
 

  

 

Aalborg Universitet

Algorithmic Approach to Abstracting Linear Systems by Timed Automata

Sloth, Christoffer; Wisniewski, Rafal

Published in:
I F A C Workshop Series

DOI (link to publication from Publisher):
10.3182/20110828-6-IT-1002.02568

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Sloth, C., & Wisniewski, R. (2011). Algorithmic Approach to Abstracting Linear Systems by Timed Automata. I F
A C Workshop Series, 4546-4551. https://doi.org/10.3182/20110828-6-IT-1002.02568

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: January 17, 2019

https://doi.org/10.3182/20110828-6-IT-1002.02568
https://vbn.elsevierpure.com/en/publications/a320f64f-fb61-417b-a2a9-cea8d0b53f65


Algorithmic Approach to Abstracting

Linear Systems by Timed Automata ⋆

Christoffer Sloth ∗ Rafael Wisniewski ∗∗

∗ Department of Computer Science, Aalborg University, 9220 Aalborg
East, Denmark (e-mail: csloth@cs.aau.dk).

∗∗ Section of Automation & Control, Aalborg University, 9220 Aalborg
East, Denmark (e-mail: raf@es.aau.dk)

Abstract: This paper proposes an LMI-based algorithm for abstracting dynamical systems by
timed automata, which enables automatic formal verification of linear systems.
The proposed abstraction is based on partitioning the state space of the system using positive
invariant sets, generated by Lyapunov functions. This partitioning ensures that the vector field
of the dynamical system is transversal to all facets of the cells, which induces some desirable
properties of the abstraction.
The algorithm is based on identifying intersections of level sets of quadratic Lyapunov functions,
and determining the minimum and maximum time that a trajectory of the system can stay in a
set, defined as the set-difference of sub-level sets of Lyapunov functions. The proposed algorithm
applies for linear systems and can therefore be efficiently implemented using LMI-based tools.

1. INTRODUCTION

The verification of system properties such as safety is
based on reachability calculations or approximations.
Since the exact reachable sets of continuous and hybrid
systems in general are incomputable Asarin et al. [2006],
a lot of attention has been paid to their approximations.
Yet, reachability is decidable for system models such as
automata and timed automata; consequently, there exists
a rich set of tools aimed at verifying properties of such
systems, e.g., Uppaal, see Behrmann et al. [2004]. There-
fore, abstracting a dynamical system by this type of system
model would enable its verification.

There exist different methods for verifying continuous
and hybrid systems. One of these methods is to over-
approximate the reachable states of a system by convex
sets as in Kurzhanski and Vlyi [1997], where the sets are el-
lipsoids and in Girard [2005] using zonotopes. Other meth-
ods abstract systems with models of reduced complexity,
while preserving certain properties of the original systems.
This is accomplished for hybrid systems in Tiwari [2008]
and for continuous systems in Maler and Batt [2008]. The
class of verification methods presented in Tiwari [2008],
Prajna [2006] is close to the presented method. The core
of these methods is to generate a positive invariant set
that includes the initial set and excludes the unsafe sets.
If such a set exists, then no solution trajectory initialized
in the initial set reaches the unsafe sets.

Among the tools for the verification of continuous and
hybrid systems is PHAVer. This tool is capable of ver-
ifying safety properties of systems with piecewise affine
dynamics, via over-approximation of the reachable set by
polyhedra Frehse [2005]. The disadvantage of this tools is
scalability, as it needs to generate a lot of polyhedra to

⋆ This work was supported by MT-LAB, a VKR Centre of Excel-

lence.

approximate the reachable set of a system. Furthermore,
the verification relies on simulations of trajectories of the
system; this is also computationally expensive.

In this paper, linear systems are abstracted by timed
automata using the method presented in Sloth and Wis-
niewski [2010]. This method is based on partitioning the
state space using level sets of Lyapunov functions; hence,
the partitioning is conducted according to the dynamics of
the system. In Sloth and Wisniewski [2010] no constructive
method for generating a timed automaton was provided;
hence, this paper presents an LMI-based approach for
generating a timed automaton via quadratic Lyapunov
functions for linear systems. In contrast to Frehse [2005],
the proposed abstraction procedure does not use solutions
to the system equations, which makes the method less
computationally demanding, and in contrast to Tiwari
[2008], Prajna [2006], we generate timed models.

The generated abstraction makes it possible to verify re-
quirements in terms of timed temporal logic specifications
Alur et al. [1990]; hence, requirements to reachability and
timing can be added to the usual stability requirement.

This paper is organized as follows. Section 2 contains
preliminary definitions utilized throughout the paper, Sec-
tion 3 explains the partitioning of the state space, and
Section 4 describes how a timed automaton can be gener-
ated from the partition. Section 5 presents algorithms for
synthesizing the abstraction, and an example is provided
in Section 6. Finally, Section 7 comprises conclusions.

1.1 Notation

The set {1, . . . , k} is denoted k. BA is the set of maps
A→ B. The power set of A is denoted 2A. The cardinality
of the set A is denoted |A|. We consider the Euclidean
space (Rn, 〈, 〉), where 〈, 〉 is the scalar product.
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2. PRELIMINARIES

The purpose of this section is to provide definitions related
to dynamical systems and timed automata.

A dynamical system Γ = (X, f) has state space X ⊆ R
n

and dynamics described by ordinary differential equations
f : X → R

n

ẋ = f(x). (1)

In this paper, we assume that (1) is linear; hence,

ẋ = Ax (2)

where A ∈ R
n×n is a non-singular matrix.

The solution of (2), from an initial state x0 ∈ X0 ⊆ X at
time t ≥ 0 is described by the flow function φΓ : [0, ǫ] ×
X → X, ǫ > 0 satisfying

dφΓ(t, x0)

dt
= f (φΓ(t, x0)) (3)

for all t ≥ 0.

Lyapunov functions are utilized in stability theory and are
defined in the following Meyer [1968].

Definition 1. (Lyapunov Function). Let X be an open
connected subset of Rn. Suppose f : X → R

n is continu-
ous and let Cr(f) be the set of critical points of f . Then
a real non-degenerate differentiable function ϕ : X → R is
said to be a Lyapunov function for f if

p is a critical point of f ⇔ p is a critical point of ϕ

ϕ̇(x) ≡
n
∑

j=1

∂ϕ

∂xj
(x)f j(x) (4a)

ϕ̇(x) = 0 ∀x ∈ Cr(f) (4b)

ϕ̇(x) < 0 ∀x ∈ X\Cr(f) (4c)

and there exists α > 0 and an open neighborhood of each
critical point p ∈ Cr(f), where

− ϕ̇(x) ≥ α||x− p||2. (5)

Notice that we only require the vector field to be transver-
sal to the level curves of a Lyapunov function ϕ, i.e.,
ϕ̇(x) = 〈∇ϕ(x), f(x)〉 < 0 for all x ∈ X\Cr(f), and does
not use Lyapunov functions in the usual sense, where the
existence of a Lyapunov function implies stability, but uses
a more general notion from Meyer [1968]. This makes it
possible to abstract unstable systems.

Definition 2. (Reachable set of Dynamical System). The
reachable set of a dynamical system Γ from a set of initial
states X0 ⊆ X on the time interval [t1, t2] is defined as

Reach[t1,t2](Γ, X0) ≡ {x ∈ X|∃t ∈ [t1, t2], ∃x0 ∈ X0

such that x = φΓ(t, x0)}. (6)

The dynamical system will be abstracted by a timed
automaton Alur and Dill [1994]. In the definition of a
timed automaton, a set of clock constraints Ψ(C) is used
for the set C of clocks. Ψ(C) is defined as the set of
constraints ψ described by the following grammar:

ψ ::= c1 ⊲⊳ k|c1 − c2 ⊲⊳ k|ψ1 ∧ ψ2, where (7)

c1, c2 ∈ C, k ∈ R≥0, and ⊲⊳∈ {≤,<,=,>,≥}.

Note that the clock constraint k should usually be an inte-
ger, but in this paper no effort is done to convert the clock
constraints into integers. Furthermore, the elements of ⊲⊳
are bold to indicate that they are syntactic operations.

Definition 3. (Timed Automaton). A timed automaton,
A, is a tuple (E,E0, C,Σ, I,∆), where

• E is a finite set of locations, and E0 ⊆ E is the set of
initial locations.

• C is a finite set of clocks.
• Σ is the set of actions.
• I : E → Ψ(C) assigns invariants to locations.
• ∆ ⊆ E ×Ψ(C)×Σ× 2C ×E is a finite set of transi-
tion relations. The transition relations provide edges
between locations as tuples (e,Ge→e′ , σ, Re→e′ , e

′),
where e is the source location, e′ is the destination
location,Ge→e′ ∈ Ψ(C) is the guard set, σ is an action
in Σ, and Re→e′ ∈ 2C is the set of clocks to be reset.

The semantics of a timed automaton is defined in the
following, adopting the notion of Fahrenberg et al. [2009].

Definition 4. (Clock Valuation). A clock valuation on a
set of clocks C is a mapping v : C → R≥0. The initial
valuation v0 is given by v0(c) = 0 for all c ∈ C. For a
valuation v, t ∈ R≥0, and R ⊆ C, the valuations v+ t and
v[R] are defined as follows

(v + t)(c) = v(c) + t, (8a)

v[R](c) =

{

0 for c ∈ R,

v(c) otherwise.
(8b)

We see that (8a) is used to progress time and that (8b) is
used to reset the clocks in the set R to zero.

Definition 5. (Semantics of Clock Constraint). A clock
constraint in Ψ(C) is a set of clock valuations {v : C →
R≥0} given by

Jc ⊲⊳ kK = {v : C → R≥0|v(c) ⊲⊳ k} (9a)

Jψ1 ∧ ψ2K = Jψ1K ∩ Jψ2K. (9b)

For convenience we denote v ∈ JψK by v |= ψ.

Definition 6. (Semantics of Timed Automaton). The se-
mantics of a timed automaton A = (E,E0, C,Σ, I,∆) is a
transition system JAK = (S, S0,Σ ∪R≥0, Tσ ∪ Tt), where

S = {(e, v) ∈ E ×R
C
≥0|v |= I(e)}

S0 = {(e, v) ∈ E0 × v0}

Tσ = {(e, v)
σ
→ (e′, v′)|∃(e,Ge→e′ , σ, Re→e′ , e

′) ∈ ∆ :

v |= Ge→e′ , v
′ = v[Re→e′ ]}

Tt = {(e, v)
t
→ (e, v + t)|∀t′ ∈ [0, t] : v + t′ |= I(e)}.

Analog to the solution of (2) is a run of a timed automaton.

Definition 7. (Run of Timed Automaton). A run of a
timed automaton A is a possibly infinite sequence of
alternations between time steps and discrete steps

̺A : (e0, v0)
t1−→ (e0, v1)

σ1−→ (e1, v2)
t2−→ . . . (10)

which is a path in JAK, where ti ∈ R≥0 and σi ∈ Σ. The
multifunction describing the runs of a timed automaton
φA : R≥0 × E0 → 2E , is defined by e ∈ φA(t, e0) if and
only if there exists a path in JAK initialized in (e0, v0) that
reaches the location e at time t =

∑

i ti.

Definition 8. (Reachable set of Timed Automaton). The
reachable set of a timed automaton A, with initial loca-
tions E0, in the time interval [t1, t2] is defined as

Reach[t1,t2](A, E0) ≡ {e ∈ E|∃t ∈ [t1, t2], ∃e0 ∈ E0

such that e ∈ φA(t, e0)}. (11)
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3. GENERATION OF FINITE PARTITION

The utilized abstraction is based on partitioning the state
space of Γ into a finite number of cells, generated by
intersecting slices defined as the set-difference of positive
invariant sets Sloth and Wisniewski [2010].

Definition 9. (Slice). A nonempty set S is a slice if there
exist two sets A and B such that

(1) B is a proper subset of A, i.e., B ⊂ A.
(2) A and B are positively invariant,
(3) S = cl(A\B).

The slices are defined to be set-differences of positive
invariant sets, to ensure that the flow of the system
is transversal to the boundaries of the slices. This also
ensures a nonzero minimum time for staying in each slice.

To devise a partition of a state space, we need to define
collections of slices, called slice-families.

Definition 10. (Slice-Family). A slice-family S is a col-
lection of slices generated by the positive invariant sets
A0 ⊂ A1 ⊂ · · · ⊂ Ak covering the entire state space
of Γ. By convention the first positive invariant set is
A0 = ∅. Thereby S1 = cl(A1\A0), . . . , Sk = cl(Ak\Ak−1)
and X ⊆ Ak. For convenience |S| is defined to be the
cardinality of the slice-family S, thus S = {S1, . . . , S|S|}.

We say that S is generated by the sets {Ai|i ∈ k}. A
function is associated to each slice-family S, to provide an
easy way of describing the boundaries of a slice.

Definition 11. (Partitioning Function). Let S be a slice-
family, then a continuous function ϕ : Rn → R smooth
on R

n\Cr(f) is a partitioning function associated to S if
for any positive invariant set Ai generating S there exists
ai, a

′
i ∈ R ∪ {−∞,∞} such that

ϕ−1([a′i, ai]) = Ai (12)

and ai, a
′
i are regular values of ϕ. By regular level set

theorem, the boundary ϕ−1(ai) of Ai is a smooth manifold
Tu [2008].

Definition 12. (Transversal Intersection of Slices). We say
that the slices S1 and S2 intersect transversally and write

S1 ⋔ S2 = S1 ∩ S2 (13)

if their boundaries, bd(S1) and bd(S2), intersect each
other transversally.

Definition 13. (Extended Cell). Let {Si|i ∈ k} be a col-
lection of k slice-families and define G = {1, . . . , |S1|} ×
· · ·×{1, . . . , |Sk|}. Denote the jth slice in Si by Si

j and let
g ∈ G. Then

eex,g =⋔
k
i=1 S

i
gi
. (14)

Any nonempty set eex,g will be called an extended cell.

The cells in Definition 13 are denoted extended cells, since
the intersection of slices may form multiple disjoint sets.

Proposition 1. (Sloth and Wisniewski [2010]).
If S1 ⋔ S2 6= ∅ then

int(S1 ∩ S2) 6= ∅. (15)

Example 1. Given three slice-families {Si|i ∈ {1, 2, 3}}, an
extended cell is indexed according to ordering of the slices
defining it, as shown below.

eex,[9,5,27] = S1
9 ⋔ S2

5 ⋔ S3
27. (16)

Notice that the vector g from Definition 13 equals [9, 5, 27].

Definition 14. (Cell). A cell is a connected component of
an extended cell

⋃

h

e(g,h) = eex,g, where (17a)

e(g,h) ∩ e(g,k) = ∅ ∀h 6= k. (17b)

We say that the slices S1
g1
, . . . , Sk

gk
generate the cell.

A finite partition based on the transversal intersection of
slices is defined in the following.

Definition 15. (Finite Partition). Let S be a collection of
slice-families, S = {Si|i ∈ k}. Then the finite partition
K(S) is defined to be the collection of all cells generated
by S according to Definition 14.

4. GENERATION OF TIMED AUTOMATON FROM
FINITE PARTITION

To obtain a timed automaton A from a finite partition
K(S), the following abstraction procedure is used.

Procedure 1. Given a dynamical system Γ = (X, f)
and a partition K(S), the timed automaton A =
(E,E0, C,Σ, I,∆) abstracting Γ is generated as follows.

• Locations: Let the locations of A be given by

E = K(S). (18)

This means that a location e(g,h) is associated to all
states within the cell e(g,h) of the partition K(S).

• Clocks: Given k slice-families, the number of clocks
is k, i.e., C = {ci|i ∈ k}. The clock ci monitors the
time for being in the slices of the slice-family Si.

• Invariants: In each location e(g,h), there are up to
k invariants, providing upper bounds on the time for
staying in the k slices generating the cell e(g,h). We
impose an invariant whenever there is an upper bound
for the time for staying in a slice generating the cell

I(e(g,h)) =

k
∧

i=1

ci ≤ tSi
gi

(19)

where tSi
gi

∈ R≥0 is an upper bound on the time for

staying in the slice Si
gi
.

• Input Alphabet: The input alphabet Σ consists of
symbols σ1, . . . , σk, where σi is associated with tran-
sitions between pairs of slices in Si = {Si

1, . . . , S
i
|Si|

}.

• Transition relations: For every pair of locations,
e(g,h) and e(g′,h′), satisfying the following conditions
(1) e(g,h) and e(g′,h′) are adjacent cells in the state

space, i.e., e(g,h) ∩ e(g′,h′) 6= ∅, and
(2) g′i ≤ gi for i ∈ k

there is a transition relation

δ(g,h)→(g′,h′) =

(e(g,h), G(g,h)→(g′,h′), σ, R(g,h)→(g′,h′), e(g′,h′)), (20a)

where

G(g,h)→(g′,h′) =

k
∧

i=1

{

ci ≥ tSi
gi

if gi − g′i = 1

ci ≥ 0 otherwise

(20b)

and tSi
gi

∈ R≥0 is a lower bound on the time for

staying in Si
gi
. Note that gi − g′i = 1 whenever a

transition labeled σi is taken.
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Let i = 1, . . . , k. We define R(g,h)→(g′,h′) by

ci ∈ R(g,h)→(g′,h′) (20c)

iff gi − g′i = 1.

For convenience the following notion is introduced.

Definition 16. Let S be a collection of slice-families, i.e.,
S = {Si|i ∈ k}. Then A (S) is the timed automaton
generated by S according to (18)-(20c).

Remark 1. Nonetheless, the locations of A(S) are asso-
ciated with cells of K(S), we will also utilize the timed
automaton Aex(S) with locations associated to extended
cells, i.e.,

E = {eex,g|g ∈ G}. (21)

The other steps of the procedure are identical for the two
timed automata A(S) and Aex(S).

5. METHOD

The purpose of this section is to set up an algorithm for
synthesizing a timed automaton from a linear system and
a family of quadratic Lyapunov functions, according to
Procedure 1. First, an overall algorithm is presented and
then an algorithm is provided for each of the steps in the
algorithm.

Algorithm 1. Suppose Γ = (X, f) is a linear system,
{Si|i ∈ k} is a collection of slice-families, {ϕi|i ∈ k} is
a family of quadratic Lyapunov functions, where ϕi(x) =
xTP ix is associated with slice-family Si, and Si is gen-
erated using the regular values, i.e., for all i, j aij 6= 0,

{aij |j = 1, . . . , |Si|}. Then the timed automaton A(S)
abstracting Γ can be synthesized as follows:

(1) Define the set of clocks C = {ci|i ∈ k} and the set of
actions Σ = {σi|i ∈ k}.

(2) Generate the finite set of locations E, using Algo-
rithm 2.

(3) Determine the invariants of each location e ∈ E, using
Algorithm 3.

(4) Use Algorithm 4 to define transition relations between
pairs of locations in E.

Steps 2-4 in Algorithm 1 need separate algorithms to be
synthesized. The algorithms are based on intersections of
level sets of quadratic forms Boyd et al. [1994].

Proposition 2. Suppose P 1 = (P 1)T > 0, P 2 = (P 2)T >
0, and let ϕ1(x) = xTP 1x and ϕ2(x) = xTP 2x. Define γ
to be the solution to the optimization problem

min γ subject to (22a)

P 2 − γP 1 ≤ 0 (22b)

γ > 0 (22c)

and define γ to be the solution to the optimization problem

max γ subject to (23a)

P 1γ − P 2 ≤ 0 (23b)

γ > 0 (23c)

Then the level set (ϕ2)−1(a2) generated for a regular value
a2 intersects (ϕ1)−1(a1) if and only if a2 ∈ [a1γ, a1γ].

This is illustrated in Fig. 1, where the level sets (ϕ1)−1(a1),
(ϕ2)−1(a1γ), and (ϕ2)−1(a1γ) are drawn.

−5 0 5

−5

0

5

x
2

x1

(ϕ1)−1(a1)

(ϕ2)−1(a1γ)

(ϕ2)−1(a1γ)

Fig. 1. Illustration of a level set (ϕ1)−1(a1) (red) and the
level sets (ϕ2)−1(a1γ), and (ϕ2)−1(a1γ) (green and

dashed) intersecting (ϕ1)−1(a1).

5.1 Generation of Locations

In this subsection, an algorithm is presented that generates
the finite set of locations for the abstraction A(S). To
generate the set of locations it follows from Definition 14
that we should check emptiness of (14) repeated below

eex,g =⋔
k
i=1 S

i
gi
. (24)

This emptiness checking can be accomplished using Propo-
sition 2, as shown in the following lemma. Note that we
use strict inequalities to ensure transversal intersections.

Lemma 1. Suppose P i = (P i)T > 0, P i′ = (P i′)T > 0,

and ϕi(x) = xTP ix and ϕi′(x) = xTP i′x. Let Si
j =

(ϕi)−1([aij−1, a
i
j ]), S

i′

j′ = (ϕi′)−1([ai
′

j′−1, a
i′

j′ ]), and define

γii
′

and γii
′

as the solutions to the optimization problems

min γii
′

subject to (25a)

P i′ − γii
′

P i < 0 (25b)

γii
′

> 0. (25c)

max γii
′

subject to (26a)

P iγii
′

− P i′ < 0 (26b)

γii
′

> 0 (26c)

Then Si
j ∩ Si′

j′ 6= ∅ if and only if [aij−1γ
ii′ , aijγ

ii′ ] ∩

[ai
′

j′−1, a
i′

j′ ] 6= ∅.

From Lemma 1, it follows that to check emptiness of
all slices in two slice-families, we only need to solve
two optimization problems and relate the regular values
generating the slices, which is very simple. This should be
used in the following algorithm.

Algorithm 2. Suppose Γ = (X, f) is a linear system,
{ϕi|i ∈ k} is a family of quadratic Lyapunov functions,
where ϕi(x) = xTP ix is associated with Si, and Si is
generated using the regular values {aij |j = 1, . . . , |Si|}.
Then the set of locations E can be generated as follows

E ≡ ∅

for j1 = 1, . . . , |S1|

. . .

for jk = 1, . . . , |Sk|

i f

⋂

k

i=1
(ϕi)−1([ai

ji−1
, ai

ji
]) 6= ∅

E ≡ E ∪ e
ex,(j1,...,jk)

end i f

end for

. .
.

end for
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5.2 Generation of Invariants

To determine the guard and invariant conditions for the
abstraction, a sufficient condition for soundness from Sloth
and Wisniewski [2010] is used. However, first we define
sound abstraction.

Definition 17. (Sound Abstraction). Let Γ = (X, f) be
a dynamical system and suppose its state space X is
partitioned by K(S) = {ei|i ∈ m}. Let the initial states
X0 =

⋃

i∈I ei, with I ⊆ m. Then a timed automaton
A = (E,E0, C,Σ, I,∆) with E0 = {ei|i ∈ I} is said to be
a sound abstraction of Γ on [t1, t2] if ∀ t ∈ [t1, t2]

ei ∩ Reach[t,t](Γ, X0) 6= ∅ implies (27a)

∃e0 ∈ E0 such that

ei ∈ φA(t, e0). (27b)

If a sound abstraction A is safe then Γ is also safe, as the
abstraction reaches all locations reached by Γ = (X, f).
Soundness is close to the notion of simulation; however,
by soundness we relate different categories of models.

We partition the state space using quadratic Lyapunov
functions, where ϕ̇i(x) < 0; hence, Proposition 7 in Sloth
and Wisniewski [2010] can be reformulated in terms of
the minimum and maximum decay rates (γi, γi) of the
Lyapunov functions, making the original constraints less
conservative. Recall that aigi−1 < aigi per definition, and

that aij is a regular value if it is different from zero.

Proposition 3. Suppose Γ = (X, f) is a linear system,
{ϕi|i ∈ k} is a family of quadratic Lyapunov functions,
where ϕi = xTP ix is associated with Si, and Si is
generated using the regular values {aij |j = 1, . . . , |Si|},

and let ϕ̇i = −xTQix. Then a timed automaton A(S) is
a sound abstraction of Γ if its invariants and guards in
Procedure 1 satisfy the following inequalities

tSi
gi

≤ − log

(

aigi−1

aigi

)

1

γi
(28a)

tSi
gi

≥ − log

(

aigi−1

aigi

)

1

γi
(28b)

where γi is the solution to the following optimization
problem

min γi subject to (29a)

Qi − γiP i ≤ 0 (29b)

γi > 0 (29c)

and γi is the solution to the following optimization prob-
lem

max γi subject to (30a)

γiP i −Qi ≤ 0 (30b)

γi > 0. (30c)

The proof of Proposition 3 is omitted for brevity, but can
be derived from Boyd et al. [1994].

From Proposition 3, it follows that the guard and invariant
conditions can be determined by considering only the
boundaries of the slices. Therefore, the minimum value
of ϕ̇i can be determined by finding the smallest value
a, where (ϕ̇i)−1(a) intersects a boundary of a slice. This
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Fig. 2. Illustration of a slice S = ϕ−1([aj−1, aj ]) (red) and
the level sets ϕ̇−1(aj−1γ) and ϕ̇−1(ajγ) (green and
dashed) intersecting the slice S.

is illustrated in the left subplot of Fig. 2. The following
proposition provides a method for obtaining tSi

gi
used in

the invariant conditions.

Algorithm 3. Suppose Γ = (X, f) is a linear system,
{ϕi|i ∈ k} is a family of quadratic Lyapunov functions,
where ϕi = xTP ix is associated with Si, and Si is
generated using the regular values {aij |j = 1, . . . , |Si|}.
Then for any location e(g,h) ∈ E, the invariant is

I(e(g,h)) =

k
∧

i=1

ci ≤ tSi
gi

(31)

where tSi
gi

satisfies (28b).

To find the guard conditions, the maximum value a where
(ϕ̇i)−1(a) intersects a boundary of a slice should be found.
This is illustrated in the right subplot of Fig. 2.

5.3 Generation of Transition Relations

The following algorithm provides a method for generating
the transition relations, and for obtaining tSi

gi

used in the

guard conditions.

Algorithm 4. Suppose Γ = (X, f) is a linear system,
{ϕi|i ∈ k} is a family of quadratic Lyapunov functions,
where ϕi = xTP ix is associated with Si, and Si is
generated using the regular values {aij |j = 1, . . . , |Si|}.
Then for every pair of locations, e(g,h), e(g′,h′) ∈ E, where
g′i − 1 = gi there is a transition relation

δ(g,h)→(g′,h′) =

(e(g,h), G(g,h)→(g′,h′), σ, R(g,h)→(g′,h′), e(g′,h′)), (32a)

where

G(g,h)→(g′,h′) =

k
∧

i=1

{

ci ≥ tSi
gi

if gi − g′i = 1

ci ≥ 0 otherwise
(32b)

where tSi
gi

satisfies (28a) and R(g,h)→(g′,h′) is given by

ci ∈ R(g,h)→(g′,h′) (32c)

iff gi − g′i = 1.

We conclude that the main complexity of this method
origin from generation of locations, which requires solving
2k LMIs, where k is the number of slice families. The
calculation of the time information only requires solving
2k LMIs.

6. ILLUSTRATIVE EXAMPLE

In this section, a system is abstracted by a timed automa-
ton using the proposed algorithm. It is chosen to abstract
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a two-dimensional system, to enable visualization of the
partitioning; however, the method applies for systems of
arbitrary dimension.

Consider the following two-dimensional linear system

ẋ =

[

−1 −0.5
0.75 −1.6

]

x. (33)

We have randomly chosen two quadratic Lyapunov func-
tions ϕi = xTP ix, i = 1, 2, with

P 1 =

[

0.4438 −0.0750
−0.0750 0.0359

]

, P 2 =

[

0.0901 0.0668
0.0668 0.2916

]

, (34)

and regular values {a11, a
1
2, a

1
3, a

1
4} = {0.1, 0.3, 0.6, 1},

{a21, a
2
2, a

2
3, a

2
4} = {0.18, 0.35, 0.6, 0.8}. The partition of the

state space is illustrated in Fig. 3.

−1 0 1

−1

0

1

x
2

x1

Fig. 3. Illustration of a partition of a state space using two
Lyapunov functions ϕ1(x) (red) and ϕ2(x) (green).

A small part of the timed automaton abstracting the
system, corresponding to the cells within the black line
in Fig. 3, is illustrated in Fig. 4.
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Fig. 4. Illustration of the timed automata abstracting the
dynamical system.

It follows from Fig. 4 that the timed automaton has mini-
mum and maximum times for staying in a location. There-
fore, it is clear that an over-approximation of trajectories
of the system can be calculated using the abstraction.

To show the type of temporal requirements that can be
verified using this abstraction, the following question is
asked: Do all trajectories initialized in the yellow cell in
Fig. 3 reach the gray cell within 5 s? (TCTL specification:
A3≤5e5) The answer is Yes. The analysis took less than
0.5 s in the prototype implementation in MATLAB.

7. CONCLUSION

In this paper, an algorithm is proposed for abstracting lin-
ear systems by timed automata. The abstraction is based
on partitioning the state space of the dynamical systems
by set-differences of positive invariant sets, generated by
level sets of quadratic forms.

The proposed algorithm makes it possible to automatically
abstract linear system models by timed automata, which
can be verified in a model checker. As the abstraction
is sound, it is possible to verify temporal properties of
dynamical systems automatically. This is illustrated in
an example, where a dynamical system is abstracted
by a timed automaton using the proposed algorithm.
Future research directions are in relation to finding optimal
partitioning functions, and a refinement procedure for the
choice of regular values.
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