be designed robust to polytopic uncertainties.
Stability is proven by a parameter-dependent Lyapunov function. Numerical examples on robust
stability margins shows that the proposed procedure can obtain less conservative results than
traditional stability criteria.

Keywords: Robust control, discrete-time systems, structure systems, iterative methods.

1. INTRODUCTION

The most important topics on the field of robust and
structured control theories are related to bilinear matrix
inequalities (BMI). Some BMI problems can be readily
recast as linear matrix inequalities (LMI) by the use
of standand techniques (e.g. congruence transformation,
linearizing change of variables, projections) and thus are
convex problems. For many others, reformulations are
unknown and maybe will never be addressable by the LMI
framework [Mesbahi et al. (2000) and references therein].

The numerical exact solution of a BMI for arbitrary prob-
lem size is still beyond the state of the art in nonconvex
programming algorithms. Global optimization algorithms
such as branch and bound have been proposed [Goh et al.
(1995), VanAntwerp and Braatz (2000)] but they do not
have polynomial time worst case performance bounds and
are effective only for small problems. On the other hand,
local algorithms consist of iteratively execute efficient
polynomial-time algorithms and thus can provide solutions
for medium to large size problems in a reasonable compu-
tational time, with the drawback that its solution is subop-
timal. They have been applied to structured control and
robust control synthesis problems [Ghaoui et al. (1997),
Grigoriadis and Beran (1999), Ghaoui and Balakrishnan
(1994), Dussy (2000)]. Most of the local algorithms try
to compute a stabilizing controller or a controller that
satisfies a number of specifications, rather than finding one
with optimal performance. Their convergence properties is
also of concern. Some algorithms can even fail to converge,
others converge when the starting point is in a neighbor-
hood of a feasible solution, while some guarantees at least
a stationary point.

Local algorithms initially relied on a single Lyapunov
variable for proving stability and thus could lead to con-
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servative results, especially for robust and multiobjective
control problems. Initiatives followed to reduce conserva-
tiveness by extending them to synthesis conditions based
on parameter-dependent Lyapunov functions [Feron et al.
(1996), Coutinho et al. (2002)].

Another local algorithm for structured linear control de-
sign approximates the nonconvex problem by a convex one
with the addition of a convexifying function [de Oliveira
et al. (2000)]. It is suitable to optimize control performance
and has interesting properties like convergence to a local
minima, easy implementation, and encompass a large class
of structured control problems. Application of this algo-
rithm to robust control would be of interest, if it does not
relied on a single Lyapunov variable.

This paper presents a new local algorithm for robust con-
trol design. Parameter-dependent nonconvex conditions
for synthesis of stabilizable and induced L2-norm per-
formance controllers are solved by an iterative LMI op-
timization. A wide class of controller structures includ-
ing decentralized of any order, fixed-order dynamic out-
put feedback, static output feedback can be robustly de-
signed to polytopic uncertainties. Moreover, a parameter-
dependent Lyapunov function proves system stability. The
proposed algorithm can be seen as an extension to un-
certain parameter-dependent systems of de Oliveira et al.
(2000) and other two subsequent works [Han and Skelton
(2003a), Han and Skelton (2003b)]. A numerical example
on robust stability margins shows that the algorithm can
obtain less conservative results than traditional stability
criteria. Another example deals with the compromise be-
tween robust margins and performance for a decentralized
feedback.

The paper is organized as follows. Section 2 and 3 presents
the nonconvex inequality conditions for analysis and syn-
thesis, respectively. The iterative LMI algorithm to solve
the nonconvex problem is presented on Section 4. The
numerical examples are shown on Section 5.



2. ANALYSIS

The class of linear discrete-time systems in state-space
form given by

x(k + 1) = Ax(k) (1)

is considered for analysis purposes, where the state vector
x ∈ R

n. For an uncertain system, A = A(α) belongs to
the following bounded convex set

{

A(α) : A(α) =

N
∑

i=1

αiAi,

N
∑

i=1

αi = 1, αi ≥ 0

}

. (2)

The Lyapunov stability theory states that, for a LTI sys-
tem, a quadratic and constant Lyapunov function is a nec-
essary and sufficient condition and does not introduce con-
servativeness. In the case of uncertain systems this choice
usually leads to very consevative results. A parameter-
dependant Lyapunov variable P = P (α) contained in a
convex set

{

P (α) : P (α) =
N

∑

i=1

αiPi,
N

∑

i=1

αi = 1, αi ≥ 0

}

(3)

reduces conservativeness by allowing the variation of P
with respect to α.

The next lemma relates Lyapunov stability theory with
uncertain systems.

Lemma 1. (Robust Stability). System (1) is robustly sta-
ble in the uncertainty domain (2) if there exists P (α) =
P (α)′ > 0, such that,

i.
[

P (α) A (α) P (α)
⋆ P (α)

]

> 0. (4)

ii.
[

P (α) A(α)
⋆ P (α)−1

]

> 0. (5)

Proof. Condition (4) directly results from the application
of Lyapunov theory to (1)-(3). Multiplying (4) to the right
by T := diag(I, P (α)−1) and to the left by T ′ = T results
in (5) 2.

The main advantage of formulation (5) is the decoupling of
the state matrix A(α) from any matrix variable. The major
drawback is the nonconvex entry P (α)−1. The focus is to
pursue an alternative parametrization of this nonconvex
variable and derive an alternative stability condition. The
relation between the inverse of a matrix and a polynomial
matrix function, given in the next lemma, will be useful
for this purpose.

Lemma 2. (Convexifying Inequality). For P (α) = P (α)′ >
0 and G(α) the matrix inequality

P (α)−1 ≥ −G(α)′P (α)G(α) + G(α)′ + G(α) (6)

always hold.

With the previous lemma at hand, the theorem in the se-
quel states an equivalence between the Lyapunov stability
condition and a polynomial matrix inequality.

Theorem 3. The following conditions are equivalent:

i. There exists Pi = P ′
i > 0 such that (5) is satisfied.

ii. There exist Pi = P ′
i > 0 and G(α) such that

[

P (α) A(α)
⋆ −G(α)′P (α)G(α) + G(α)′ + G(α)

]

> 0. (7)

Proof. A direct substitution of the P (α)−1 entry located
at the (2,2) position of (5) by the right hand side of
(6) results in (7). The equivalence occurs when G(α) =
P (α)−1. 2

In this paper, G(α) is assumed to belong to a bounded
convex set,

{

G(α) : G(α) =

N
∑

i=1

αiGi,

N
∑

i=1

αi = 1, αi ≥ 0

}

. (8)

All before mentioned matrix functions are infinite dimen-
sional in α. Conditions in a finite dimensional polytopic
convex set, taken in the set of vertices of the parameter
space, are desired. Notice that all entries of (7), except the
convexifying inequality, are affine in α and thus could be
checked at the vertices of the parameter space.

A multi-convexity property for matrix functions poly-
nomially dependent on the parameters [Apkarian and
Tuan (2000)] come as a support for attaining a finite-
dimensional condition.

Lemma 4. (Multi-convexity). [Apkarian and Tuan (2000)]
Consider a polynomially α-dependent LMI of the form,

F(α, z) :=
∑

v∈J

α[v]Mv(z) > 0,

where Mv denote symmetric matrix-valued linear func-
tions of the decision variable z. The notation [v] is the
vector of partial degrees [v] = [v1, . . . , vN ] associated with
the lexicographically ordered term,

α[v] = αv1

1 αv2

2 . . . α
[vN ]
N ,

with the convention α[0] = 1. J is a set of N-tuples of
partial degrees describing the polynomial expansion. The
symbols dk and d designate the partial and total degrees in
the matrix polynomial expansion. Then the LMI condition
over the hyperectangle H,

F(α, z) > 0, H := αi ≤ αi ≤ αi, i = 1, 2, . . . , N,

hold for some z, whenever the finite set of LMI,

F(α, z) > 0, α ∈ Vert H, (9a)

(−1)m ∂2m

∂α2
l1

. . . ∂α2
lm

F(α, z) ≥ 0, ∀α ∈ Vert H, (9b)

where 1 ≤ l1 ≤ l2 ≤ . . . ≤ lm ≤ N , 1 ≤ m ≤ d/2,
2♯{lj = k : j ∈ {1, . . . ,m}} ≤ dk, k = 1, 2, . . . , N .

Theorem 5. (Finite-Dimensional Analysis). System (1) is
robustly stable in the uncertain domain (2) if there exists
Pi = P ′

i > 0 and Gi such that,
[

Pi Ai

⋆ −G′
iPiGi + G′

i + Gi,

]

> 0, i = 1, . . . , N, (10a)

3G′
iPiGi + G′

iPiGj + G′
iPjGi + G′

jPiGi ≥ 0,

i 6= j = 1, 2, . . . , N.
(10b)



Proof. Inequality (10a) is a direct result of (9a) applied
to (7), (8). It is of interest to note that the right hand side
of the convexifying inequality,

−





N
∑

i,j,k=1

αi αj αk G′
iPjGk



 +

N
∑

i=1

αiG
′
i +

N
∑

i=1

αiGi,

is cubically α-dependent (d = 3). The multi-convexity
condition (9b) results in,

Φii = 6 G′
iPiGi,

Φij = 6 G′
iPiGi + 2

(

G′
iPiGj + G′

iPjGi + G′
jPiGi

)

,
[

0 0
0 Φii

]

≥ 0,

[

0 0
0 Φij

]

≥ 0, i 6= j = 1, 2, . . . , N,

and is fully respected by (10b). 2

3. SYNTHESIS

An open-loop, discrete-time uncertain system with state-
space realization of the form

x(k + 1) = A(α)x(k) + Bw(α)w(k) + Bu(α)u(k)

z(k) = Cz(α)x(k) + Dzw(α)w(k) + Dzu(α)u(k)

y(k) = Cy(α)x(k) + Dyw(α)w(k)

(11)

is considered for synthesis purposes, where x(k) ∈ R
n is

the state vector, w(k) ∈ R
nw is the vector of exogenous

perturbation, u(k) ∈ R
nu is the control input, z(k) ∈ R

nz

is the controlled output, and y(k) ∈ R
ny is the measured

output. The system matrices belong to a polytopic convex
set,
{

[

A(α) Bw(α) Bu(α)
Cz(α) Dzw(α) Dzu(α)
Cy(α) Dyw(α) 0

]

:

[

A(α) Bw(α) Bu(α)
Cz(α) Dzw(α) Dzu(α)
Cy(α) Dyw(α) 0

]

=

N
∑

i=1

αi

[

Ai Bw,i Bu,i

Cz,i Dzw,i Dzu,i

Cy,i Dyw,i 0

]

,

N
∑

i=1

αi = 1, αi ≥ 0

}

(12)

Also consider a controller of the form
xc(k + 1) = Ac xc(k) + Bc y(k)

u(k) = Cc xc(k) + Dc y(k)
(13)

where xc(k) ∈ R
nc . Representing the controller matrices

in a compact way,

K
def
=

[

Dc Cc

Bc Ac

]

, (14)

the closed-loop system interconnection of system (11)-
(12) and controller (13) leads to the following closed-loop
system,

x(k + 1) = A(α,K)xcl(k) + B(α,K)w(k)

z(k) = C(α,K)xcl(k) + D(α,K)w(k)
(15)

where the closed-loop system matrices are [Skelton et al.
(1999)],

A(α,K) = A(α) + B(α) K M(α)

B(α,K) = D(α) + B(α) K E(α)

C(α,K) = C(α) + H(α) K M(α)

D(α,K) = F(α) + H(α) K E(α)

A(α) =

[

A(α) 0
0 0

]

B(α) =

[

Bu(α) 0
0 I

]

M(α) =

[

Cy(α) 0
0 I

]

E(α) =

[

Dyw(α)
0

]

H(α) = [Dzu(α) 0] D(α) =

[

Bw(α)
0

]

C(α) = [Cz(α) 0] F(α) = Dzw(α)

(16)

The problem becomes a static output feedback (SOF) if
nc = 0. The static state feedback (SSF) is a particular case
of SOF in which Cy(α) = I. The full-order dynamic output
feedback arises when n = nc. When nc < n, the resulting
structure is the fixed-order dynamic output feedback.
Decentralized controllers of arbitrary order occurs when
K has a block diagonal structure Ac = diag(Aci), . . .,
Dc = diag(Dci).

For ease of exposure, a quadratic α-dependence of the
closed-loop system matrices is avoided by assuming Bu

and Dzu, or Cy and Dyw, parameter-independent. If they
are parameter-dependent, inequality (10b) will differ to
satisfy multi-convexity arguments of Lemma 4.

3.1 Stabilizing Controllers

In the design of stabilizing controllers, the exogenous
perturbations w(k) and the controlled output z(k) are
not considered, thus Bw, Dzw, Dyw, Cz, Dzu = 0. The
condition for finding a stabilizing robust controller,

[

P (α) A(α,K)
A(α,K)′ −G(α)′P (α)G(α) + G(α)′ + G(α)

]

> 0,

(17)

is obtained by similar arguments of the analysis section.
Notice that the closed-loop state matrix A(α,K) appears
only in the off-diagonal terms of the inequality (17). Also
recall that it is assumed affine in α and K. Similarly to the
analysis case, the multi-convexity property is the required
tool to reduce the infinite dimensional inequality (17) to a
finite-dimensional one.

Theorem 6. (Finite-Dimensional Stabilization). System 15
is robustly stabilizable in the uncertain domain (12) if
there exists Pi, K and Gi such that,

[

Pi Ai(K)
Ai(K)′ −G′

iPiGi + G′
i + Gi

]

> 0, i = 1, . . . , N,

(18a)
3G′

iPiGi + G′
iPiGj + G′

iPjGi + G′
jPiGi ≥ 0,

i 6= j = 1, 2, . . . , N.
(18b)

Proof. The proof follows the same lines of Theorem 5 and
will be ommited for brevity. 2

3.2 Induced L2-norm performance controllers

Controller synthesis may also consider performance level
specifications. Defining Tzw(α,K) as the input-output op-
erator that provides the forced response of system (15) to
an input signal w(k) ∈ L2 for zero initial conditions, the
next lemma states a condition for guaranteed upper-bound
on the induced L2-norm of Tzw(α,K).



Lemma 7. (L2-norm performance). ‖Tzw(α,K)‖
2
i,2 < γ

holds in the uncertain domain (12) if the following equiv-
alent conditions are satisfied.

i. There exists P (α) = P (α)′ > 0 and K such that,






P (α) A(α,K)P (α) B(α,K) 0
⋆ P (α) 0 P (α)C(α,K)′

⋆ ⋆ I D(α,K)′

⋆ ⋆ ⋆ γI






> 0

(19)
ii. There exists Pi = P ′

i > 0, G(α) and K such that,










P (α) A(α,K) B(α,K) 0

⋆
−G′(α)P (α)G(α)

+G(α)′ + G(α)
0 C(α,K)′

⋆ ⋆ I D(α,K)′

⋆ ⋆ ⋆ γI











> 0

(20)

Proof. The proof follows similar arguments of the analy-
sis section and will be ommited for brevity. 2

A finite dimensional condition can also be derived for (20).

Theorem 8. (Finite-Dimensional Synthesis). System (15)
has performance level γ in the uncertain domain (12) if
there exists Pi = P ′

i > 0, Gi and K such that,






Pi Ai(α,K) Bi(α,K) 0
⋆ −G′

i Pi Gi + G′ + G 0 Ci(α,K)′

⋆ ⋆ I Di(α,K)′

⋆ ⋆ ⋆ γI






> 0,

i = 1, . . . , N,
(21a)

3G′
iPiGi + G′

iPiGj + G′
iPjGi + G′

jPiGi ≥ 0,

i 6= j = 1, . . . , N.
(21b)

Proof. The proof follows the same arguments of Theorem
5 and is omitted for brevity.

4. ITERATIVE ALGORITHM

If Pi and Gi are considered variables, the constraints
(10), (18), (21) are non-convex functions, Therefore, opti-
mization problems wih such constraints cannot be solved
directly by semidefinite programming. An LMI iterative
algorithm is proposed to overcome such fact. At each
iteraton, Gi is kept in a constant value. The solution of the
optimization problem in the current iteration is utilized to
update the value of Gi for the next iteration.

The right hand side of (6) has a particular interpretation if
we restrict the set of admissible values of G(α). It can be
seen as a parametrization of multivariate Taylor expan-
sions of the function f(P (α)) = P (α)−1. A multivariate
linearization of f(P (α)) at a particular point P ∗(α) can
be obtained if G(α) = P ∗(α)−1. Notice that (6) turns into
an equality when G(α) = P ∗(α)−1 and P (α) = P ∗(α).
This is taken into account to decide for an update rule,

G
{l+1}
i =

(

P
{l}
i

)−1
(22)

where {·} is the iteration index and l is the current iteration
number. The iterative algorithm is conceptually described
by Algorithm 1.

Algorithm 1. (Conceptual). Set initials G
{0}
i , l = 0 and

start to iterate:

(1) Find P
{l}
i > 0 and K{l} that solve the LMI problem

(10), or (18), or (21) with constant G
{l}
i .

(2) If a stopping criterion is satisfied, exit. Else, compute

G
{l+1}
i =

(

P
{l}
i

)−1

. Update possible terms of inter-

est. Increment l = l + 1 and go to step 1.

The general description of Algorithm 1 can be particular-
ized to deal with different analysis and synthesis problems.
Algorithm 2 compute the stability bounds with respect
to an uncertain parameter α1. It resembles a bissection
method combined with LMI feasibility problems.

Algorithm 2. (Stability Bounds). Choose a tolerance ǫ,

initials G
{0}
i , α

{0}
1 = 0, set l = 0 and start to iterate:

(1) If l 6= 0, update α
{l}
1 = α

{l−1}
1 + δα

{l}
1 .

(2) Try to find P
{l}
i (and K if synthesis) for the LMI

problem (10) ((18) if synthesis) with constant G
{l}
i .

(3) If unfeasible, set δα
{l}
i = 1/2 δα

{l}
1 and go to step

1. Else compute G
{l+1}
i =

(

P
{l}
i

)−1

and δα
{l+1}
i =

δα
{l}
1 .

(4) If |α{l} − α{l−1}| < ǫ, stop. Else, set l = l + 1 and go
to step 1.

Algorithm 3 synthesizes a robust controller with minimum
performance level γ.

Algorithm 3. (Performance level γ). Choose a tolerance ǫ,

initials G
{0}
i , set l = 0 and start to iterate:

(1) Find P
{l}
i and K that solve the optimization problem:

Minimize γ subject to (21) with constant G
{l}
i .

(2) Compute G
{l+1}
i =

(

P
{l}
i

)−1

.

(3) If |γ{l} − γ{l−1}| < ǫ, stop. Else, set l = l + 1 and go
to step 1.

Algorithms 1 to 3 assume the LMI problem at the first it-

eration feasible for the chosen values of G
{0}
i . The solution

of standard LMI formulations can give appropriate values

of the Lyapunov variable to compute G
{0}
i using (22). The

same initial value can also be attributed to all G
{0}
i .

5. NUMERICAL EXAMPLES

5.1 Stabilizing Static Output Feedback

The results of the following problem borrowed from
[de Oliveira et al. (1999)] illustrate the effectiveness of
Algorithm 2. The problem is to find the largest scalar α∗

such that A(α) is robustly stable for all |α| < α∗. An initial
G{0} = I was not able to make the first iteration feasible,
therefore a resulting P computed with (4) for the open-
loop nominal plant A(α = 0) was utilized as G{0} = P−1.



A(α) =







0.8 −0.25 0 1
1 0 0 0
0 0 0.2 0
0 0 1 0






+ α







0
0
1
0






[ 0.8 −0.5 0 1 ]

Convergence tolerance is ǫ = 1−4 and the initial δα{0} =
0.1. The algorithm converged after 23 iterations. Figures
(1a)(1b) illustrate the convergence of α and δα for the
analysis problem. The final α(23) = 0.4619 is identical to
the exact maximum value presented at [de Oliveira et al.
(1999)]. The stability bounds for a full state feedback with
control input uncertain matrix,

Bu(β) = β







0
0
1
0






+ (1 − β)







1
0
0
0






0 ≤ β ≤ 1

is also determined. Figures (1c)(1d) ilustrates the conver-
gence towards the bound α(41) = 0.9833. The stability
bounds of a static output feedback is computed considering
a measured output matrix,

Cy =

[

1 0 0 0
0 0 1 0

]

,

as well as the previous uncertain Bu(β). Algorithm 2
computes the bound α(32) = 0.7665. Figures (1e)(1f)
illustrate the evolution of α{l} and δα{l}. Table 1 brings a
summary of the bounds for the different situations as well
as results for usual stability conditions.

Table 1. Summary of stability bounds.

Method Analysis FS SO (C)

Exact Value 0.4619 - -
de Oliveira, 1999 0.4619 0.8892 -
Quadr. Stability 0.4279 - -

RH∞ 0.2956 - -
Algorithm 2 0.4619 0.9833 0.7665

5.2 Decentralized Feedback with Performance Level

In this example a system is robustly controlled using
two decentralized and strictly proper dynamic output
feedbacks. The discrete-time system matrices are,

A(α) =






0.8189 0.0863 0.0900 0.0813
0.2524 1.0033 0.0313 0.2004
−0.0545 0.0102 0.7901 −0.2580
−0.1918 −0.1034 0.1602 0.8604






+ α







1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0







Bw =







0.0953 0 0
0.0145 0 0
0.0862 0 0
−0.0011 0 0






, Bu =







0.0045 0.0044
0.1001 0.0100
0.0003 −0.0136
−0.0051 0.0936






,

Cy =







1 0
0 0
1 0
0 0







′

, Cw =

[

1 0 −1 0
0 0 0 0
0 0 0 0

]

, Dzu =

[

0 0
1 0
0 1

]

,

Dyw =

[

0 1 0
0 0 1

]

, Dzw =

[

0 0 0
0 0 0
0 0 0

]

,

The control objective is to minimize the upper bound γ
on the induced L2-norm from w(k) to z(k). One controller
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Fig. 1. Convergence of stability bounds.

measures the first output and manipulates the first input,
and another controller measures the second output and

manipulates the second input. Initials G
{0}
i have to be

chosen in order to initialize the algorithm. The nominal
system (α = 0) in closed-loop with the following decen-
tralized controller [de Oliveira et al. (2000)],

K =







Dc1 0 Cc1 0
0 Dc2 0 Cc2

Bc1 0 Ac1 0
0 Bc2 0 Ac2






, Ac1 =

[

1.2700 −0.6660
0.5000 0

]

,

Ac2 =

[

0.6300 0.3956
0.5000 0

]

, Bc1 =

[

0.25
0

]

, Bc2 =

[

0.25
0

]

,

Cc1 = [−0.2720 0.2013] , Cc2 = [−0.1760 −0.0810] ,

is used in the LTI version of (19) to compute a single

Lyapunov matrix P . The same initial G
{0}
i = P−1 is

applied to i = 1, . . . N . The aim is to evaluate how
γ varies with respect to the uncertainty range of α. It
is expected that larger uncertainties will result in worse
performance levels. The iterative algorithm in this example
is a mixture of the stability bounds and performance level
algorithms. During the course of the optimization, α{l} is
gradually increased according to Algorithm 2 with δα{0} =
0.001 until a target value αtg is achieved, remaining fixed
throughout the subsequent iterations. The induced L2-
norm LMI of Algorithm 3 is in place of the feasibility LMI



of Algorithm 2. The stopping criteria is convergence of γ
to a tolerance 10−3. γ was computed for uncertainty target
values of αtg = {0.01, 0.02, . . . , 0.06} ∪ {0.001} (Fig. 2a).
The number of iterations to reach convergence varied from
76 to 92.
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Fig. 2. Performance versus uncertainty.

The evolution of γ{l} per iteration for αtg = 0.001
is depicted on Fig. 2b. In this case the uncertainty is
very small, α{l} is kept constant throughout the whole
optimization, and thus the obtained controller is nearly
the same as the optimal controller for the nominal plant.
Notice that γ{l} is monotonically decreasing.

The same behaviour does not occur when α{l} is changing
through the optimization process. The evolution of α{l}

and γ{l} per iteration, for αtg = 0.04, is shown on Fig.(3a)
and Fig.(3b), respectively. Figure (3c) only includes values
of γ{l} < 15, in order to better visualize the convergence.
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Fig. 3. Evolution of δα{l} and γ{l} for αtg = 0.4.

These plots depict results for three different values of ini-
tial δα{0}. Firstly, notice that γ{l} is no longer monotoni-
cally decreasing at every iteration, although this behaviour
shows up after the target value αtg is attained.

Large values of γ{l} during the first iterations for δα{0} =
0.002 can be noticed on Fig. (3b). The value of δα{l} was
reduced from 0.002 to 0.001 at l = 7 (Fig. (3a)), due
to infeasibility of the induced L2-norm LMI problem for
such increment on the uncertainty. Despite the different
solution paths for each value of initial δα{0}, Fig. (3c), the
convergent value of γ differ less than 1%.
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