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Abstract

In this paper, we focus on the problem of incremental systentification
for the purpose of automatic reconfiguration of control eyst. We consider the
particular case where a linear time-invariant system israarded with either an
extra sensor or an extra actuator and derive predictiom erethods for recursively
estimating the additional parameters while retaining tkistiag system model.
Next, we propose a novel measure of the “usefulness” of ngnats that appear
in an existing control loop due to the addition of a new devecg., a sensor. This
measure, which we refer to asvarenessindicates if there is a relation between
the signal provided by the new device and the existing psycas well as what
the new device is good for in terms of control performanca&aly, a simulation
example illustrates the potentials of the proposed method.

Keywords:  System identification; Incremental modelling; Reconfidgleasystems;
Adaptive control; Plug and play process control; Modeldation.

1 Introduction

Often, practical control designs for complex plants areiedrout in an incremental
fashion; individual key outputs are controlled first, leayless important subsystems
for later tuning and/or control design. The performanceunfsincremental designs
will typically be improved by obtaining more accurate madiegbm data collected dur-
ing actual operation. That is, the initial controller maywell suited for a nominal
model, and it might stabilise the process in practical ojpmmahowever, due to un-
modelled dynamics, uncertainties etc., it may not, in peacyield satisfactory perfor-
mance with the nominal configuration of sensors and actsa@me may then consider



obtaining more information about the plant, or gain morete@rauthority over it, by
adding extra sensors or actuators.

Furthermore, it is often the case that the number of potemiéasurement points
available is far greater than the number of outputs to berothed. As a consequence,
it is often a non-trivial problem to select the optimal setsn@asurements for a given
purposel[l], and it may sometimes happen that a differenbawation of measure-
ments turn out to be better suited for control purposes tharotiginally chosen one
[5].

That is, the initial controller may be well suited for a nomlimodel, and it might
stabilise the process in practical operation, but due toageted dynamics, uncertain-
ties etc., it may not, in practice, yield satisfactory periance with the given config-
uration of sensors and actuators. This, in itself, gives tisa number of interesting
problems: how to select additional inputs and outputs, hoestimate the additional
unknown dynamics, how to verify the additional signals’ futeess, and how to in-
clude the additional signals in the existing controller.

Preferably, this should be done without having to decomimisthe plant, as well
as without disabling and re-designing the existing condysitem, since it is usually
very costly to do so. Imagine, for example, an existing ct@neontrol system in a
livestock stable. The farmer observes increasing signdsabchfort in the animals
in a corner of the stable, likely due to leakage draft. The pany that delivered the
control system offers to install an additional temperatuasducer in the corner and
re-design and tune the controller to maintain the set pempierature in the vicinity of
the additional temperature sensor as well as in the reseaftiible. Although a simple
temperature sensor is quite cheap to buy and install, tdesan of the control system
would likely be prohibitively expensive. Thus, there woulel a significant benefit to
the farmer, if the system could automatically detect anlgsatthe new sensor.

The concept of “Plug and Play Process Contrd®C ), see e.g.[[17]/120] and
[7], is a systematic way to achieve this goal. The basic wisifP>3C is:

When a new device e.g. a sensor or actuator is plugged intoctidning
control system it will identify itself and the control systewill automati-
cally become aware of the new signal, determine its usefgland exploit
it in an optimal way over time.

In this paper, we aim to develop methods to a) “become awatteeafiew signal,”
i.e. determining if there is any relation between the newalignd the existing system,
b) “determine its usefulness,” i.e. measuring to what exttemnew signal can be used
for control, and finally c) to give a simple example showingvHo use these methods
for control purposes. Essentially,

Awareness should measure the potential usefulness farotémgeneral,
i.e., without knowledge of the specific performance funttio

Note that we do not address the optimal selection of a nevwcdéfgeveral options
are available in this paper. Moreover, the specific perforeedunction for the system
in question is not assumed to be known; the idea is to assuatetity very basic
information is known. Thus, we will not address the contolle-tuning either; for
results in that direction, see for instancel|[20],/[18] @] [1



We make the following general assumptions throughout theepavhich we be-
lieve are not restrictive in practice.

1. The present system is already stabilised by a contralfera system shut-down
should not be necessary.

2. The control law is known (although not necessarily thdgrarance function it
was designed according to).

3. A model for the present system is known.

4. An asynchronous event is triggered when a new device ggeldi into the sys-
tem; as part of issuing this event, the device identifiedfitgigh information
such as type, preferred measurement range etc.

5. Online data are available both before and after the triggevent.
6. Excitation can be used within specified limits.

7. The new device is assumed to be static. That s, it is ashtina¢ its dynamics
are sufficiently fast to be neglected compared to the dyrawidhe present
system.

Related problems have been treated in literature, but sndiain quite the same
setting.Incremental modellingn the sense that an existing model of a system is incre-
mentally improved upon via online operation, is discussegl.d., [9], [2], and([8], but
in each of these cases the system structure remains fixedhémelated, but differ-
ent problem is that of fault tolerant control, see eld., [65], or [3]. In fault tolerant
control, however, sensors or actuators typically disapues stuck or otherwise dete-
riorate, so the control system does not need to changetitsatfcommodate any new
information.

The outline of the rest of the paper is as follows. Sectiddsp2esents the present
model, parametrization and estimation of additional patens. Then, in Sectidd 5 we
propose the awareness measure. This is followed by a siolketample in Section
[6. Finally, a conclusion is given in Sectibh 7.

Note that parts of the material in Sectidns 3 4.1 havedyrbeen presented in
[[7], but are included here for completeness.

Our notation is mostly standardi,, (k) denotes the covariance between the sig-
nals¢ andv, i.e., Ryy(k) = E(o(t + k)Y (t)T),k = 0,41,42,.... Ry(k) is the
auto-covariance o0p. R4 (0) (or R, (0) ) will often be abbreviated as simpli sy
(resp. Ry ). Derivatives of vector functiong : R* — R™ with respect to vector
variablesr € R™ are written as

af(z)" o o
vf: fa() — E ... E ER’RXW

v of Ofm

oxy, 7 Oy



We denote time series data using capital Roman letters veitiparscript denoting the
final sample number, e.g.,

y(1)
Yi=| :
y()

Finally, vec(-) denotes the operation of stacking the columns ofian m matrix to
yield a singlenm-dimensional vector.

2 Present model

We consider a linear, time invariant system mapping inpy(g) € R™ to outputs
yp(t) € R™ at sample time, ¢ =0, 1,2, ... via the state space description

z(t + 1) = Az(t) + Buy(t) + w(t) (1)
yp(t) = C(t) + Dup(t) + v(t) )

whered € R, B € R"*"«, (C € R™w*™ andD € R™*™ agre constant ma-
trices. Subscrip(-), denotes ‘present’ signalsz € R™ is assumed to represent
“physical” states, in the sense that the state noise R™ only includes unmeasured
inputs/disturbances, as opposedvtee R™v, which only includes the measurement
noise. Itis often reasonable to assume that the measuramiset(t) is uncorrelated
with the process noise(t), i.e., Ry, = 0, whereR,,, denotes the cross-correlation
matrix between the stochastic signal&indv. w andv are assumed to be (stochastic)
stationary white noise processes with covariances

Cov [w] - [ i f;ﬂ | 3)

The other model version we shall consider is the followingpivation model:

Bt+1) = Ai(t)+ Buy(t) + Key(t) (4)
Ip(t) = C&(t) + Duy(t) (5)
Yp(t) = Gp(t) +ep(t) (6)

where® denotes estimates, () = y,(t)—gp,(t) is the estimation error anld € R™*"v
is a Kalman gain matrix. In this innovation model formulatjthe state estimatt)
is chosen ag(t) = E(x(t)|Y,!~!), where E-) denotes expectation value akii—' =

(DT gt — l)T}T. The output prediction error is assumed white and with
known covariance

Cov(ep) = Re, E(ep(t)ep(s)’) =0,t # s.

When the above assumptions are satisfied, we have the folidvésic properties.
Firstly, the state prediction errar(t) = =(t) — &(¢) is uncorrelated with previous



measurementg!~!, but is not a white-noise sequence. Secondly, the outpdigiien
errorg, (t) = y,(t) — §p(t) = e,(t) is uncorrelated with previous measuremeijfs*
and is white, i.e.g,(t), gp(t — 1), ..., 9,(0) are uncorrelated.

It is assumed that the original model is known exactly, fetémce through exten-
sive system identification, but only in the innovation fof)«{(8). Furthermore, only
the output measuremenys are considered available, not the states. The experimental
conditions can be open-loop or closed-loop, as long as tisesefficient excitation.
Gaussian noise distribution is not a necessary assumptitisi work; however, if the
noise does happen to be Gaussian, (un-)correlated impli@¢dgpendent.

Note that the additional device is not part of closed-loopragion at the time of
system identification. The new device will not be includedhia controller before the
model has been successfully updated.

3 Additional input

The problem considered in this section can be illustrateith &gure[1. An original
system with the deterministic state space realiza{idn(@))is operating subject to
the inputu € R™=. Then, at some point, a new actuator is plugged into the isyste
providing new actuation capabilities via the additionghiti,, € R. As the new device
is plugged into the system, it affects the plant as indicateide figure; that is, the state
vector may be affected by the new input via a gBinc R"*! and the system output
may be affected by, by a gainD, € R™*!. Since it is assumed that we already
have good knowledge of the original system, we wish to idgimtnly the new parts of
the systempB, andD,,.

<L (1)

Figure 1:Plugging in a new actuator leads to an extended state spatel,mdere the
new system parameteBs, andD, must be identified

The original input is not assumed to be corrupted by noise this is assumed for
the additional input as well. This implies that the new inpaitt simply has to be added



to an otherwise unchanged innovation model:

E(t+1) = A(t)+ [B B u(t)+ Key(t)
g(t) = Ci(t)+[D Dg]u(t)
y(t) = Ci(t)+ [D Dg]u(t)+ep(t)
R. = Cov(e)

whereu(t) = [up(t)” ua(t)T}T andy(t) denote the in- and output signals after
the addition of the new actuator, respectively. Here we natparticular, thati is
unchanged. It is thus only necessary to estinigteand D,,. It is furthermore noted
that the predicted output are linear in these parametetsedsalman predictor can be
written as

pt+1) = (A= KC)i(t)+ Ky(t)
+[B—KD B,— KDg]u(t)
g(t) = Ci(t)+[D Dg]u(t)

That is, the output can be separated into a contribution fr@original system and a
linear combination of contributions from each of the newngaiTo exploit this obser-
vation, we introduce the parameter vector

61
.| _|Ba
0= . - |:Da:| (7)
Ot p

and defing), (¢) as the predicted output from the original system, i.e.,@#sg B, =

0, D, = 0in Figure[1. Exploiting superposition, we Igt denote the predicted output
assumingB = 0,D = 0andf; = 1,60; = 0,5 = 1,...,n+p,j # i. Then the
predicted output can be written as a linear combinationesdtsignals as follows:

n+ny

- 1] Z elyz

Consequently, the measured output is given by

n+mny

= 1] Z 0:7) yz (8)

wheree(t) is the corresponding innovation. Let the prediction andsnesment output
samples be gathered in vectors as

y(1) yp(1) 9i(1)
YN=1| : |, YN= ; andVN = | : |,i=1,...,n+mn,
y(N) Yp(N) 9i(N)

whereN denotes the number of samples. We now have the followindtsesu



Lemma 1. Consider the systeril(1)4(2) and assume that a correct inimovenodel
(@)—(8) is known for the original system. Suppose an actuaiihh unknown parame-
ters as described b{/|(7) is added to the system.

The least-squares optimal estimate of the additional patans is then given by

0=Tr)"1rTz (9)
where
T:[}Aff\’ o YN andz =Y N YN

Proof. Gathering the entire sample set using the vector notatinndoced above[[8)
can be written as

YV = VN 00N 4 0, VN, + BN

whereEYN = [e(1)T,...,e(N)T]7 is the corresponding vector of innovation samples.
This is equivalent to the multiple linear regression form

Z=YN-yN=10+E"

for which it is well known—see e.gl. [10, App. Il.1]—that thstenator minimizing the
sum of squared prediction errors is given by (9). O

Theorem 1. (Consistent least squares estimator for additional ingDgnsider the
system[{1)}£(2) and assume that a correct innovation made(@#is known for the
original system. Suppose an actuator with unknown parammetedescribed by 17) is
added to the system. Assume furthermore that the input ssspemtly exciting.

Then the LS estimatdr](9) is consistent in open-loop opamatiFurthermore, it is
consistent in closed-loop operation as well, provided ¢hisrat least one time delay
from output to input.

Proof. Let § denote the true parameters. Using the expressions in Léntimaesti-
mator can be related to the parameters as follows.

6 = (YT Ir?Tz
= (YT7)"!IvT(r6 + EN)
0+ (Yt )y *rTEN

—_ f 1 T - 1 T N
- 9+(nyNT T) T

Since the processes are assumed to be stationary, we caxpioit ergodicity to find
the limit value off as the number of samples grows to infinity:

: y_p : 1 T - 1 T ;7N




Due to sufficient excitation, the factc(rpiNTTT) is invertible (see alsd [10, App.
11.2]). Writing out the last term, we get

N .
) ) >im (1) Te(t)
— YTEN - —_ :
pN PN\ _x .
Zt:l Yn+ny (t) e(t)
in which g;(t),¢ = 1,...,n + n, is the output predictor corresponding to tfith
additional parameter at timg which is generated from inputs and outputs up to and
including timet — 1 plusu(t) for D # 0. Since there is at least one time delay from
output to input, these signals are uncorrelated with thevatione(t), even in closed-
loop operation. Hence, with probability 1 we ha#éNTTEN — 0 andf — 0 for
N — oo. O

Thus, straightforward least-squares system identifinatields an asymptotically
unbiased estimate of the new actuator parameters, as lomg aw dynamics is in-
cluded.

4 Additional output

When adding an extra sensor without dynamics, the situdgéamomes as illustrated in

Figure[2.

Ya(t)

. Additional sensor

Figure 2: Plugging in a new sensor yields a new output. The additioaedmeters’,
andD, must be identified

In contrast to the additional input case above, the additiontput is corrupted
with measurement noigg, € R. The necessary augmentations to the model structure
thus become

z(t+1) = Ax(t) + Bu(t) + w(t) (10)
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Cov |:v] = Ry R, Ry, (12)
Va Rvaw Rvav Rva

and, againu(t) andy(t) = [y,(t)" ya(t)T}T denote the in- and output signals after
the addition of the new sensor, respectively. Note the itgmbrdetail that,(t) is a
function of thephysicalstatex(t), not the predicted stat&t). Here, it will be assumed
that the measurement noise for the additional outpu$ uncorrelated with the other
noise sources i.62,, = RI, = 0.

4.1 Least Squares Estimates of the Deter ministic Part

If the full, physical statex(¢) is measured, all parameters including the covariances
(@I2) can be estimated using least squares methods based omttel equation§ (10)
and [11) above. However, ast) is not measured in most cases, an estimate must be
used instead. In the following, we shall use the predictiémom the innovation model
@-©).

Introducing the state prediction errd(t) = z(t) — @(t) allows us to rewrite the
output equation fog, (t) as

Yo (t) = Cox(t) + Dou(t) + v, (t)
= Cu2(t) + Dau(t) + Co(z(t) — 2(t)) + va(t)
= CLi(t) + Dau(t) + CoZ(t) + va(t). (13)

If we further introduce the regression and parameter vector
_ |2(@) _ T
B(t) = {u(t)} andd = [Ca D] (14)

we are able to state the following results.

Lemma 2. Consider the syster](1)3(2) and assume that a correct intivovenodel
{@)—(8) is known for the original system. Suppose a sensthruviknown parameters
as described by (14) is added to the system.

Then a least squares estimator for the deterministic pagtisn by

A N -1y
b= <z ¢<t>¢><t>T> > $(t)yalt). (15)
t=1 t=1
Proof. Rewriting [13) yields
Ya(t) = 0T p(t) + Cai(t) + va(t)

and if we see the ter, Z(t) + v, (t) as a regression error, it is clear that the optimal
parameter estimate is obtained by solving the optimizairoblem

mmz ya(t) — 0T o(1))?



which has the solutioh (15). O

Remark 2.1. Note thatd” ¢(¢) does not usg, and is thus not an optimal predictor.
Hence, [(Ib) is not a prediction error method-based estimatod accordingly the
residuals cannot be expected to be white.

Theorem 2. (Consistent least squares estimator for additional outplgterministic
part) Consider the systerl(1)3(2) and assume that a comexiMation mode[{4)E(6)
is known for the original system. Suppose a sensor with umkrgarameters as de-
scribed by[(T4) is added to the system. Assume furthermatréhilinput is persistently
exciting.

Then the least squares estimatbr](15) is consistent in dpem-operation. Fur-
thermore, it is consistent in closed-loop operation as walbvided there is at least
one time delay from output to input.

Proof. This proof builds on the same ideas as the proof for Thebleheld denote
the true parameters, and introduce the resid(tal= v, (t) — 7 ¢(t). Then we have

|
T
Il
N
<
=
N~—
SS
~
=
~
N———
L
(=
<
—
=
—
<
=~
~—
)ﬂ
S
_|_
=
=~
~—
~—

Now letting NV grow, we see that

. A= -1
Jim 0=0+E([6)o)T] ) E(o(t)r(t))
As in the proof of Theorerl1, the first factor is invertible doethe assumption of
persistent excitation. Further, sincg) = C,Z(t) + v, (t) we see that the last term
can be written as

Now, as the additional output noisg(¢) is assumed to be uncorrelated with all other
signalsin the system, includiridt) andu(t), and Bv,(t)) = 0, the terms [z (¢)v, (t))
and Hu(t)v,(t)) must be zero.

Next, since(t) is an optimal prediction, it is uncorrelated witlit) and Ez(t)) =
0. Finally, Z(¢) is uncorrelated with.(¢) in both open-loop and closed-loop operation.
u(t) is then a function ofu(7) andy(7),7 = t — 1,t — 2,..., with which Z(¢) is
also uncorrelated. Consequently we havgp&)”r(t)) = 0, and the estimator is
consistent. O

10



4.2 Prediction error-based estimates of the stochastic part

Unlike the case of an additional input, an additional oufgh@nges not only a single
row or column in the parameter matrices in the innovation eh)—(8). This means
that K and R, must be estimated anew. As the present model is assumed larmivn
the deterministic part can be consistently estimated, ttréirsg point is to assume the
parameter matriced, B, C and D in the augmented deterministic model (i.e., includ-
ing the additional output) are known, based on the estimatioried out in the previous
subsection. That is, we consider the innovation model

2t+1) = A#(t)+ Bu(t) + Ke(t)
y(t) = Ca(t) + Du(t) +e(t)
Cov(e) = Re

where it should be noted thatt) contains both the original output and the additional
outputy, (t).

We choose the prediction error method to fiid and note that the setup is such
that, assuming the noise is Gaussian, the problem becomestaquivalent to a Max-
imum Likelihood method. We will briefly present the parametstimation method as
it applies to our setup in the following; see alsol[10, se@10331].

The prediction error method can be formulated as followst d(g 0) = y(t) —
9(t, ) be the output prediction error at sampleomputed from a model with parame-
tersd € ©. We define

Ze (t,0) A" e(t, 0) (16)

t=1

whereA is a symmetric positive definite matrix of appropriate disiens, and solve
the optimization problem

6" = 10 17

= arg ng(g @) (17)
If [ is taken as the negative likelihood afdncludes all unknown parameters, this is
indeed the standard maximum likelihood method. Here, hewave are only inter-
ested in estimating the parametergdn We perform the minimization twice, first with
A = I, yielding a first estimaté', from which we compute an autocorrelation estimate

N
Do 1 H1 AINT
Re=+ ;e(tﬁ Je(t, ") (18)

and then we perform the optimization again with= R, from the first minimization.
Assuming thatR R,, this is similar to the maximum likelihood method f&f if
the process and measurement noise are Gaussian.

Next, we derive expressions for the first and second devivati/ wrt. 6 in order
to be able solve the optimization problems efficiently. Let vec(K); differentiating

11



wrt. 6 we obtain
Col0) N de(t,0)T

Next, differentiating with respect to each elemenépfve see that

U0 _ N 9%e(t,0)T A-le(t, ) +2238 0)" \ ~19e(t,0)

96;00; ~ ~ &= " 06; 00, o0, 06,

Here, it is noted thaziil % is a function ofy(t — 1), y(t — 2),...,y(0) and
y(t —1),u(t —2),...,u(0). Hence, ad — 0, the first term will tend to zero aswill
be independent of the observations on which it is based (sed1d, (10.45)]). Thus,
a good approximation for the second derivative is

2
0°1(0 N2zaet9 _10e(t,0)

2
Vi) = 06 00" 06"

Finally, the gradient o is given by the gradient of the one-step predictor:

de(t,0)  0y(t,0)

e(t,0) =y(t) —y(t,0) 90 o8

which in turn can be computed from the Kalman filter equati&or a fixedK the
optimal one step predictgr(t, §) becomes

2(t+1,0) = Az(t,0)+ Bu(t) + K(y(t) — 9(t,0)) (19)
g(t,0) = Ci(t,0) + Du(t) (20)

and differentiating wrt. 6 yields the following recursive expression for the desired
gradient:

ox(t+1,0)  -0(t,0) _0g(t,0) OK
g~ Ao Kagr oY) 1)
2y(t,0)  L0x(t,0)
00T = C 00" (22)
Here, since = vec(K), we see that
0K
89T (t 9) = [e(tv 9)1171 e(ta 9)2171 e e(tv 9)1)]"}
= e(t,0)'®1I, (23)

wherel,, is the identity matrix of sizew and® denotes the Kronecker product.

The stability of [21) is the same as for the Kalman filter,, iieis stable if the
eigenvalues ofi — K'C are within the unit circle, which can always be ensured if the
system is observable. See also|[10, sec 10.3 p 331].

12



For the iterative minimization the Levenberg-Marquard,|16] method[(24) is
used.

gF = gk — (51 + v%(ék—l))*l VIR (24)

Convergence of this algorithm is basically obtained by oty for each step
wherel decreases and increasifif [ does not decrease.

4.3 Recursive parameter estimation

The awareness measure in the following section is most Ueefcontrol applications
if it can be updated at each time sample. This in turn callsdfoursive parameter esti-
mation, which is therefore briefly presented in this sect®imce recursive estimation
is not in focus in this work, the discussion is kept brief.

We use the recursive prediction error metHod [11] to esgnhat Let U € R"e*?
denote the gradient gfand let0 < A < 1 be a forgetting factor.

wp = 200 (25)
. B At — )+(1—/\) (te®)™ Frx<1

A = {(1 YAt — 1)+ Le@®e®m)™ ifA=1 (26)
R(t) = (t—1)+‘11() () 1‘IJ(L‘T (27)
0(t) = 0(t—1)+R(&)"TE)A®) () (28)

The dependence o, ¢, A and R on § are left out in the above expressions for
simplicity. e and¥ are computed using (19)=(20) andl(20)3}(22).

Note that stability problems can occasionally occur in ¢hesursions. This issue
is outside the scope of this paper, however, and will not beudised further.

Similar recursive formulations can be given for the estonatf the deterministic
part of an additional sensor or actuator. In this case therseans are simpler and do
not incur any stability problems.

In case of an additional sensor, recursive estimation df bgt D, and K are
needed. The recursive estimationfofassumes a known deterministic model includ-
ing C, andD,. As C, and D, are estimated recursively, the estimates at the given
samplet, C, (t) and D, (t), are simply used in the recursive estimatorfoft), i.e. the
deterministic and stochastic recursive parameter estimate merged. For = 1 this
does not spoil the convergence as the recursive estimaté,foD, converges inde-
pendently of the additional estimatéd-parameters which then eventually makes the
estimate ofK converge as well.

5 Awareness measures

In this section we introduce three different measures, viridicate the “correlation”
(in some specific sense, which will be explained below) betwa new actuator and

13



the present sensors or between a new sensor and the preseoc If there is a
high degree of correlation, the new device can probably iptoérd by the controller
whereas low correlation means that it is probably difficaliutilize the new device
in the existing control loop. Correlation can be measuredragitionalmodel free

methodsor by therelative reduction in modelling error We first recall some basic
notions from correlation analysis.

5.1 Preliminaries
Let uy = E(¢), py = E(®) andoy = VE[(¢ — 11g)?], oy = VE(Y — py)?]

denote the expectation value and standard deviation of twainastic variable, ¢ €
R, respectively.
Thelinear correlationbetween these two stochastic variables is defined as

_ El(¢ = o) (¥ — pyp)]
Ty

Py

which gives the following natural expression for a modegfestimator:

LN (i — fug) (s — i)

— (29)
0404

Poy =

whereN denotes the number of samples and

1Y 1Y

by = N;(bi’ Gy = N;(fbi—ﬁ%)z
1Y 1Y

oy = N;% Gy = N;(%—[Mpy

However, a model-based alternative to the model-free latina estimator[(29) is
more appropriate in this application. The model-basednedtr derived is based on
the fact that theelative reduction in variancebtained from using a univariate linear
regression model equals the square of the error correld#fyisec. 7.3]. Let) € Rand
and¢ € R™ denote a stochastic variable and a set of regression vesiaklspectively.
A linear projection ofp ontov is given as

b(0,¢) =0"¢ (30)

wheref = [91 Hm]T is a parameter vector. As usudl; denotes the least-
squares optimal parameters, i.e.,

0" = argmin E[(y — $(0, ¢))’]
Restricting one of the elements in the regressor to a fixageya.g., , €.9¢;1 = 1,

allows us to incorporate the mean value/oin the linear regression; that ig(0*,1)
becomes the projection on 1 and thu@*, 1) = 6* = p,.

14



Form = 2,i.e.,¢ = [1 ¢2]T, the linear correlation can be computed as

E(¢ — py)* — E( — (6%, ))°

2
Poyp = (31)
v E() — py)?
while form > 3, (31) becomes the correlation between a scaland the best linear
combination of regressor[i ¢2 ... ¢m]T. This is also known as the multiple

squared correlation [21, sec. 12.6]. Note thgf < [0, 1].
In practice, in order to obtain an estimate of the relativdurtion in modelling
error, we first compute a parameter estimate

A N -1 /N
j (z @oﬂ) (z qmm) @)
=1 =1

and then replace all the mean square errofs ih (31) by theegmonding sample aver-
age square errors:

o B (W — ) = N (W — (0, 6:))?
% sz\il(w - Mw)2

Py =
Another useful measure is tipartial correlation Let ¢ be separated into its first
m — 1 components and then the last component as

b1

&= _ [ ¥ ]
(bmfl d’m
Pm

The partial correlation betweem,, andy giveny is then defined as

El(¢m — E(om|9)) (¥ — E(¥lp))l¥]
VVar(énle)Var(yle)

Using similar calculations as above, this partial coriefatan also be expressed by

relative reduction in modelling errors. Lettiriy andd?; denote the optimal parameter

estimates corresponding {pand ¢, respectively, i.e., the estimates corresponding to
using onlym — 1 andm regressors, respectively, we obtain the following expogss

p2 _ E(ZZJ—?/;(GZa‘P))Q _E(dj_’lj)(e;bad)))Q
ol E(¢ — (05, 0))?

(33)

Pomiplp = (34)

(35)

The corresponding estimate for the partial correlatioream [35) is similar td(33).

However, one should be aware that non-linear dependenci@glata set cannot
necessarily be seen in linear correlation. If gz N(0,0%) andy = ¢? then is
determined byp, butpg,, = 0. Such non-linear dependence can be taken into account
by using avariance reduction correlatiomeasure and changing the modeb, ¢)
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to be nonlinear inp. One may choose various non-linear functions to repre$ent t
dependencies, e.g. polynomials; various smoothing teciesi can also be considered
[4].

Furthermore, if¢p and are two stochastic processes then it may happen that
psy = 0 even though one signal is given as a function of the other,ieg(t) is
white noise and)(t) = ¢(t — 1). To capture this type of correlation, one should use
the cross correlation functiofiy, (¢, 5) = pgs)e(s) iNStead, as it covers all lags be-
tweeng andi). For non-linear time series analysis|[13] uses auto cdiogléunctions,
where the variance reduction measure is used with smoothatgls. A similar tech-
nique for calculation of cross correlation functions is gested as well. It should be
noted, however, that the pre-whitening method, which isroftsed to remove “false”
correlation due to similar spectra in two signals, cannot$ed without modification
for non-linear systems.

Finally, yet another way to measure non-linear correlatiostochastic systems
would be to use the variance reduction techniques and expandodel class used for
1 from non-linear static models to non-linear dynamic mogdielshis case, it would
not be necessary to calculate the cross correlation fumationce the dynamics would
already be included in the model.

5.2 Awareness measures

We now apply the above notions to the plug-and-play contiirgy.
Using the time series notation introduced earlier, we carsicier various different
model errors; for example,

Ga(tlU, Y1) = ya(t) = Ga(t1U, ™1 Y, 7) (36)

whereg, (t|U}~",Y,}~') is the best prediction of the additional outpu{t) at timet
given all present inputs,(t) and outputs, () from the start and up to and including
timet — 1.

The model/prediction errof (B6) originates from the aboisewssion on how to
define and measure awareness in a “correlation-like” fastitowever, the errof (36)
also has a very relevant interpretation in terms of control.

Assume that a reference fgr (¢ + 1) is known at timet; then it is, in principle,
possible to solve the equation

o (t + 1|U;tn th) = Yar(t+1)

for u,(t) as a function of, up to sample — 1, y,, up to sample andy, (¢t + 1) to
yield a kind of ‘fictitious’ minimal variance feedback coalier. The smallest reference
tracking error that can be obtained using ¢fienvariablesu,, andy, thus becomes

Yat+1) = Yar(t+1) = ya(t+1) —ga(t + 11U}, Y,)
= Gt +1UL Y.

Based on the above discussion, we propose the following taa@reness mea-
sures

2 _ Elga(®) — E(ya(®)* — Elya(t) = a (8T, 5 Yy~ Y )P
P Y Yerte Blya(t) — By (0)

(37)
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o Elya(t) = Ea(®)]® = Elya(t) — ga(t|U; 1)) (38)
PUpve = Elya(t) — E(ya (1))
, _ Elyp(®) = gp(tlU Y2 = Blyp(t) — g (UL YL U2
PUaypUpY, = Ely,(t) — 9, {|Up, Y, )2 R

Note that, as stated, the abaveeoreticalawareness measures are based on models,
not data. Like for correlations, the squared valpewill be between 0 and 1. A value
close to 0 means that the new sensor or actuator represiiet®iitra value to the
closed-loop control, while a value close to 1 means that #msar yields significant
extra information, or the actuator can improve the distodearejection capabilities of
the closed loop. Some specific remarks are in order:

1. Firstly, [3T) measures how well the additional sensorlmamrontrolled by the
present actuator in closed loop, provided it is controabNote that a large
value of this awareness may occutyif cannot be controlled independently of

Yp-

2. The awarenesg (38) measures how well the additional seasdbe controlled
by the present actuator in open loop.

3. If the additional sensor is not controllable by the erigtactuator, a large value
of (34) can only occur if there is a strong auto correlatiopjnHowever in that
case the second awareness measute (38) will be close to zero.

4. The awarenesb (B9) measures how much the additionakarctsnadd to the
control of the present sensor in closed loop.

To use these measures the various versions of the fungtio ) must be found.
In general, the optimal estimateg&t| X) = E(y(¢)|X), which is easy to find for linear
systems, as it is closely connected to parameter estimd&tmmon-linear models it is
normally necessary to use an approximation.

In practice, to produce an estimate it seems best to simfigtisute the mean
squared errors with average squared errors. These avarageed errors should be
generated from the present model and the new model inclutiengew device after
estimating the new parameters. Note that when a model imgukde new device is just
starting to adapt, it may happen that the awareness meastimages become negative;
this can generally be ignored, since it is merely an effethefmodel fit being poor.

An additional device can have low awareness of the above ggause of low
control potentials even though it has a statistically gigant model improvement. To
detect this situation a statistical test can be used; ftaic®, an appropriate measure is
the p-value in an F-test[[10, p. 509] with the hypothesis that all addidilparameters
equal zero. The necessary calculations can be based orsthits r@ready developed
in this work.

Finally, we note that, to obtain identifiability, some exation is always necessary.
For an additional input the independent excitation can Ipieg directly to the input.
For an additional sensor, independent external excitatiag be used, or dedicated
closed-loop identification methods may be employed.
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6 Simulation example

In this section, we show an example that illustrates thecefiéintroducing an addi-
tional output measurement. We consider the system

x1(t+1) 0.9048 —0.0090| |z1(t) n 0.0952 0.0947 ) + w1 )
za(t+1) 0.0090  0.9048 | |z2(t) 0.00047 0.0956| 7 wy
z1(t)
yp(t) = [1 0] [x;(t)} + [0 0.1] up(t) +v(t) (41)
with noise correlations
0.0100 0.0050 0
Hw = [0.0050 0.0100] y Ro=001, Ry = {0] (42)

The corresponding innovation form, with given Kalman gaml annovation covari-
ance, can be calculated using standard methods; we obtain

0.5381
Ky = [0.2597] ’

The system[{40)E(42) above is denoted phesentsystem. The deterministic part
(40)-[41) and the stochastic part in innovation forni (43)assidered known.

Then, using the state estimate provided by the innovatiotei@an LQ controller
is designed. For illustration purposes, we designed a fastecontroller that aims to
minimize both states, although the second state is fainlg kmobserve. The control
law was chosen as(t) = — F,&(t) where

R, = 0.0248 (43)

N
F, = min lim ()T Qur(t) + ut)” Quu(t)
F N—><>ot:1
Qn = I, Qu=005I

This yielded the control gains

P = 2.3953 —1.2122]

1.2138  2.4299

The systemi{40)E(41) has deliberately been constructédthatthe second state is
difficult to observe; the condition number for the obserlighinatrix is 201. However,
this improves to 2.62 when introducing a new sensor into yistesn providing access
to anadditionaloutput

Ya(t) = Cax(t) + Dauy(t) + va(t)
1 1]z(t) + [0.1 0.1] up(t) + va(t)

as the second state is now included directly in the outpug ridise covariance of the
new sensor are

Ry =0.1, Rye= Rey=0
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The following simulation experiment illustrates the difat phases involved in a
typical plug-and-play scenario. Plots of signals versoeetare shown in Figurel 3.
During the first 500 samples, the system operates with theater designed above
and only one measuremepj, Then, at sample 500, the additional sensor is connected
to the system and external excitation added. This situgt@aists until sample 1500,
during which samples are gathered for recursive estimatidine new parameters and
the awareness measures. The external excitation andeétt®ffan clearly be seen in
Figure[3.

At sample 1500 the estimated parameters related to thei@uaibutput is used
to update the Kalman filter. The new additional sensor outpatided to the Kalman
filter, and the external excitation is removed.

For the rest of the simulation, the estimator uses lgtandy,, and the control is
improved even though the control gains remain unchangeziirabe seen from Figure
[3, the variation of the second state is clearly reduced fotast 500 samples compared
to the first 500 samples.

Input and output

Ju, U Y,

LA L o M

1"}‘|u;m' s '\' ")"

0 500 1000 1500 2000

1IMM ‘ W\ " wn“" h H, it ,

Figure 3: Input, states and output for the simulation exampl

Figure[4 illustrates the progress of the recursive paranest@mation and aware-
ness measure calculation. At sample 500, the variablesitisized. As can be seen
from the figure, all the new parameters are initialized ab zehereas the existing two
K-parameters are initialized at their present values. Thialivalue of R is chosen
small. In this example, there are no time varying paramesers/e choosa = 1. As
there is no external excitation from sample 1500, the modehat improve from this
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time, and the calculations can be stopped. Note that theedess do not seem to have
converged completely at sample 1500.

Parameter est. det. part
4 ‘

0 500 1000 1500 2000

Parameters est. K

0.6

0.4

0.2}

_0.2 1 1 1
0 500 1000 1500 2000

Figure 4: Recursive parameter estimates initialized ag &®0.

Before discussing the awareness measures, recall thas ibden a deliberately
choice in this paper to use rather generic awareness meaasrepposed to measures
that are specific to a given control design and performanuetiion. This means that it
is not always entirely straightforward to use the awarengsssures; rather, they must
be interpreted in a given setting.

According to figuré’b, the ;-test shows a statistically significant relation between
the new measurementand the present model after less thaat@les. The correlation-
based awareness related to closed-loop control of theiadalitoutput [3F) settles
around a value 0.55 approaching time 1500, which meanshbgbresent input can
control the new output as well as the linear combination afest it represents. The
awareness related to open-loop control of the new oufp8j, &ttles around 0.3 ap-
proaching time 1500 which indicates that also open looprobof the new output is
possible. This suggests that the positive value of the dideap awareness measure
(37) does not entirely come from autocorrelation in the netpot, rather some of it
stems from a connection to the system input.

Note that after the external excitation ends the paramaterslowly drifting; in
particular, the awareness related to control of the newuuspdecreasing, which can
be expected as the model cannot improve without excitation.

As already mentioned, Figulré 3 indicates that the testetladstimprove the con-
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Awareness measures
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1500 2000

Figure 5: Awareness measure initialized at time 500.
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Description | Present Present Updated Updated/
obs. obs. with excit. obs. Present
Sample range 0-500 500-1500 1500-20Q0
Ju 0.0042 0.0391 0.0071 | 1.6949
I 0.0849 0.1788 0.0511 | 0.6012
J 0.0891 0.2178 0.0582 | 0.6526

Table 1: Comparison of control performance between thesthiraulated intervals.

trol performance. To verify this, various control relatedasures are listed in taffle 1.
They are all calculated from the time series shown in FiQurgh@ first three columns

with numbers are for the present controller in closed-leafh) external excitation and

with the updated observer, respectively. The column fsittethe right is the perfor-

mance of the controller with updated observer relative ®gresent controller. The
first two rows show

1

Ju = N (t)TQuu(t)

N
S+

=

2 |

and

(t)" Qax(t)

S
I
=
] =

t=1

T (t)2 + X9 (t)2

I
=
] =

~
Il

1

respectively. The last row shows the overall control peniance/ = J, + J,,.

From the table, it is seen that the total control performasdecreased to roughly
65% of what it was before the introduction of the new sensalrtae retuning of the
observer, which shows that the combination of an extra dutipe estimated model for
it and the selected switching time improved the control.

7 Conclusion

This paper considered the situation where an additionaasesr actuator is added to
a control system for the purpose of improving the perforneanc

We first developed analytical solutions for identificatidnie deterministic part of
the models based on ideas from classical system identificatid showed consistency
for these incremental modelling methods. For the stoahastit a prediction error
method has been developed, and we provided explicit forefolathe gradient.
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With the incremental model in place, it is necessary to hagthods to indicate if
the new device is helpful or not, and if so, to indicate wheretwonfigure the control
system to use the new device.

To this end, correlation-based awareness measures wezlped, which indicate
if there is a potential gain to be obtained by using the nevicgevl here are basically
two different ways to define and measure correlation, thesatalmean of producand
the more advancedhriance reduction using model§he models used can range from
static linear over static non-linear to dynamic non-lineadels.

The main advantage of using theean of producapproach, which involves models
that are very generic and flexible, is that the risk of noteiog correlation that is ac-
tually present in the data is very small. On the other handparate, computationally
heavy calculation of cross correlation functions covermany lags and possibly using
smoothers etc., would be required.

For the model-based variance reduction approach, whichthsepresent dynami-
cal model and a dynamical model including the new devicesttuation is the oppo-
site. The disadvantage is that it will only be possible t@woi®r relations covered by
the model structures. On the other hand, the computatiamekh is relatively small,
since no cross correlation is needed. Moreover, the negesakulations are almost
covered by the adaptive parameter estimation, which weussgtd in the first half of
the paper. Also, this method has the potential for coverioiy Istatic and dynamic
systems as well as both linear and nonlinear and gives oresimeasure in contrast
to cross correlation functions. Finally, the control r@evinterpretation based on min-
imal variance control is advantageous as well. Thus, weelius latter approach in
this paper.

If the control objectives are directly related to each otitpondition for switching
controller could be that the relevant awareness measuarté®e exampld(37) an@ (38),
are above some threshold. In general, however, the corttjettives are related to
the states and the objectives can only sometimes be digmtigified from output and
input only. Still, in most cases it is reasonable to assuratthiere is a strong relation
between control objectives and the outputs. Consequéndynost reasonable switch
condition is that awareness remains above the specifiedhibick for a certain time.
Furthermore, to account for uncertainty, one could comdiniéncrease the threshold
by an amount corresponding to the magnitude of the unceytéiknown.

Future work include more thorough investigation of statédthypothesis that can
indicate in a reliable manner when a new device providescseffii information or
actuation to be worth including in the control loop. Alsogthstimated awareness
measures are uncertain due to two factors. One is the sulstitof mean values
in (31)-[39) with average values, which introduces undaefgaeven if the estimated
parameters are correct. The other is that the estimatedhpéees may not be correct
until after extensive identification, which may lead to esran the state estimation.
Thus, it would be interesting to investigate bounds on thesertainties.
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