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Abstract

In this paper, we focus on the problem of incremental system identification
for the purpose of automatic reconfiguration of control systems. We consider the
particular case where a linear time-invariant system is augmented with either an
extra sensor or an extra actuator and derive prediction error methods for recursively
estimating the additional parameters while retaining the existing system model.
Next, we propose a novel measure of the “usefulness” of new signals that appear
in an existing control loop due to the addition of a new device, e.g., a sensor. This
measure, which we refer to asawareness, indicates if there is a relation between
the signal provided by the new device and the existing process, as well as what
the new device is good for in terms of control performance. Finally, a simulation
example illustrates the potentials of the proposed method.

Keywords: System identification; Incremental modelling; Reconfigurable systems;
Adaptive control; Plug and play process control; Model validation.

1 Introduction

Often, practical control designs for complex plants are carried out in an incremental
fashion; individual key outputs are controlled first, leaving less important subsystems
for later tuning and/or control design. The performance of such incremental designs
will typically be improved by obtaining more accurate models from data collected dur-
ing actual operation. That is, the initial controller may bewell suited for a nominal
model, and it might stabilise the process in practical operation; however, due to un-
modelled dynamics, uncertainties etc., it may not, in practice, yield satisfactory perfor-
mance with the nominal configuration of sensors and actuators. One may then consider
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obtaining more information about the plant, or gain more control authority over it, by
adding extra sensors or actuators.

Furthermore, it is often the case that the number of potential measurement points
available is far greater than the number of outputs to be controlled. As a consequence,
it is often a non-trivial problem to select the optimal sets of measurements for a given
purpose [1], and it may sometimes happen that a different combination of measure-
ments turn out to be better suited for control purposes than the originally chosen one
[5].

That is, the initial controller may be well suited for a nominal model, and it might
stabilise the process in practical operation, but due to unmodelled dynamics, uncertain-
ties etc., it may not, in practice, yield satisfactory performance with the given config-
uration of sensors and actuators. This, in itself, gives rise to a number of interesting
problems: how to select additional inputs and outputs, how to estimate the additional
unknown dynamics, how to verify the additional signals’ usefulness, and how to in-
clude the additional signals in the existing controller.

Preferably, this should be done without having to decommission the plant, as well
as without disabling and re-designing the existing controlsystem, since it is usually
very costly to do so. Imagine, for example, an existing climate control system in a
livestock stable. The farmer observes increasing signs of discomfort in the animals
in a corner of the stable, likely due to leakage draft. The company that delivered the
control system offers to install an additional temperaturetransducer in the corner and
re-design and tune the controller to maintain the set point temperature in the vicinity of
the additional temperature sensor as well as in the rest of the stable. Although a simple
temperature sensor is quite cheap to buy and install, the re-design of the control system
would likely be prohibitively expensive. Thus, there wouldbe a significant benefit to
the farmer, if the system could automatically detect and utilise the new sensor.

The concept of “Plug and Play Process Control” (P3C ), see e.g., [17], [20] and
[7], is a systematic way to achieve this goal. The basic vision ofP3C is:

When a new device e.g. a sensor or actuator is plugged into a functioning
control system it will identify itself and the control system will automati-
cally become aware of the new signal, determine its usefulness and exploit
it in an optimal way over time.

In this paper, we aim to develop methods to a) “become aware ofthe new signal,”
i.e. determining if there is any relation between the new signal and the existing system,
b) “determine its usefulness,” i.e. measuring to what extent the new signal can be used
for control, and finally c) to give a simple example showing how to use these methods
for control purposes. Essentially,

Awareness should measure the potential usefulness for control in general,
i.e., without knowledge of the specific performance function.

Note that we do not address the optimal selection of a new device if several options
are available in this paper. Moreover, the specific performance function for the system
in question is not assumed to be known; the idea is to assume that only very basic
information is known. Thus, we will not address the controller re-tuning either; for
results in that direction, see for instance [20], [18] and [19].
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We make the following general assumptions throughout the paper, which we be-
lieve are not restrictive in practice.

1. The present system is already stabilised by a controller,and a system shut-down
should not be necessary.

2. The control law is known (although not necessarily the performance function it
was designed according to).

3. A model for the present system is known.

4. An asynchronous event is triggered when a new device is plugged into the sys-
tem; as part of issuing this event, the device identifies itself with information
such as type, preferred measurement range etc.

5. Online data are available both before and after the triggering event.

6. Excitation can be used within specified limits.

7. The new device is assumed to be static. That is, it is assumed that its dynamics
are sufficiently fast to be neglected compared to the dynamics of the present
system.

Related problems have been treated in literature, but so farnot in quite the same
setting.Incremental modellingin the sense that an existing model of a system is incre-
mentally improved upon via online operation, is discussed in e.g., [9], [2], and [8], but
in each of these cases the system structure remains fixed. Another related, but differ-
ent problem is that of fault tolerant control, see e.g., [6],[15], or [3]. In fault tolerant
control, however, sensors or actuators typically disappear, get stuck or otherwise dete-
riorate, so the control system does not need to change itselfto accommodate any new
information.

The outline of the rest of the paper is as follows. Sections 2-4 presents the present
model, parametrization and estimation of additional parameters. Then, in Section 5 we
propose the awareness measure. This is followed by a simulation example in Section
6. Finally, a conclusion is given in Section 7.

Note that parts of the material in Sections 3 and 4.1 have already been presented in
[7], but are included here for completeness.

Our notation is mostly standard.Rφψ(k) denotes the covariance between the sig-
nalsφ andψ, i.e.,Rφψ(k) = E(φ(t + k)ψ(t)T ), k = 0,±1,±2, . . .. Rφ(k) is the
auto-covariance ofφ. Rφψ(0) (or Rφ(0) ) will often be abbreviated as simplyRφψ
(resp. Rφ ). Derivatives of vector functionsf : Rn → R

m with respect to vector
variablesx ∈ R

n are written as

∇f =
∂f(x)T

∂x
=




∂f1
∂x1

. . . ∂fm
∂x1

...
. . .

...
∂f1
∂xn

. . . ∂fm
∂xn


 ∈ R

n×m.
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We denote time series data using capital Roman letters with asuperscript denoting the
final sample number, e.g.,

Y t =



y(1)

...
y(t)




Finally, vec(·) denotes the operation of stacking the columns of ann × m matrix to
yield a singlenm-dimensional vector.

2 Present model

We consider a linear, time invariant system mapping inputsup(t) ∈ R
nu to outputs

yp(t) ∈ R
ny at sample timet, t = 0, 1, 2, . . . via the state space description

x(t + 1) = Ax(t) +Bup(t) + w(t) (1)

yp(t) = Cx(t) +Dup(t) + v(t) (2)

whereA ∈ R
n×n, B ∈ R

n×nu , C ∈ R
ny×n andD ∈ R

ny×nu are constant ma-
trices. Subscript(·)p denotes ‘present’ signals.x ∈ R

n is assumed to represent
“physical” states, in the sense that the state noisew ∈ R

n only includes unmeasured
inputs/disturbances, as opposed tov ∈ R

ny , which only includes the measurement
noise. It is often reasonable to assume that the measurementnoisev(t) is uncorrelated
with the process noisew(t), i.e.,Rwv = 0, whereRwv denotes the cross-correlation
matrix between the stochastic signalsw andv. w andv are assumed to be (stochastic)
stationary white noise processes with covariances

Cov

[
w

v

]
=

[
Rw Rwv
Rvw Rv

]
. (3)

The other model version we shall consider is the following innovation model:

x̂(t+ 1) = Ax̂(t) +Bup(t) +Kep(t) (4)

ŷp(t) = Cx̂(t) +Dup(t) (5)

yp(t) = ŷp(t) + ep(t) (6)

wherê· denotes estimates,ep(t) = yp(t)−ŷp(t) is the estimation error andK ∈ R
n×ny

is a Kalman gain matrix. In this innovation model formulation, the state estimatêx(t)
is chosen aŝx(t) = E(x(t)|Y t−1

p ), where E(·) denotes expectation value andY t−1
p =

[
yp(1)T . . . yp(t− 1)T

]T
. The output prediction error is assumed white and with

known covariance

Cov(ep) = Re, E(ep(t)ep(s)T ) = 0, t 6= s.

When the above assumptions are satisfied, we have the following basic properties.
Firstly, the state prediction error̃x(t) = x(t) − x̂(t) is uncorrelated with previous
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measurementsY t−1
p , but is not a white-noise sequence. Secondly, the output prediction

errorỹp(t) = yp(t)− ŷp(t) = ep(t) is uncorrelated with previous measurementsY t−1
p

and is white, i.e.,̃yp(t), ỹp(t− 1), . . . , ỹp(0) are uncorrelated.
It is assumed that the original model is known exactly, for instance through exten-

sive system identification, but only in the innovation form (4)–(6). Furthermore, only
the output measurementsyp are considered available, not the states. The experimental
conditions can be open-loop or closed-loop, as long as thereis sufficient excitation.
Gaussian noise distribution is not a necessary assumption in this work; however, if the
noise does happen to be Gaussian, (un-)correlated implies (in-)dependent.

Note that the additional device is not part of closed-loop operation at the time of
system identification. The new device will not be included inthe controller before the
model has been successfully updated.

3 Additional input

The problem considered in this section can be illustrated asin Figure 1. An original
system with the deterministic state space realization (1)–(2) is operating subject to
the inputu ∈ R

nu . Then, at some point, a new actuator is plugged into the system,
providing new actuation capabilities via the additional inputua ∈ R. As the new device
is plugged into the system, it affects the plant as indicatedin the figure; that is, the state
vector may be affected by the new input via a gainBa ∈ R

n×1 and the system output
may be affected byua by a gainDa ∈ R

ny×1. Since it is assumed that we already
have good knowledge of the original system, we wish to identify only the new parts of
the system,Ba andDa.

C

D

A

1
z

Da

B

Ba

Additional actuator

�������

�

6

-

6

�

?

�

??
I

v(t)

y(t)

ua(t)

up(t)

w(t)

Figure 1:Plugging in a new actuator leads to an extended state space model, where the
new system parametersBa andDa must be identified

The original input is not assumed to be corrupted by noise, and this is assumed for
the additional input as well. This implies that the new inputpart simply has to be added
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to an otherwise unchanged innovation model:

x̂(t+ 1) = Ax̂(t) +
[
B Ba

]
u(t) +Kep(t)

ŷ(t) = Cx̂(t) +
[
D Da

]
u(t)

y(t) = Cx̂(t) +
[
D Da

]
u(t) + ep(t)

Re = Cov(e)

whereu(t) =
[
up(t)

T ua(t)
T
]T

andy(t) denote the in- and output signals after
the addition of the new actuator, respectively. Here we note, in particular, thatK is
unchanged. It is thus only necessary to estimateBa andDa. It is furthermore noted
that the predicted output are linear in these parameters, asthe Kalman predictor can be
written as

x̂(t+ 1) = (A−KC)x̂(t) +Ky(t)

+
[
B −KD Ba −KDa

]
u(t)

ŷ(t) = Cx̂(t) +
[
D Da

]
u(t)

That is, the output can be separated into a contribution fromthe original system and a
linear combination of contributions from each of the new gains. To exploit this obser-
vation, we introduce the parameter vector

θ =



θ1
...

θn+p


 =

[
Ba
Da

]
(7)

and definêyp(t) as the predicted output from the original system, i.e., assumingBa =
0, Da = 0 in Figure 1. Exploiting superposition, we letŷi denote the predicted output
assumingB = 0, D = 0 andθi = 1, θj = 0, j = 1, . . . , n + p, j 6= i. Then the
predicted output can be written as a linear combination of these signals as follows:

ŷ(t) = ŷp(t) +

n+ny∑

i=1

θiŷi(t).

Consequently, the measured output is given by

y(t) = ŷp(t) +

n+ny∑

i=1

θiŷi(t) + e(t) (8)

wheree(t) is the corresponding innovation. Let the prediction and measurement output
samples be gathered in vectors as

Y N =



y(1)

...
y(N)


 , Y Np =



yp(1)

...
yp(N)


 andŶ Ni =



ŷi(1)

...
ŷi(N)


 , i = 1, . . . , n+ ny

whereN denotes the number of samples. We now have the following results.
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Lemma 1. Consider the system (1)–(2) and assume that a correct innovation model
(4)–(6) is known for the original system. Suppose an actuator with unknown parame-
ters as described by (7) is added to the system.

The least-squares optimal estimate of the additional parameters is then given by

θ̂ = (ΥTΥ)−1ΥTZ (9)

where

Υ =
[
Ŷ N1 · · · Ŷ Nny+n

]
andZ = Y N − Ŷ Np .

Proof. Gathering the entire sample set using the vector notation introduced above, (8)
can be written as

Y N = Ŷ Np + θ1Ŷ
N
1 + · · ·+ θn+ny

Ŷ Nn+ny
+ EN

whereEN = [e(1)T , . . . , e(N)T ]T is the corresponding vector of innovation samples.
This is equivalent to the multiple linear regression form

Z = Y N − Ŷ Np = Υθ + EN

for which it is well known—see e.g. [10, App. II.1]—that the estimator minimizing the
sum of squared prediction errors is given by (9).

Theorem 1. (Consistent least squares estimator for additional input)Consider the
system (1)–(2) and assume that a correct innovation model (4)–(6) is known for the
original system. Suppose an actuator with unknown parameters as described by (7) is
added to the system. Assume furthermore that the input is persistently exciting.

Then the LS estimator (9) is consistent in open-loop operation. Furthermore, it is
consistent in closed-loop operation as well, provided there is at least one time delay
from output to input.

Proof. Let θ̄ denote the true parameters. Using the expressions in Lemma 1the esti-
mator can be related to the parameters as follows.

θ̂ = (ΥTΥ)−1ΥTZ

= (ΥTΥ)−1ΥT (Υθ̄ + EN )

= θ̄ + (ΥTΥ)−1ΥTEN

= θ̄ +

(
1

nyN
ΥTΥ

)−1
1

nyN
ΥTEN

Since the processes are assumed to be stationary, we can now exploit ergodicity to find
the limit value ofθ̂ as the number of samples grows to infinity:

lim
N→∞

θ̂ = θ̄ + lim
N→∞

((
1

nyN
ΥTΥ

)−1(
1

nyN
ΥTEN

))
.
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Due to sufficient excitation, the factor
(

1
pN

ΥTΥ
)

is invertible (see also [10, App.

II.2]). Writing out the last term, we get

1

pN
ΥTEN =

1

pN




∑N
t=1 ŷ1(t)

T e(t)
...∑N

t=1 ŷn+ny
(t)T e(t)




in which ŷi(t), i = 1, . . . , n + ny is the output predictor corresponding to thei’th
additional parameter at timet, which is generated from inputs and outputs up to and
including timet − 1 plusu(t) for D 6= 0. Since there is at least one time delay from
output to input, these signals are uncorrelated with the innovatione(t), even in closed-
loop operation. Hence, with probability 1 we have1

nyN
ΥTEN → 0 and θ̂ → θ̄ for

N → ∞.

Thus, straightforward least-squares system identification yields an asymptotically
unbiased estimate of the new actuator parameters, as long asno new dynamics is in-
cluded.

4 Additional output

When adding an extra sensor without dynamics, the situationbecomes as illustrated in
Figure 2.

C

Da

A

1
z

D

B

Ca

Additional sensor

�������

�

?

-

6

����

�

6

?

w(t)

?

v(t)

y(t)

?
ya(t)

va(t)

u(t)

Figure 2:Plugging in a new sensor yields a new output. The additional parametersCa
andDa must be identified

In contrast to the additional input case above, the additional output is corrupted
with measurement noiseva ∈ R. The necessary augmentations to the model structure
thus become

x(t+ 1) = Ax(t) +Bu(t) + w(t) (10)
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y(t) =

[
C

Ca

]
x(t) +

[
D

Da

]
u(t) +

[
v(t)
va(t)

]
(11)

Cov



w

v

va


 =



Rw Rwv Rwva
Rvw Rv Rvva
Rvaw Rvav Rva


 . (12)

and, again,u(t) andy(t) =
[
yp(t)

T ya(t)
T
]T

denote the in- and output signals after
the addition of the new sensor, respectively. Note the important detail thatya(t) is a
function of thephysicalstatex(t), not the predicted statêx(t). Here, it will be assumed
that the measurement noise for the additional outputva is uncorrelated with the other
noise sources i.e.Ra• = RT•a = 0.

4.1 Least Squares Estimates of the Deterministic Part

If the full, physical statex(t) is measured, all parameters including the covariances
(12) can be estimated using least squares methods based on the model equations (10)
and (11) above. However, asx(t) is not measured in most cases, an estimate must be
used instead. In the following, we shall use the predictionx̂ from the innovation model
(4)–(6).

Introducing the state prediction errorx̃(t) = x(t) − x̂(t) allows us to rewrite the
output equation forya(t) as

ya(t) = Cax(t) +Dau(t) + va(t)

= Cax̂(t) +Dau(t) + Ca(x(t) − x̂(t)) + va(t)

= Cax̂(t) +Dau(t) + Cax̃(t) + va(t). (13)

If we further introduce the regression and parameter vectors

φ(t) =

[
x̂(t)
u(t)

]
andθ =

[
Ca Da

]T
(14)

we are able to state the following results.

Lemma 2. Consider the system (1)–(2) and assume that a correct innovation model
(4)–(6) is known for the original system. Suppose a sensor with unknown parameters
as described by (14) is added to the system.

Then a least squares estimator for the deterministic part isgiven by

θ̂ =

(
N∑

t=1

φ(t)φ(t)T

)−1 N∑

t=1

φ(t)ya(t). (15)

Proof. Rewriting (13) yields

ya(t) = θTφ(t) + Cax̃(t) + va(t)

and if we see the termCax̃(t) + va(t) as a regression error, it is clear that the optimal
parameter estimate is obtained by solving the optimizationproblem

min
θ

N∑

t=1

(ya(t)− θTφ(t))2

9



which has the solution (15).

Remark 2.1. Note thatθTφ(t) does not useya and is thus not an optimal predictor.
Hence, (15) is not a prediction error method-based estimator, and accordingly the
residuals cannot be expected to be white.

Theorem 2. (Consistent least squares estimator for additional output, deterministic
part) Consider the system (1)–(2) and assume that a correct innovation model (4)–(6)
is known for the original system. Suppose a sensor with unknown parameters as de-
scribed by (14) is added to the system. Assume furthermore that the input is persistently
exciting.

Then the least squares estimator (15) is consistent in open-loop operation. Fur-
thermore, it is consistent in closed-loop operation as well, provided there is at least
one time delay from output to input.

Proof. This proof builds on the same ideas as the proof for Theorem 1.Let θ̄ denote
the true parameters, and introduce the residualr(t) = ya(t)− θ̄Tφ(t). Then we have

θ̂ =

(
N∑

t=1

φ(t)φ(t)T

)−1 N∑

t=1

φ(t)ya(t)

=

(
N∑

t=1

φ(t)φ(t)T

)−1
N∑

t=1

φ(t)(φ(t)T θ + r(t))

= θ̄ +

(
1

N

N∑

t=1

φ(t)φ(t)T

)−1

1

N

N∑

t=1

φ(t)r(t).

Now lettingN grow, we see that

lim
N→∞

θ̂ = θ̄ + E
([
φ(t)φ(t)T

]−1
)

E(φ(t)r(t))

As in the proof of Theorem 1, the first factor is invertible dueto the assumption of
persistent excitation. Further, sincer(t) = Cax̃(t) + va(t) we see that the last term
can be written as

E
(
φ(t)T r(t)

)
=

[
E(x̂(t) (Cax̃(t) + va(t)))
E(u(t) (Cax̃(t) + va(t)))

]
.

Now, as the additional output noiseva(t) is assumed to be uncorrelated with all other
signals in the system, includinĝx(t) andu(t), and E(va(t)) = 0, the terms E(x̂(t)va(t))
and E(u(t)va(t)) must be zero.

Next, sincêx(t) is an optimal prediction, it is uncorrelated withx̃(t) and E(x̃(t)) =
0. Finally, x̃(t) is uncorrelated withu(t) in both open-loop and closed-loop operation.
u(t) is then a function ofu(τ) andy(τ), τ = t − 1, t − 2, . . ., with which x̃(t) is
also uncorrelated. Consequently we have E

(
φ(t)T r(t)

)
= 0, and the estimator is

consistent.
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4.2 Prediction error-based estimates of the stochastic part

Unlike the case of an additional input, an additional outputchanges not only a single
row or column in the parameter matrices in the innovation model (4)–(6). This means
thatK andRe must be estimated anew. As the present model is assumed knownand
the deterministic part can be consistently estimated, the starting point is to assume the
parameter matricesA,B, C̄ andD̄ in the augmented deterministic model (i.e., includ-
ing the additional output) are known, based on the estimation carried out in the previous
subsection. That is, we consider the innovation model

x̂(t+ 1) = Ax̂(t) +Bu(t) + K̄e(t)

y(t) = C̄x̂(t) + D̄u(t) + e(t)

Cov(e) = Re

where it should be noted thaty(t) contains both the original output and the additional
outputya(t).

We choose the prediction error method to findK̄, and note that the setup is such
that, assuming the noise is Gaussian, the problem becomes almost equivalent to a Max-
imum Likelihood method. We will briefly present the parameter estimation method as
it applies to our setup in the following; see also [10, sec 10.3 p 331].

The prediction error method can be formulated as follows. Let e(t, θ) = y(t) −
ŷ(t, θ) be the output prediction error at samplet computed from a model with parame-
tersθ ∈ Θ. We define

l(θ) =

N∑

t=1

e(t, θ)TΛ−1e(t, θ) (16)

whereΛ is a symmetric positive definite matrix of appropriate dimensions, and solve
the optimization problem

θ̂∗ = argmin
θ∈Θ

l(θ) (17)

If l is taken as the negative likelihood andθ includes all unknown parameters, this is
indeed the standard maximum likelihood method. Here, however, we are only inter-
ested in estimating the parameters inK̄. We perform the minimization twice, first with
Λ = I, yielding a first estimatêθ1, from which we compute an autocorrelation estimate

R̂e =
1

N

N∑

t=1

e(t, θ̂1)e(t, θ̂1)T (18)

and then we perform the optimization again withΛ = R̂e from the first minimization.
Assuming thatR̂e ≈ Re, this is similar to the maximum likelihood method for̄K if
the process and measurement noise are Gaussian.

Next, we derive expressions for the first and second derivative of l wrt. θ in order
to be able solve the optimization problems efficiently. Letθ = vec(K); differentiating
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wrt. θ we obtain

∇l(θ) =
∂l(θ)

∂θ
= 2

N∑

t=1

∂e(t, θ)T

∂θ
Λ−1e(t, θ)

Next, differentiating with respect to each element ofθ, we see that

∂2l(θ)

∂θi ∂θj
= 2

N∑

t=1

∂2e(t, θ)T

∂θi ∂θj
Λ−1e(t, θ) + 2

N∑

t=1

∂e(t, θ)T

∂θi
Λ−1 ∂e(t, θ)

∂θj

Here, it is noted that
∑N

t=1
∂2e(t,θ)T

∂θi ∂θj
is a function ofy(t − 1), y(t − 2), . . . , y(0) and

y(t− 1), u(t− 2), . . . , u(0). Hence, asθ → θ̄, the first term will tend to zero ase will
be independent of the observations on which it is based (see also [10, (10.45)]). Thus,
a good approximation for the second derivative is

∇2l(θ) =
∂2l(θ)

∂θ ∂θT
≈ 2

N∑

t=1

∂e(t, θ)T

∂θ
Λ−1 ∂e(t, θ)

∂θT

Finally, the gradient ofe is given by the gradient of the one-step predictor:

e(t, θ) = y(t)− ŷ(t, θ) ⇒
∂e(t, θ)

∂θ
= −

∂ŷ(t, θ)

∂θ

which in turn can be computed from the Kalman filter equation.For a fixedK̄ the
optimal one step predictor̂y(t, θ) becomes

x̂(t+ 1, θ) = Āx̂(t, θ) + B̄u(t) + K̄(y(t)− ŷ(t, θ)) (19)

ŷ(t, θ) = C̄x̂(t, θ) + D̄u(t) (20)

and differentiating wrt. θ yields the following recursive expression for the desired
gradient:

∂x̂(t+ 1, θ)

∂θT
= Ā

∂x̂(t, θ)

∂θT
− K̄

∂ŷ(t, θ)

∂θT
+
∂K̄

∂θT
e(t, θ) (21)

∂ŷ(t, θ)

∂θT
= C̄

∂x̂(t, θ)

∂θT
(22)

Here, sinceθ = vec(K), we see that

∂K̄

∂θT
e(t, θ) =

[
e(t, θ)1In e(t, θ)2In · · · e(t, θ)pIn

]

= e(t, θ)T ⊗ In (23)

whereIn is the identity matrix of sizen and⊗ denotes the Kronecker product.
The stability of (21) is the same as for the Kalman filter, i.e., it is stable if the

eigenvalues of̄A − K̄C̄ are within the unit circle, which can always be ensured if the
system is observable. See also [10, sec 10.3 p 331].
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For the iterative minimization the Levenberg-Marquardt [12, 16] method (24) is
used.

θ̂k = θ̂k−1 −
(
δI +∇2l(θ̂k−1)

)−1

∇l(θ̂k−1) (24)

Convergence of this algorithm is basically obtained by reducing δ for each step
wherel decreases and increasingδ if l does not decrease.

4.3 Recursive parameter estimation

The awareness measure in the following section is most useful for control applications
if it can be updated at each time sample. This in turn calls forrecursive parameter esti-
mation, which is therefore briefly presented in this section. Since recursive estimation
is not in focus in this work, the discussion is kept brief.

We use the recursive prediction error method [11] to estimate K̂. LetΨ ∈ R
nθ×p

denote the gradient of̂y and let0 < λ ≤ 1 be a forgetting factor.

Ψ(t) =
∂ŷ(t, θ)

∂θ

T

(25)

Λ̂(t) =

{
λΛ̂(t− 1) + (1− λ)e(t)e(t)T if λ < 1(
1− 1

t

)
Λ̂(t− 1) + 1

t
e(t)e(t)T if λ = 1

(26)

R(t) = λR(t− 1) + Ψ(t)Λ̂(t)−1Ψ(t)T (27)

θ̂(t) = θ̂(t− 1) +R(t)−1Ψ(t)Λ̂(t)−1e(t) (28)

The dependence ofΨ, e, Λ̂ andR on θ̂ are left out in the above expressions for
simplicity. e andΨ are computed using (19)–(20) and (21)–(22).

Note that stability problems can occasionally occur in these recursions. This issue
is outside the scope of this paper, however, and will not be discussed further.

Similar recursive formulations can be given for the estimator of the deterministic
part of an additional sensor or actuator. In this case the recursions are simpler and do
not incur any stability problems.

In case of an additional sensor, recursive estimation of both Ca, Da andK are
needed. The recursive estimation ofK assumes a known deterministic model includ-
ing Ca andDa. As Ca andDa are estimated recursively, the estimates at the given
samplet, Ĉa(t) andD̂a(t), are simply used in the recursive estimator forK̂(t), i.e. the
deterministic and stochastic recursive parameter estimators are merged. Forλ = 1 this
does not spoil the convergence as the recursive estimate forCa, Da converges inde-
pendently of the additional estimatedK-parameters which then eventually makes the
estimate ofK converge as well.

5 Awareness measures

In this section we introduce three different measures, which indicate the “correlation”
(in some specific sense, which will be explained below) between a new actuator and
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the present sensors or between a new sensor and the present actuators. If there is a
high degree of correlation, the new device can probably be exploited by the controller
whereas low correlation means that it is probably difficult to utilize the new device
in the existing control loop. Correlation can be measured bytraditionalmodel free
methodsor by therelative reduction in modelling error. We first recall some basic
notions from correlation analysis.

5.1 Preliminaries

Let µφ = E(φ), µψ = E(ψ) andσφ =
√
E[(φ − µφ)2], σψ =

√
E[(ψ − µψ)2]

denote the expectation value and standard deviation of two stochastic variableφ, ψ ∈
R, respectively.

The linear correlationbetween these two stochastic variables is defined as

ρφψ =
E[(φ− µφ)(ψ − µψ)]

σφσψ

which gives the following natural expression for a model free estimator:

ρ̂φψ =
1
N

∑N
i=1(φi − µ̂φ)(ψi − µ̂ψ)

σ̂φσ̂ψ
(29)

whereN denotes the number of samples and

µ̂φ =
1

N

N∑

i=1

φi, σ̂φ =

√√√√ 1

N

N∑

i=1

(φi − µ̂φ)2

µ̂ψ =
1

N

N∑

i=1

ψi, σ̂ψ =

√√√√ 1

N

N∑

i=1

(ψi − µ̂ψ)2

However, a model-based alternative to the model-free correlation estimator (29) is
more appropriate in this application. The model-based estimator derived is based on
the fact that therelative reduction in varianceobtained from using a univariate linear
regression model equals the square of the error correlation[14, sec. 7.3]. Letψ ∈ R and
andφ ∈ R

m denote a stochastic variable and a set of regression variables, respectively.
A linear projection ofφ ontoψ is given as

ψ̌(θ, φ) = θTφ (30)

whereθ =
[
θ1 . . . θm

]T
is a parameter vector. As usual,θ∗ denotes the least-

squares optimal parameters, i.e.,

θ∗ = argmin
θ

E[(ψ − ψ̌(θ, φ))2]

Restricting one of the elements in the regressor to a fixed value, e.g., , e.g.,φ1 = 1,
allows us to incorporate the mean value ofψ in the linear regression; that is,̌ψ(θ∗, 1)
becomes the projection on 1 and thusψ̌(θ∗, 1) = θ∗ = µψ.
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Form = 2, i.e.,φ =
[
1 φ2

]T
, the linear correlation can be computed as

ρ2φψ =
E(ψ − µψ)

2 − E(ψ − ψ̌(θ∗, φ))2

E(ψ − µψ)2
(31)

while form ≥ 3, (31) becomes the correlation between a scalarψ and the best linear
combination of regressors

[
1 φ2 . . . φm

]T
. This is also known as the multiple

squared correlation [21, sec. 12.6]. Note thatρ2φψ ∈ [0 , 1].
In practice, in order to obtain an estimate of the relative reduction in modelling

error, we first compute a parameter estimate

θ̂ =

(
N∑

i=1

φiφ
T

i

)−1(
N∑

i=1

φiψi

)
(32)

and then replace all the mean square errors in (31) by their corresponding sample aver-
age square errors:

ρ̂2φψ =
1
N

∑n
i=1(ψi − µψ)

2 − 1
N

∑N
i=1(ψi − ψ̌(θ̂, φi))

2

1
N

∑N
i=1(ψ − µψ)2

. (33)

Another useful measure is thepartial correlation. Let φ be separated into its first
m− 1 components and then the last component as

φ =




φ1
...

φm−1

φm


 =

[
ϕ

φm

]

The partial correlation betweenφm andψ givenϕ is then defined as

ρφmψ|ϕ =
E[(φm − E(φm|ϕ))(ψ − E(ψ|ϕ))|ϕ]√

Var(φm|ϕ)Var(ψ|ϕ)
(34)

Using similar calculations as above, this partial correlation can also be expressed by
relative reduction in modelling errors. Lettingθ∗ϕ andθ∗φ denote the optimal parameter
estimates corresponding toϕ andφ, respectively, i.e., the estimates corresponding to
using onlym− 1 andm regressors, respectively, we obtain the following expression:

ρ2φmψ|ϕ
=

E(ψ − ψ̌(θ∗ϕ, ϕ))
2 − E(ψ − ψ̌(θ∗φ, φ))

2

E(ψ − ψ̌(θ∗ϕ, ϕ))
2

(35)

The corresponding estimate for the partial correlation based on (35) is similar to (33).
However, one should be aware that non-linear dependencies in a data set cannot

necessarily be seen in linear correlation. If e.g.φ ∈ N(0, σ2) andψ = φ2 thenψ is
determined byφ, butρφψ = 0. Such non-linear dependence can be taken into account
by using avariance reduction correlationmeasure and changing the modelψ̌(θ, φ)
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to be nonlinear inφ. One may choose various non-linear functions to represent the
dependencies, e.g. polynomials; various smoothing techniques can also be considered
[4].

Furthermore, ifφ andψ are two stochastic processes then it may happen that
ρφψ = 0 even though one signal is given as a function of the other, e.g. if φ(t) is
white noise andψ(t) = φ(t − 1). To capture this type of correlation, one should use
the cross correlation functionCφψ(t, s) = ρφ(t)ψ(s) instead, as it covers all lags be-
tweenφ andψ. For non-linear time series analysis [13] uses auto correlation functions,
where the variance reduction measure is used with smoothingmodels. A similar tech-
nique for calculation of cross correlation functions is suggested as well. It should be
noted, however, that the pre-whitening method, which is often used to remove “false”
correlation due to similar spectra in two signals, cannot beused without modification
for non-linear systems.

Finally, yet another way to measure non-linear correlationin stochastic systems
would be to use the variance reduction techniques and expandthe model class used for
ψ̌ from non-linear static models to non-linear dynamic models; in this case, it would
not be necessary to calculate the cross correlation function, since the dynamics would
already be included in the model.

5.2 Awareness measures

We now apply the above notions to the plug-and-play control setting.
Using the time series notation introduced earlier, we can consider various different

model errors; for example,

ỹa(t|U
t−1
p , Y t−1

p ) = ya(t)− ŷa(t|U
t−1
p , Y t−1

p ) (36)

whereŷa(t|U t−1
p , Y t−1

p ) is the best prediction of the additional outputya(t) at timet
given all present inputsup(t) and outputsyp(t) from the start and up to and including
time t− 1.

The model/prediction error (36) originates from the above discussion on how to
define and measure awareness in a “correlation-like” fashion. However, the error (36)
also has a very relevant interpretation in terms of control.

Assume that a reference forya(t + 1) is known at timet; then it is, in principle,
possible to solve the equation

ŷa(t+ 1|U tp, Y
t
p ) = ya,r(t+ 1)

for up(t) as a function ofup up to samplet − 1, yp up to samplet andya,r(t + 1) to
yield a kind of ‘fictitious’ minimal variance feedback controller. The smallest reference
tracking error that can be obtained using thegivenvariablesup andyp thus becomes

ya(t+ 1)− ya,r(t+ 1) = ya(t+ 1)− ŷa(t+ 1|U tp, Y
t
p )

= ỹa(t+ 1|U tp, Y
t
p ).

Based on the above discussion, we propose the following three awareness mea-
sures:

ρ2UpYpYa,ya
=

E[ya(t)− E(ya(t))]
2 − E[ya(t)− ŷa(t|U

t−1
p , Y t−1

p , Y t−1
a )]2

E[ya(t)− E(ya(t))]2
(37)
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ρ2Up,ya
=

E[ya(t)− E(ya(t))]
2 − E[ya(t)− ŷa(t|U

t−1
p )]2

E[ya(t)− E(ya(t))]2
(38)

ρ2Uayp|UpYp
=

E[yp(t)− ŷp(t|U
t−1
p , Y t−1

p )]2 − E[yp(t)− ŷp(t|U
t−1
p , Y t−1

p , U t−1
a )]2

E[yp(t)− ŷp(t|Up, Yp)]2
(39)

Note that, as stated, the abovetheoreticalawareness measures are based on models,
not data. Like for correlations, the squared valuesρ2 will be between 0 and 1. A value
close to 0 means that the new sensor or actuator represents little extra value to the
closed-loop control, while a value close to 1 means that the sensor yields significant
extra information, or the actuator can improve the disturbance rejection capabilities of
the closed loop. Some specific remarks are in order:

1. Firstly, (37) measures how well the additional sensor canbe controlled by the
present actuator in closed loop, provided it is controllable. Note that a large
value of this awareness may occur ifya cannot be controlled independently of
yp.

2. The awareness (38) measures how well the additional sensor can be controlled
by the present actuator in open loop.

3. If the additional sensor is not controllable by the existing actuator, a large value
of (37) can only occur if there is a strong auto correlation inya. However in that
case the second awareness measure (38) will be close to zero.

4. The awareness (39) measures how much the additional actuator canadd to the
control of the present sensor in closed loop.

To use these measures the various versions of the functionŷ(t|X) must be found.
In general, the optimal estimate isŷ(t|X) = E(y(t)|X), which is easy to find for linear
systems, as it is closely connected to parameter estimation. For non-linear models it is
normally necessary to use an approximation.

In practice, to produce an estimate it seems best to simply substitute the mean
squared errors with average squared errors. These average squared errors should be
generated from the present model and the new model includingthe new device after
estimating the new parameters. Note that when a model including the new device is just
starting to adapt, it may happen that the awareness measure estimates become negative;
this can generally be ignored, since it is merely an effect ofthe model fit being poor.

An additional device can have low awareness of the above typebecause of low
control potentials even though it has a statistically significant model improvement. To
detect this situation a statistical test can be used; for instance, an appropriate measure is
the p-valuepf in an F-test [10, p. 509] with the hypothesis that all additional parameters
equal zero. The necessary calculations can be based on the results already developed
in this work.

Finally, we note that, to obtain identifiability, some excitation is always necessary.
For an additional input the independent excitation can be applied directly to the input.
For an additional sensor, independent external excitationmay be used, or dedicated
closed-loop identification methods may be employed.
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6 Simulation example

In this section, we show an example that illustrates the effect of introducing an addi-
tional output measurement. We consider the system
[
x1(t+ 1)
x2(t+ 1)

]
=

[
0.9048 −0.0090
0.0090 0.9048

] [
x1(t)
x2(t)

]
+

[
0.0952 0.0947
0.00047 0.0956

]
up(t) +

[
w1(t)
w2(t)

]
(40)

yp(t) =
[
1 0

] [x1(t)
x2(t)

]
+
[
0 0.1

]
up(t) + v(t) (41)

with noise correlations

Rw =

[
0.0100 0.0050
0.0050 0.0100

]
, Rv = 0.01, Rwv =

[
0
0

]
(42)

The corresponding innovation form, with given Kalman gain and innovation covari-
ance, can be calculated using standard methods; we obtain

Kp =

[
0.5381
0.2597

]
, Rep = 0.0248 (43)

The system (40)–(42) above is denoted thepresentsystem. The deterministic part
(40)–(41) and the stochastic part in innovation form (43) isconsidered known.

Then, using the state estimate provided by the innovation model, an LQ controller
is designed. For illustration purposes, we designed a quitefast controller that aims to
minimize both states, although the second state is fairly hard to observe. The control
law was chosen asu(t) = −Fox̂(t) where

Fo = min
F

lim
N→∞

N∑

t=1

x(t)TQxx(t) + u(t)TQuu(t)

Qx = I, Qu = 0.05I

This yielded the control gains

Fo =

[
2.3953 −1.2122
1.2138 2.4299

]

The system (40)–(41) has deliberately been constructed such that the second state is
difficult to observe; the condition number for the observability matrix is 201. However,
this improves to 2.62 when introducing a new sensor into the system providing access
to anadditionaloutput

ya(t) = Cax(t) +Daup(t) + va(t)

=
[
1 1

]
x(t) +

[
0.1 0.1

]
up(t) + va(t)

as the second state is now included directly in the output. The noise covariance of the
new sensor are

Ra = 0.1, Ra• = R•a = 0
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The following simulation experiment illustrates the different phases involved in a
typical plug-and-play scenario. Plots of signals versus time are shown in Figure 3.
During the first 500 samples, the system operates with the controller designed above
and only one measurement,yp. Then, at sample 500, the additional sensor is connected
to the system and external excitation added. This situationpersists until sample 1500,
during which samples are gathered for recursive estimationof the new parameters and
the awareness measures. The external excitation and its effects can clearly be seen in
Figure 3.

At sample 1500 the estimated parameters related to the additional output is used
to update the Kalman filter. The new additional sensor outputis added to the Kalman
filter, and the external excitation is removed.

For the rest of the simulation, the estimator uses bothyp andya, and the control is
improved even though the control gains remain unchanged; ascan be seen from Figure
3, the variation of the second state is clearly reduced for the last 500 samples compared
to the first 500 samples.

Figure 3: Input, states and output for the simulation example.

Figure 4 illustrates the progress of the recursive parameter estimation and aware-
ness measure calculation. At sample 500, the variables are initialized. As can be seen
from the figure, all the new parameters are initialized at zero, whereas the existing two
K-parameters are initialized at their present values. The initial value ofR is chosen
small. In this example, there are no time varying parameters, so we chooseλ = 1. As
there is no external excitation from sample 1500, the model will not improve from this
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time, and the calculations can be stopped. Note that the parameters do not seem to have
converged completely at sample 1500.

0 500 1000 1500 2000
−4

−2

0

2

4
Parameter est. det. part

0 500 1000 1500 2000
−0.2

0

0.2

0.4

0.6
Parameters est. K

Figure 4: Recursive parameter estimates initialized at time 500.

Before discussing the awareness measures, recall that it has been a deliberately
choice in this paper to use rather generic awareness measures, as opposed to measures
that are specific to a given control design and performance function. This means that it
is not always entirely straightforward to use the awarenessmeasures; rather, they must
be interpreted in a given setting.

According to figure 5, thepf -test shows a statistically significant relation between
the new measurement and the present model after less than 100samples. The correlation-
based awareness related to closed-loop control of the additional output (37) settles
around a value 0.55 approaching time 1500, which means that the present input can
control the new output as well as the linear combination of states it represents. The
awareness related to open-loop control of the new output, (38), settles around 0.3 ap-
proaching time 1500 which indicates that also open loop control of the new output is
possible. This suggests that the positive value of the closed-loop awareness measure
(37) does not entirely come from autocorrelation in the new output, rather some of it
stems from a connection to the system input.

Note that after the external excitation ends the parametersare slowly drifting; in
particular, the awareness related to control of the new output is decreasing, which can
be expected as the model cannot improve without excitation.

As already mentioned, Figure 3 indicates that the tested methods improve the con-
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Figure 5: Awareness measure initialized at time 500.

21



Description Present Present Updated Updated/
obs. obs. with excit. obs. Present

Sample range 0–500 500–1500 1500–2000
Ju 0.0042 0.0391 0.0071 1.6949
Jx 0.0849 0.1788 0.0511 0.6012
J 0.0891 0.2178 0.0582 0.6526

Table 1: Comparison of control performance between the three simulated intervals.

trol performance. To verify this, various control related measures are listed in table 1.
They are all calculated from the time series shown in Figure 3. The first three columns
with numbers are for the present controller in closed-loop,with external excitation and
with the updated observer, respectively. The column furthest to the right is the perfor-
mance of the controller with updated observer relative to the present controller. The
first two rows show

Ju =
1

N

N∑

t=1

u(t)TQuu(t)

= 0.05
1

N

N∑

t=1

u1(t)
2 + u2(t)

2

and

Jx =
1

N

N∑

t=1

x(t)TQxx(t)

=
1

N

N∑

t=1

x1(t)
2 + x2(t)

2

respectively. The last row shows the overall control performanceJ = Jx + Ju.
From the table, it is seen that the total control performanceis decreased to roughly

65% of what it was before the introduction of the new sensor and the retuning of the
observer, which shows that the combination of an extra output, the estimated model for
it and the selected switching time improved the control.

7 Conclusion

This paper considered the situation where an additional sensor or actuator is added to
a control system for the purpose of improving the performance.

We first developed analytical solutions for identification of the deterministic part of
the models based on ideas from classical system identification and showed consistency
for these incremental modelling methods. For the stochastic part a prediction error
method has been developed, and we provided explicit formulae for the gradient.
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With the incremental model in place, it is necessary to have methods to indicate if
the new device is helpful or not, and if so, to indicate when toreconfigure the control
system to use the new device.

To this end, correlation-based awareness measures were developed, which indicate
if there is a potential gain to be obtained by using the new device. There are basically
two different ways to define and measure correlation, the classicalmean of productand
the more advancedvariance reduction using models. The models used can range from
static linear over static non-linear to dynamic non-linearmodels.

The main advantage of using themean of productapproach, which involves models
that are very generic and flexible, is that the risk of not noticing correlation that is ac-
tually present in the data is very small. On the other hand, a separate, computationally
heavy calculation of cross correlation functions coveringmany lags and possibly using
smoothers etc., would be required.

For the model-based variance reduction approach, which uses the present dynami-
cal model and a dynamical model including the new device, thesituation is the oppo-
site. The disadvantage is that it will only be possible to discover relations covered by
the model structures. On the other hand, the computational burden is relatively small,
since no cross correlation is needed. Moreover, the necessary calculations are almost
covered by the adaptive parameter estimation, which we discussed in the first half of
the paper. Also, this method has the potential for covering both static and dynamic
systems as well as both linear and nonlinear and gives one simple measure in contrast
to cross correlation functions. Finally, the control relevant interpretation based on min-
imal variance control is advantageous as well. Thus, we chose the latter approach in
this paper.

If the control objectives are directly related to each output, a condition for switching
controller could be that the relevant awareness measures, in the example (37) and (38),
are above some threshold. In general, however, the control objectives are related to
the states and the objectives can only sometimes be directlyspecified from output and
input only. Still, in most cases it is reasonable to assume that there is a strong relation
between control objectives and the outputs. Consequently,the most reasonable switch
condition is that awareness remains above the specified threshold for a certain time.
Furthermore, to account for uncertainty, one could consider to increase the threshold
by an amount corresponding to the magnitude of the uncertainty, if known.

Future work include more thorough investigation of statistical hypothesis that can
indicate in a reliable manner when a new device provides sufficient information or
actuation to be worth including in the control loop. Also, the estimated awareness
measures are uncertain due to two factors. One is the substitution of mean values
in (37)–(39) with average values, which introduces uncertainty even if the estimated
parameters are correct. The other is that the estimated parameters may not be correct
until after extensive identification, which may lead to errors in the state estimation.
Thus, it would be interesting to investigate bounds on theseuncertainties.
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