
 

  

 

Aalborg Universitet

A latent model for collaborative filtering

Langseth, Helge; Nielsen, Thomas Dyhre

Published in:
International Journal of Approximate Reasoning

DOI (link to publication from Publisher):
10.1016/j.ijar.2011.11.002

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Langseth, H., & Nielsen, T. D. (2012). A latent model for collaborative filtering. International Journal of
Approximate Reasoning, 53(4), 447–466. https://doi.org/10.1016/j.ijar.2011.11.002

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 10, 2024

https://doi.org/10.1016/j.ijar.2011.11.002
https://vbn.aau.dk/en/publications/557f06d8-48c9-46f5-8fa3-5366ebd85d2a
https://doi.org/10.1016/j.ijar.2011.11.002


A latent model for collaborative filtering
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Abstract

Recommender systems based on collaborative filtering have received a great deal
of interest over the last two decades. In particular, recently proposed methods
based on dimensionality reduction techniques and using a symmetrical repre-
sentation of users and items have shown promising results. Following this line
of research, we propose a probabilistic collaborative filtering model that explic-
itly represents all items and users simultaneously in the model. Experimental
results show that the proposed system obtains significantly better results than
other collaborative filtering systems (evaluated on the MovieLens data set).
Furthermore, the explicit representation of all users and items allows the model
to e.g. make group-based recommendations balancing the preferences of the
individual users.

1. Introduction

Recommender systems are designed to help users cope with vast amounts
of information. They do so by presenting only a certain subset of items that
is believed to be relevant for the user. These types of systems are usually
grouped into two categories: Content-based systems make recommendations
based on a user preference model that combines the user’s ratings with e.g.
content information and textual descriptions of the items. Collaborative filtering
uses the ratings of like-minded users to make recommendations for the user in
question.

Over the last decade recommender systems based on collaborative filtering
have enjoyed a great deal of interest. Collaborative filtering systems are often
characterized as either being model-based or memory-based [5], although hybrid
systems have also been developed [42]. Roughly speaking, memory-based algo-
rithms use the whole database of user ratings and rely on a distance function
to measure user similarity. On the other hand, model-based algorithms learn a
model for user preferences, which is subsequently used to predict a user’s rating
for a particular item that he or she has not seen before.

The simplest type of model-based algorithms uses a multinomial mixture
model (corresponding to a naive Bayesian network [13]) for either grouping
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users into user-groups or items into item-categories. More elaborate model-
based algorithms have also been developed, having both probabilistic (see e.g.
[52]) and non-probabilistic foundations (see [50] for one example). In particular,
where earlier model classes relied on a single item-model and/or user-model
for predicting preferences, more recently proposed model classes combine these
two perspectives and treat users and items symmetrically by representing them
explicitly in the model. In this paper we pursue this idea further and propose
a new type of probabilistic graphical model (represented by a linear Gaussian
Bayesian network) for collaborative filtering. The model explicitly includes all
users and items simultaneously in the model, and can therefore also be seen
as a relational probabilistic model combining an item perspective and a user
perspective [54]. The generative properties of the model support a natural
model interpretation, and by having all users represented in the same model, the
system can provide joint recommendations for several users. Empirical results
based on theMovieLens data set and the Jester data set demonstrate that the
proposed model outperforms other memory-based and model-based approaches.

The remainder of the paper is structured as follows. In Section 2 we intro-
duce Bayesian networks; the statistical modeling framework that will be used
throughout the paper. Related research is explored in Section 3, before our
model is presented in Section 4. An algorithm for learning the proposed model
from data is described in Section 5, and we investigate its predictive ability in
Section 6. In Section 7 we conclude and give directions for future research.

2. Bayesian Networks

A Bayesian network [41, 24] is a probabilistic graphical model that provides a
compact representation of a joint probability distribution and supports efficient
probability updating.

A Bayesian network (BN) over a set of variables {X1, . . . , Xn} consists of
both a qualitative part and a quantitative part. The qualitative part is repre-
sented by an acyclic directed graph (traditionally abbreviated DAG) G = (V , E),
where the nodes V represent the random variables {X1, . . . , Xn} and the links E
specify direct dependencies between the variables. An example of the qualitative
part of a BN is shown in Figure 1. Since there is a one-to-one correspondence
between the nodes in the network and the corresponding random variables, we
shall use the terms node and variable interchangeably. Considering E , we call
the nodes with outgoing edges pointing into a specific node X the parents of
X (denoted πX), and we say that a variable Xj is a descendant of Xi if and
only if there exists a directed path from Xi to Xj in the graph. The edges in
the graph encode (in)dependencies between the variables, and, in particular,
the assertion that a variable is conditionally independent of its non-descendants
given its parents.

The quantitative part of a BN consists of conditional probability distribu-
tions or density functions s.t. each node is assigned one (and only one) probabil-
ity distribution/density function conditioned on its parents. In the remainder
of this paper we shall assume that all variables are continuous, and that each
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variable Xi with parents πi is assigned a conditional linear Gaussian distribu-
tion:

f(xi|πi) = N (µi +wT

i πi, σi),

i.e., the mean value is given as a weighted linear combination of the values
of the parent variables and the variance is fixed. The underlying conditional
independence assumptions encoded in the BN allow us to calculate the joint
probability function as

f(x1, . . . , xn) =

n
∏

i=1

f(xi|πi),

and with linear Gaussian distributions assigned to all the variables it follows
that the joint distribution is a multivariate Gaussian distribution. The precision
matrix (the inverse of the covariance matrix) for this multivariate distribution
directly reflects the independencies encoded in the BN; the entry for a pair of
variables is zero if and only if the two variables are conditionally independent
given the other variables in the network.

3. Model-based Collaborative Filtering

Probabilistic graphical models for collaborative filtering include general un-
constrained models such as standard Bayesian networks [5] and dependency
networks [18]. These types of models have, however, received only modest at-
tention in the collaborative filtering community, mainly due to the complexity
issues involved in learning these models from data. Instead research has focused
on models, which explicitly incorporate certain independence and generative as-
sumptions about the domain being modeled.

The most simple probabilistic model for collaborative filtering is the multi-
nomial mixture model [5], where like-minded users are clustered together in
the same user classes, and given a user class a user’s ratings are assumed in-
dependent (i.e., the model basically corresponds to a naive Bayes model [13]).
The independence assumptions underlying the multinomial mixture model do
usually not hold, and have been studied extensively, in particular w.r.t. models
targeted towards classification [12, 30]. However, for collaborative filtering the
model has mainly been analyzed w.r.t. its generative properties: The multino-
mial mixture model assumes that all users have the same prior distribution over
the user classes, and given that a user is assigned to a certain class, that class
is used to predict ratings for all items.

The aspect model [22, 20, 21] addresses some of the inherent limitations of
the mixture model by allowing users to have different prior distributions over
the user classes.1 This idea is further pursued in [34], which introduces the user

1For a comparison and discussion on alternative models, including the aspect model and
the flexible mixture model [49], see [25].
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rating profile (URP) model that expands on the generative semantics of the
aspect model, and allows different latent classes to be associated with different
item ratings. The URP model shares the same computational difficulties as the
latent Dirichlet allocation model [4], and relies on approximate methods like
variational methods or Gibbs sampling for inference and parameter learning.
This model has been further explored in [47] that extends the latent model
structure to cover both users and items. The joint modeling of users and items
is also found in low-rank matrix approximation methods, where the user-item
rating matrix is represented in factorized form as a product of a user-matrix and
an item-matrix. Such factorized representations can be obtained using singular
value decompositions (SVD) based methods that support missing entries in
the rating matrix [50]. Recently, probabilistic extensions to the SVD-based
methods have also been proposed to address the problem of over-fitting. This
is realized by assigning suitable prior distributions to the model parameters,
thereby achieving a form of regularization [33, 45].

There has also been investigations into so-called hybrid recommendation sys-
tems, where recommendations are based on a unification of collaborative and
content-based information. For example, [42] proposed a personality diagnosis
method, which can be seen as combining memory-based and model-based ap-
proaches; a naive Bayes model is used to calculate the probability that the active
user is of the same personality type as other users. [53] proposed a method for
unifying the user-based and item-based collaborative filtering approaches within
a memory-based context, [51] combined content-based filtering and collabora-
tive filtering in a conditional Markov random field model, and [15] considered
methods for integrating content information based on a weighted non-negative
matrix factorization [6].

Finally, collaborative filtering has also received attention within the rela-
tional learning community. Notably, and which structure-wise is somewhat
related to the model we propose in this paper, is the infinite hidden relational
model [54]. In this model, there is a latent variable associated with each en-
tity in the domain, and this latent variable appears as parent of all attributes
of that entity as well as of the attributes of the relations in which the entity
participates. As will become apparent later, the model proposed in this pa-
per share some similarities with this relational structure. It should be noted,
though, that the infinite relational model is not specifically targeted towards
collaborative filtering, but rather relational domains in general.

4. A Mixed Generative Model

In this section we will describe our collaborative filtering model, but first
we need to introduce some notation. We will denote the matrix of ratings
by R, which is of size #U × #M ; #U is the number of users and #M is
the number of movies that are rated. R is sparsely filled, meaning that it
(to a large degree) contains missing values. The observed ratings are either
realizations of ordinal variables (discrete variables with ordered states, e.g.,
“Bad”, “Medium”, “Good”) or real numbers. In the following we will consider
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only continuous ratings (ratings given as ordinal variables are hence assumed to
have been translated into a numeric scale).

We will use p as the index of an arbitrary person using the system, i is the
index of an item that can be rated, and R (p, i) is therefore the rating that
person p gives item i. We will use the indicator function δ(p, i) to show whether
or not person p has rated item i: δ(p, i) = 1 if the rating exists, otherwise
δ(p, i) = 0. Furthermore, I(p) is the set of items that person p has rated, i.e.,
I(p) = ∪i:δ(p,i) 6=0{i}, and similarly we let P(i) = ∪p:δ(p,i) 6=0{p} be the persons
who have rated item i. As usual, lowercase letters are used to signify that a
random variable is observed, so r (p, i) is the rating that p has given item i (that
is, δ(p, i) = 1 in this case). We abuse notation slightly and let r(p, I(p)) and
r(P(i), i) denote all the ratings given by person p and to item i, respectively.
Finally, we let r denote all observed ratings (the part of R that is not missing).

When working in model-based CF, we search for a representation of r based
on model parameters θr , i.e., we assume the existence of a function g (·) s.t.
r (p, i) = g (θr, p, i) for all the observed ratings. By the inductive learning
principle we will predict the rating a person p′ gives to item i′, R (p′, i′), as
g (θr, p

′, i′). This process is called single-rating predictions. Often, g (·) will be
based on a statistical model of the conditional distribution of R (p, i) |{r, θr},
and the prediction is then either the expected value or the median value of that
conditional distribution.2 A more complicated problem is multi-rating predic-

tions (see, e.g., [23] for an overview): One may, for instance, want to find items
that a group of users (persons p1 and p2, say) will enjoy together. A näıve
solution to the current example is to consider the multi-rating problem as a
collection of single-rating problems, and then use g (θr , p1, i) + g (θr , p2, i) to
score item i. In practice, one would, however, often need to rank items in a more
sophisticated way, i.e., by using a non-linear function of R (p1, i) and R (p2, i)
(e.g., min (R (p1, i) ,R (p2, i))). Doing so imposes further requirements on the
model g(·) as the evaluation must take the correlation between the different
predictions into consideration.

4.1. A Data Compression Model

One of the more popular approaches for building CF systems is data com-

pression, i.e., to find a representation g(θr , ·, ·) that is more compact than rep-
resenting the original #U ×#M -matrix R. Data compression techniques were
pioneered in the late 1990s [2, 43, 16, 46], and is still a major component of
most state-of-the-art CF systems (see, e.g., [44, 45, 29]).

The first data compression approach we will describe assumes the existence
of two matrices V and W of size q ×#U and q ×#M , respectively for some
fixed q (i.e. θr = {V ,W }), and chooses θr s.t. V TW is the best rank-q
approximation of R. Here q ≤ min(#U,#M) defines the granularity of the
approximation. If we choose q = min(#U,#M) we will be able to recover
the matrix R, but typically q ≪ min(#U,#M) is chosen in applications. For

2See [35] for a discussion of the relative merits of these estimators.
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ease of later notation, we will consider V as consisting of #U column-vectors
v1, . . . ,v#U (each of length q), and similarly W as consisting of #M column-
vectors w1, . . . ,w#M , again each vector is of length q. With this notation we
have g (θr, p, i) = vT

pwi. Note that we have one vector wi per item i and one
vector vp per person p. The entries of wi can be interpreted as describing item
i in some abstract way (as a point in R

q), and we can choose to look at each
dimension of wi as describing a unique feature of item i. The same features
are used to describe all items (as the representation – a vector in R

q – is fixed
for all items), but the presence of each feature can differ between the items (as
numerical values of the vectors wi may differ). In the movie-domain, one may
for instance find that the first dimension of wi is used to describe the amount of
explicit violence in a movie, the second measuring the scale of the production,
the third describing the age of the typical viewer (i.e., kids, teenager, youth, or
adult audience), and so on. Similarly, each user is represented by a vector in
q-dimensional space describing his or her liking for each of the features used to
describe the items (so, in the example above, the first entry may say something
about tolerance for explicit violence, the second say something about preference
for smaller vs. larger productions, and so on).

To learn this representation, we need to find the pair (V ,W ) that minimizes
the observed error over the ratings. It is common to consider the squared error,
i.e., the Frobenius norm denoted by ‖·‖F . Thus, the learning task can be stated
as the following minimization problem:

{V ,W } = arg min
{

˜V ,
˜W

}

‖R− Ṽ
T

W̃ ‖F . (1)

We know how to solve Equation (1) when R contains no missing values;
in this case V and W find their interpretation via the singular value decom-
position (SVD) representation of R. However, the rating matrix is sparsely
filled, so we need to find an analogue to SVD, which is well-defined also when
R contains missing values [50, 44]. This is an idea eagerly explored in the CF
community [52], where one of the leading approaches is to numerically minimize
the objective function

‖r − V TW ‖F =

#U
∑

p=1

#M
∑

i=1

δ(p, i) (r (p, i)− g (θr , p, i))
2

=

#U
∑

p=1

∑

i∈I(p)

(

r (p, i)− vT

pwi

)2
. (2)

This can, e.g., be done using gradient descent learning, which leads to the
updating rules

vp ← vp+η
∑

i∈I(p)

(

r (p, i)− vT

pwi

)

wi, wi ← wi+η
∑

p∈P(i)

(

r (p, i)− vT

pwi

)

vp,
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where η is the learning rate.
One apparent problem with Equation (2) is that the model is not regularized,

meaning that the parameters V and W can grow without bounds (with over-
fitting as the probable result). This is particularly problematic when a user p
has rated only a few items (leading to an unstable estimate for vp) or an item i
has been rated by only a few users (in this case leading to an unstable estimate
of wi). The typical way of handling this is by adding a term that penalizes
large parameters, e.g., by looking at the objective function [44]

#U
∑

p=1

∑

i∈I(p)

(

r (p, i)− vT

pwi

)2
+ λ

#U
∑

p=1

∑

i∈I(p)

(

vT

pvp +wT
i wi

)

, (3)

where λ is a parameter that balances parameter regularization and model fit.

4.2. A Simple Generative Model

A shortcoming with the present model is that it is not probabilistic, hence
we cannot calculate the uncertainty associated with the different predictions
(this is a feature we will find useful when performing multi-rating predictions).
To avoid this problem, one solution is to embed the optimization problem in a
statistical model. Since we are aiming at reducing the Frobenius norm, we can
equivalently regard the ratings as coming from a Gaussian model with known
variance σ2 (see, e.g., [10]),

R (p, i) |{vp,wi, σ
2} ∼ N

(

vT

pwi, σ
2
)

, (4)

and chose vp and wi to maximize the likelihood of the observed entries r.
Next, we convert the probabilistic model of Equation (4) into a latent variable

model by considering {vp}
#U
p=1 as being i.i.d. realizations of a random variable

U rather than parameters in the model. With this perspective Equation (4)
corresponds to assuming that R (p, i) |{U = up} ∼ N

(

uT

pwi, σ
2
)

. For mathe-
matical convenience we will assume that U ∼ N (µU , I) a priori, where µU is
the q-dimensional vector of expected values for U and I is the q × q identity
matrix. The parameters wi are shared among users, so this model is related to
the traditional factor analysis model, see, e.g., [26]. The model is illustrated as
a Bayesian network in Figure 1.

The latent variable model gives us modeling control over U , as it is as-
sumed to follow a Gaussian distribution with rather small variation a priori. By
utilizing that the distribution of R (p, ·) can be written as

f(r (p, ·)) =

∫

u
f (r (p, ·) |U = u) · f(u) du,

it follows that the model is valid under the assumption that rating vectors are
i.i.d. realizations from the distribution

[R (p, 1) R (p, 2) . . .R (p,#M)]T ∼ N
(

W TµU ,W
TW + σ2I

)

; (5)
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U

R (p, 1) R (p, 2) R (p,#M)

w1 w2 w#M

Figure 1: The user-based perspective on a collaborative filtering model.

recall thatW = [w1, . . . ,w#M ] is the matrix containing all “movie-representations”
wi. Maximum likelihood parameters for the model can be learned using the EM
algorithm [11, 26].

This model is focused on a single user p, and uses the ratings of a single user
to predict the ratings of the items currently not rated by the user.

Alternatively, we can focus on the items instead, giving us the item-based

perspective, where a model is developed for all the ratings given to a particular
item. Again, we take Equation (4) as our starting-point, but this time we assume

that {wi}
#M
i=1 are i.i.d. realization of a random variable that we will denote M .

By assuming that M ∼ N (µM , I) apriori, we get the model

R (·, i) ∼ N
(

V TµM ,V
TV + σ2I

)

,

which can be used for making joint predictions of how several users will rate an
item i.

A potential problem with the above models is that during inference the
model will either focus on the ratings of the active user (user-based model) or
the active item (item-based model). Although these models can, in principle,
be used for multi-rating predictions (e.g., the item-based model can be used to
find an item several users like), the quality of the predictions is usually poor,
since correlations (especially negative) in the users’ ratings are not taken into
account (see also Section 6.3). To alleviate this, we propose a combined model
where the user-view and the item-view are merged.

4.3. The Proposed Generative Model

4.3.1. A dual perspective

As for the previous models, we will use latent variables to describe users
and items abstractly as real vectors. We will, however, extend the model by
considering all users and all items simultaneously. LetM i be the latent variables
representing item i, and assume a priori that M i ∼ N (0, I), for 1 ≤ i ≤
#M . Similarly, for users we assume the existence of the latent variables Up

representing user p, and choose Up ∼ N (0, I), for 1 ≤ p ≤ #U . The final
model is now built by assuming that there exists a linear mapping from the
space describing users and items to the numerical rating scale:

R (p, i) |{M i = mi,Up = up} = vT

pmi +wT

i up + φp + ψi + ǫ. (6)
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In Equation (6), mi and up are abstract representations of item i and user
p (possibly of different dimensionality). For example, one may interpret the
different dimensions ofmi as representing different features of movie i (discussed
further in Section 4.4) and the dimensions of up as corresponding to different
user characteristics. Since the variables are continuous, the value uj

p of the

jth variable U j
p can be interpreted as representing to what extent user p has

the characteristics modeled by variable j. This also means that rather than
assigning users to single “user classes”, the continuous variables U j

p encode to

what extent a user belongs to a certain class. The final rating in Equation (6)
is now determined as an additive combination of user p’s preferences vp for
(or attitude towards) the features describing item i and item i’s disposition wi

towards the different user classes.3 The constants φp and ψi in Equation (6) can
be interpreted as representing the average rating of user p and the average rating
of item i (after compensating for the user average), respectively. Furthermore,
ǫ represents “sensor noise”, i.e., the variation in the ratings the model cannot
explain, and we will assume that ǫ ∼ N (0, θ). By examining the model more
closely, the marginal distribution for R (p, i) can be written as

R (p, i) ∼ N
(

φp + ψi,v
T

pvp +wT

i wi + θ
)

.

Finally it should be emphasized that we have the same number of latent variables
for all users (i.e., |Uo| = |Up|) and for all movies (i.e., |Mr| = |M i|).

The main motivation for using the model is how correlations between arbi-

trary ratings are efficiently taken into account when making recommendations.
Consider Figure 2, which shows a full BN representation of the proposed model
for a domain with two users and three items (#U = 2 and #M = 3 in this
example). For the sake of the argument, let us assume that both users have
rated Item 1, and that User 1 has rated Item 2 also. Consider now how this last
rating, r (1, 2), influences the predictions the system will make:

User-based perspective: Entering the evidence r (1, 2) will tell the model
something about User 1 (represented by U1). This new information is
incorporated in the updated posterior distribution over U1, which will
influence the prediction for all ratings User 1 have not yet made (in this
case only R (1, 3) is affected).

Item-based perspective: The evidence r (1, 2) also tells the model something
about the active item, resulting in an updated posterior for M2. This
influences the distribution over all remaining ratings for Item 2 (R (2, 2)
in this case).

Global perspective: The model also offers a global view towards the recom-
mendation task. To see this, let us follow a slightly more intricate chain of

3Note that the relative importance of the movie features and the user class can be encoded
in the weight vectors vp and wi.
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reasoning: When evidence about r (1, 2) is entered, one immediate effect
is that the posterior distribution over U1 is updated to take the new in-
formation into account. Changing U1 gives the model a new perspective
towards all ratings User 1 has given, and in particular the observation
r (1, 1) can be re-considered: If U1 is changed we get a new understand-
ing of how that particular rating came to be, and this may shed new light
on Item 1. Thus, the system-internal encoding of Item 1, represented by
the distribution over M1, should be altered. Next, the new posterior over
M 1 makes the model reconsider its representation of all users who have
already rated Item 1, and thus the internal representation of U2 must also
be updated. This will again change the model’s belief in all ratings that
User 2 will give, in particular the expectation regarding Item 3, i.e., the
rating R (2, 3) is also affected. Thus, R (2, 3) and R (1, 2) are dependent

given the evidence, written R (2, 3) 6⊥⊥R (1, 2) |{R (1, 1) ,R (2, 1)}. This
exemplifies the global view of the present model.

To summarize, contrary to standard (non-relational) probabilistic models,
we treat the entire database as a single case. This also implies that we no
longer have to explicitly assume that the different ratings are independent and
identical distributed (the underlying distribution still has to respect the inde-
pendence assumptions in the model, though). Comparing the proposed model
to the SVD-based techniques described in Section 4.1, the model in Equation (6)
is probabilistic, and therefore gives uncertainty estimates in its ratings. In con-
trast to the models presented in Section 4.2, Equation (6) maintains the user
perspective and the item perspective simultaneously, something we will later
show improves the predictive ability (see Section 6). Finally, one could envision
building a model from Equation (4) by simply replacing both vp and wi by
random variables. In this case, the proposed model distinguishes itself by re-
lying on an additive combination function, which ensures that during inference
we will always stay within the class of linear Gaussian models for which there
are known closed-form updating rules, and not be forced to consider product
distributions.

4.3.2. Generating multi-ratings

The proposed model generates a statistical distribution over all ratings si-
multaneously, and we can utilize this to generate multi-ratings (i.e., combined
ratings over several items and/or users); see [23] for an overview. To exemplify,
let us consider the problem of finding an item that persons p1 and p2 will enjoy
together, that is, we will use the joint distribution over [R (p1, i) R (p2, i)]

T to
evaluate item i. After establishing this joint distribution (see below), we define
a utility function V (r (p1, i) , r (p2, i)) encoding how different combinations of
ratings are evaluated. We then choose the item that maximizes the expected
utility wrt. the joint distribution over the ratings.

Different strategies for selecting an “appropriate” item for users p1 and p2
can be envisioned, each leading to a different formulation of the utility function
[8, 36]:
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U 1

U 2

M1 M2 M3

R (1, 1)

R (2, 1)

R (1, 2)

R (2, 2)

R (1, 3)

R (2, 3)

v1v1v1

v2v2v2

w1

w1

w2

w2

w3

w3

Figure 2: The full statistical model for collaborative filtering; this model has #M = 3 and
#U = 2.

Independence: Choose the value function V (r (p1, i) , r (p2, i)) = r (p1, i) +
r (p2, i) to produce a preference for an item that is enjoyed the best on

average.

Maximin: Use the value function V (r (p1, i) , r (p2, i)) = min (r (p1, i) , r (p2, i))
to introduce preference for items that both users will find acceptable. A
recommendation based on the maximin principle will typically be more
“safe” than one based on independence, as high predictive variance will
be regarded as a disadvantage.

General formulations: Finally, value-functions can be hand-crafted to pro-
duce particular results, for example preferring items that both users dislike
over an item that splits opinions.

We end this discussion by detailing how the required joint distribution func-
tion can be found. Firstly, we use the conditional independence statements
embedded in the model representation to realize that all ratings are condition-
ally independent (written using the “⊥⊥” symbol) given the latent variables:

{R (p1, i) ,R (p2, i)}⊥⊥r| {M i,Up1
,Up2

} .

Thus, to calculate the posterior distribution over [R (p1, i) R (p2, i)]
T given r,

we should first calculate the effect r has on the latent variables, then project
this information into updated beliefs about the queried ratings. From the basic
properties of the multivariate Gaussian distribution (see any standard textbook
on statistics or machine learning, e.g., [3]), we obtain that the joint distribution
over the latent variables conditioned on the observed ratings is given by

[MT UT]
T
∣

∣ r ∼ N (ν,Σ) ,
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where M = (MT

1 , . . . ,M
T

#M )T and U = (UT

1 , . . . ,U
T

#U )
T are the latent vari-

ables for the items and users, respectively. Here, the covariance matrix is given
by (see also Appendix A)

Σ = (I +LTθ−1L)−1

where L is the sparse regression matrix (of size |r|×(|M |+ |U |)) for the ratings
given M and U (i.e., consisting of the vps and wis), and

ν = Σ(LTθ−1(r − (φ + ψ))).

Next, we define the matrix A = [a1 a2], where the column-vector aj is such
that it contains zero-elements except for two parts containing wi and vpj

, and

designed s.t. aT

j

[

m

u

]

= vT

pj
mi +wT

i upj
. Thus,

[

R (p1, i)
R (p2, i)

]∣

∣

∣

∣

[

M

U

]

∼ N

(

AT

[

m

u

]

+

[

φp1
+ ψi

φp2
+ ψi

]

, θI

)

,

and it follows that the joint distribution over the queried ratings are

[

R (p1, i)
R (p2, i)

]

∼ N

(

ATν +

[

φp1
+ ψi

φp2
+ ψi

]

,ATΣA+ θI

)

.

4.4. Model Interpretation

To get additional insight into the model, it may be informative to analyze a
model learned for a particular dataset. To this end, we learned a model (detailed
in Section 5) for the MovieLens dataset [19] with two latent variables for each
movie and one latent variable for each user, i.e., (|M i| = 2 and |Up| = 1).

If we start off by considering the latent variables for the movies, then these
variables can be interpreted as abstract representations of the movies. That is,
for movie i we have a Gaussian distribution over Rq (assuming |M i| = q), and
m̂i = E(M i|r) can therefore be considered a point estimate representation of
movie i. With this interpretation we hypothesize that if the point estimates of
two movies are close in latent space, then they have the same abstract represen-
tation, and they should therefore be similar (i.e., have similar rating patterns).
To test this hypothesis we determined the movies that are close to Star Wars

(1977) and Three Colors: Blue (1993).4 As distance measure for two movies
m̂i and m̂j we used the Mahalanobis distance to account for the correlation
between the latent variables:

distM (m̂i, m̂j) = (m̂i − m̂j)
TQ̂(m̂i − m̂j),

where Q̂ is the empirical precision matrix (the inverse of the empirical covariance

4In the analyzes below, we only considered movies with at least 50 ratings.

12



1. Star Trek IV
2. Indiana Jones and the Last Crusade
3. The Empire Strikes Back
4. Independence Day
5. Home Alone
6. Back to the Future
7. Jaws 2
8. Star Trek VI
9. Return of the Jedi
10. Twister

1. The Apostle
2. Three Colors: White
3. Heavenly Creatures
4. Stealing Beauty
5. Three Colors: Red
6. Hoodlum
7. In the company of men
8. Big night
9. Wings of Desire

10. Boogie Nights

Table 1: The 10 movies closest to Star Wars and Three Colors: Blue, respectively.

1. Angels and Insects
2. Three Colors: Blue
3. The Unbearable Lightness of Being
4. Stealing Beauty
5. The Apostle
6. The Postman
7. Breakfast at Tiffany’s
8. Il Postino
9. Breaking the Waves
10. Big night

1. Die Hard
2. Raiders of the Lost Ark
3. Jurassic Park
4. Ace Ventura: Pet Detective
5. Home Alone
6. The Empire Strikes Back
7. The Terminator
8. Field of Dreams
9. Terminator 2: Judgment Day
10. Star Trek II

Table 2: The 10 movies furthest away from Star Wars and Three Colors: Blue, respectively.

matrix) for the latent variables calculated from the point estimates of the movies
in the dataset.

Star Wars is a sci.-fi./action movie with sequels The Empire Strikes Back

and Return of the Jedi, so we would hope to see these movies, as well as other
sci.-fi. movies, to be named “close” to Star Wars. On the other hand, Three
Colors: Blue is a drama, and is the first in a trilogy of movies that also includes
Three Colors: Red and Three Colors: White. The results are shown in Table 1.
Out of the 10 movies closest to Star Wars , 6 are movies that we (the authors)
believe are well classified as “similar to Star Wars”. Indiana Jones and the Last

Crusade is somewhat related in the sense that it is an adventure movie, but
e.g. Home Alone does not seem to fit in that well. We see a similar pattern for
the movies closest to Three Colors: Blue. Observe that for both trilogies, the
two other movies in the trilogies appear on the lists. Considering that there are
1682 movies in the database we find this quite satisfactory.

With the specified distance measure we are also able to find the movies
furthest away from Star Wars and Three Colors: Blue. The results are shown
in Table 2, where we find that the movies furthest away from Star Wars are
primarily dramas and the movies furthest away Three Colors: Blue are mainly
sci.-fi. movies and comedies.

One may also attempt to investigate whether the latent variables have a
semantic interpretation. For this analysis we selected the movies with smallest
and highest values along each of the two dimensions in the latent space. The
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1. Three Colors: Blue
2. Apostle, The
3. Stealing Beauty
4. The Unbearable Lightness of Being
5. Angels and Insects
6. Three Colors: White
7. Boogie Nights
8. Heavenly Creatures
9. Big Night
10. Cold Comfort Farm

1. Die Hard
2. Raiders of the Lost Ark
3. Jurassic Park
4. Home Alone
5. Empire Strikes Back, The
6. Star Trek: The Wrath of Khan
7. Star Wars
8. Return of the Jedi
9. Ace Ventura: Pet Detective
10, Field of Dreams

Table 3: The 10 movies with lowest and highest values in the first dimension in the latent
space. Semantically, this dimension may be interpreted as to what extent the movie appeals
to a male/female audience.

1. Beavis and Butt-head Do America
2. Event Horizon
3. Army of Darkness
4. Spawn
5. Starship Troopers
6. From Dusk Till Dawn
7. Crow, The
8. Evil Dead II
9. Supercop
10. Fifth Element, The

1. Breakfast at Tiffany’s
2. Bridges of Madison County, The
3. On Golden Pond
4. Angels and Insects
5. English Patient, The
6. Room with a View, A
7. It’s a Wonderful Life
8. Crying Game, The
9. Old Yeller
10. My Fair Lady

Table 4: The 10 movies with lowest and highest values in the second dimension in the latent
space. Semantically, this dimension may be interpreted as to what extent the movie appeals
to a teenage audience.

results can be seen in Table 3–4. Based on the listed movies, one possible
semantic interpretation might be that the first dimension encodes to what extent
the movie would appeal to a male/female audience and the second dimension
represent whether the movie appeals to a teenage audience.

Next, we consider the parameter ψi. Recall that this parameter is intended
to represent the average rating of item i (after adjusting for the user types
that have rated the movie), and ψi may therefore be thought of as representing
the quality of an item. For illustration, we ordered the movies based on the
estimated ψ-values. The result is shown in Table 5, where each movie’s position
on the Internet Movie Database’s (IMDB’s) list of top 250 movies are given as
reference.5 Note that our model has picked out 3 “Wallace and Gromit” movies
(marked with a ∗ in the table). These movies are either short-movies (“A close
shave” and “The Wrong Trousers”) or a compilation of such (“The Best of
Aardman Animation”), and do therefore not qualify for the IMDB top 250-list.
However, the movies’ IMDB ratings make all three of them comparable to IMDB
movies around Top 50–80: The Wrong Trousers is rated 8.5 (place 37–55), A

5http://www.imdb.com, retrieved August 5th, 2011.
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Close Shave is rated 8.3 (place 76-112), and The best of Aardman Animation is
rated 8.4 (place 56-75). Note also that our dataset only contains movies released
in 1998 or before, which explains why e.g. “The Dark Knight” (IMDB 10) and
the “The Lord of the Rings” series (IMDB 11, 17, and 29) are not on our list.6

1. The Shawshank Redemption IMDB: 1
2. Schindler’s List IMDB: 7
3. A Close Shave∗ IMDB: NA
4. The Wrong Trousers∗ IMDB: NA
5. Casablanca IMDB: 19
6. Wallace & Gromit: The Best of Aardman Animation∗ IMDB: NA
7. Star Wars IMDB: 16
8. The Usual Suspects IMDB: 24
9. Rear Window IMDB: 21

10. Raiders of the Lost Ark IMDB: 23

Table 5: The 10 “best” movies, i.e., the movies with the highest ψi value.

The IMDB Top 250 list is obviously not an objective truth, but we compare
our results to it because the IMDB has a much higher number of ratings than the
MovieLens dataset, and may therefore offer a more robust ranking. For com-
parison, we found that simply ordering the movies by their average rating did
not give convincing results; none of the 10 movies that are top-ranked following
this scheme are in the IMDB Top 250. We believe the reason for this is twofold:
i) the sparsity of the data; items with few ratings may get “extreme” averages,
ii) simply talking averages disregards the underlying differences between users:
Some are “happy” and others are “grumpy”. The fact that a “happy” user has
seen movie i1 and a “grumpy” one has seen i2 does not mean that movie i1 is
better than i2 (even though it may get a better rating).

5. Learning

5.1. The EM algorithm

When learning the model, we need to find the number of latent variables
to describe both users and items (the model structure) as well as learning the
parameters for the chosen model structure. The model structure is learned
based on a greedy search (detailed in Section 6) and the parameters in the
model are learned using the EM algorithm [11]. However, contrary to standard
(non-relational) applications of the EM algorithm, we treat the entire database
as a single case.

Learning the parameters of the model amounts to estimating the parameters
for the regression model

R (p, i) |{mi,up} ∼ N (vT

pmi +wT

i up + φp + ψi, θ),

621 of the 75 highest ranked movies in IMDB 250 appeared after 1998.
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since we assume a standard Gaussian distribution associated with the latent
variables.

When applying the EM algorithm in this setting, we get the following up-
dating rules for the parameters (see Appendix A for the derivations):

θ̂ ←
1

d

#U
∑

p=1

∑

i∈I(p)

E[(r (p, i)− (vT

pM i +wT

i Up + φp + ψi))
2];

v̂p ←





∑

i∈I(p)

E(M iM
T

i )





−1

×





∑

i∈I(p)

(E(M i)r (p, i)− E(M iU
T

p )wi − E(M i)(φp + ψi))



 ; (7)

φ̂p ←
1

|I(p)|

∑

i∈I(p)

(

r (p, i)− (vT

pE(M i) +wT

i E(Up) + ψi)
)

;

ŵi ←





∑

p∈P(i)

E(UpU
T

p )





−1

×





∑

p∈P(i)

E(Up)r (p, i)− E(UpM
T

i )vp − E(U p)(φp + ψi)



 ;

ψ̂i ←
1

|P(i)|

∑

p∈P(i)

(r (p, i)− (vT

pE(M i) +wT

i E(Up) + φp)).

Since the number of latent variables used to described both users and items
(i.e., |Up| and |M i|) is typically small (in our experiments we have considered
|M i| , |Up| ≤ 5), it is clear from the above expressions that the complexity of
performing the M-step is relatively low. Unfortunately, the calculations of the
expectations used in the M-step requires the calculation of the full covariance
matrix for all the latent variables; in the calculation of e.g. E(M iU

T

p ) we exploit
that Cov(M iU

T

p ) can be extracted directly from the posterior covariance matrix
for all the latent variables. Note that although the corresponding precision
matrix might be sparse, this is not the case for the covariance matrix (which
is also evident when one analyzes the independence properties in the model).7

The derivations of the expectations are detailed in Appendix A.

7In our experiments, we have observed that the covariance matrix typically contains a large
number of small entries, which may be exploited in an approximate inference scheme. This is
a topic for future research and outside the scope of the present paper.
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Finally, when learning the collaborative filtering model we also need to select
the number of latent variables representing the users and movies, respectively.
Recall that all users are described using the same number of latent variables;
the same holds for the movies. In the experiments we have run, these param-
eters were found using a greedy approach that will be described in Section 6;
alternatively one could also consider the wrapper approach [28].

5.2. Regularization

In our preliminary experiments we frequently observed that some regression
vectors (primarily for users and items with few ratings) contained unexpectedly
large values, suggesting that the model might be over-fitted for these parts of
the data. When analyzing the updating rule for e.g. vp (see Equation (7)) we
find a possible explanation for this behavior: the updating rule for vp requires
the inversion of A =

∑

i∈I(p) E(M iM
T

i ), which is a sum of |I(p)| rank-one

matrices. A is thus at most rank-|I(p)|, but as the elements in the sum may be
close to being linearly dependent (movies rated by the same user may be similar
[35]), the actual rank of A may be less than |M i|, and the results for v and
w will therefore be numerically unstable. In our preliminary experiments with
|M i| = |Up| = 2 we e.g. found that the regression vectors contain components
having values larger than 20 when learned from the MovieLens database. This
database has ratings ranging from one to five, and intuitively, one would not
expect to see a large part of the estimated parameters to have absolute values
greater than the spread of the ratings. One approach to this problem is to
consider the estimation of e.g. vp as a linear regression problem

R (p, i) = MT

i vp +UT

pwi + φp + ψi + ǫ,

where ǫ ∼ N (0, θ). Since M i and Up are unobserved we attempt to minimize
the expected least squares solution, and it is now easy to see that Equation (7) is
also the solution that minimizes the expected least squared error.8 A standard
approach for handling the situation where A =

∑

i∈I(p) E(M iM
T

i ) is close to

being singular (or with correlated variables), is to employ regularization. A
possibility is Tikhonov regularization (also known as ridge regression), giving
the modified updating rule [17]:

v̂p ←





∑

i∈I(p)

E(M iM
T

i ) + αI





−1





∑

i∈I(p)

(E(M i)r (p, i)− E(M iU
T

p )wi − E(M i)(φp + ψi))



 ,

8For the standard matrix formulation of the solution, note that e.g.
∑

i∈I(p) E(M iM
T

i ) =

E(XT
X), where Xi,: = M

T

i .
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where α = 0 gives the standard least square solution. This regularized updating
rule can be derived by assigning a suitable prior distribution to the regression
parameters. Specifically, by letting vp ∼ N (0, τI), then the estimate above
maximizes the expected (w.r.t. M and U ) log-posterior density for vp given r,
with α = θ/τ . A similar result is obtained for wi:

ŵi ←





∑

p∈P(i)

E(UpU
T

p ) + αI





−1

×





∑

p∈P(i)

E(U p)r (p, i)− E(UpM
T

i )vp − E(Up)(φp + ψi)



 .

Following general practice [1] we use the estimators for φp and ψi that were
found without regularization.

6. Results

6.1. Introduction to the datasets

In this section we investigate the predictive performance of the proposed sys-
tem. Specifically, we evaluate the system using two different datasets: Movie-

Lens [19] and Jester [14].
The MovieLens dataset consists of 100,000 integer ratings (values from

1 to 5), collected from 943 users on 1682 movies. The mean rating is 3.53,
and the standard deviation is 1.13. These numbers are fairly constant between
users, although some users tend to rate mostly their favorites (160 users have
a mean rating of 4.0 or above). The MovieLens dataset is supplied with five
pre-defined folds for cross validation, and these were also used during the actual
testing (see below). The variability between the cross validation folds appears
negligible.

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600
0

100

200

300

400

500

600

(a) No. ratings per user (b) No. ratings per movie

Figure 3: Rating-patterns in the MovieLens dataset
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Figure 4: Co-rating: User vs. movie

There is a large hetrogenity in the rating frequency of both users and items,
see Figure 3. Part (a) presents the number of ratings per user: The mean
number of rated items is 106, the median is 65, and the range is from 20 to
737. Similarly, Figure 3 (b) shows the histogram over the number of ratings per
item, in which case the mean is 59, median is 27 and the range is from 1 to 583.

Figure 4 gives the co-rating matrix, showing which item (x-axis) has been
rated by which user (y-axis). An interesting observation is that items apparently
have been introduced into the dataset after the rating started; the first user has
for instance rated the 272 first movies in the database, but none after that.
Similarly, the last movie in the dataset was not rated before user 916 came
along. It is also worth noticing that the rating matrix is sparse; only 6.3% of
the possible (user, item)-combinations have resulted in a rating in the dataset.

As a final comment on the MovieLens data, we have found that a total
of 18 movies are reported twice in the dataset (e.g., the 1993 movie “Body
Snatchers” is reported both using ID 573 and ID 670). We could easily have
removed these double-entries during pre-processing of the data, but to make sure
that our results are comparable to those already reported in the literature, we
have chosen to disregard this problem. Looking further into the associated data
can also help us understand the fundamental variability we are confronted with
in this dataset: Seventeen users have rated both “Body Snatchers (ID 573)” and
“Body Snatchers (ID 670)”. Out of these, five rated the two items differently,
and one user (User ID 617) gave the first item 4, whereas the second item
was rated only 1! Similar variability was observed also for the other doubled-
registered movies.

The Jester data [14] consists of 4,136,360 ratings using real numbers be-
tween -10 and 10 from 73,421 users on 100 jokes. This data is not as sparse as
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the MovieLens data; 19.2% of the users have rated all the jokes, approximately
17% of the items have been rated by more than 90% of the users, and in total
56.3% of the (user, joke) combinations are given as ratings in the database. The
mean rating is 0.74, and the standard deviation is as large as 5.3. The dataset
is not supplied with a specific division into cross validation folds; hence the
research groups that have reported results on this dataset have used their own
privately generated training and test-sets.

6.2. Experimental setup and results

When learning the collaborative filtering model, we used the regularized
EM algorithm described in Section 5.2, and for the actual learning we used
standard parameter settings: the algorithm terminates when the increase in
log-likelihood falls below 10−5 or after a maximum of 100 iterations. To decide
upon the number of latent variables to describe both users and items (the model
structure) and the values for the prior precision of the regression parameters,
we used a greedy strategy. The results in Figure 5 illustrates the procedure; the
figure shows the mean absolute error (MAE) as a function of the prior precision α
for the regression parameters. The plots are generated for different combinations
of latent variables s.t. the plot at position (|Up| , |M i|) correspond to a model
with |Up| latent user variables and |M i| latent movie variables. For example,
the bottom-left plot is for a model with 3 latent user variables and 1 latent
movie variable. The results shown in these plots are the basis for the greedy
learning. We start by choosing |Up| = 1, |M i| = 1, and by setting the prior
precision to zero (i.e., no regularization). We then increase the regularization
parameter until this harms the MAE; this can, e.g., be calculated using the
wrapper approach [28]. Next, we considered non-visited neighboring candidate
models that can be reached by either increasing |Up| or |M i|. This gives the
candidate structures (|Up| = 1, |M i| = 2) and (|Up| = 2, |M i| = 1); both
evaluated as above. The best of these two candidate models is chosen (in this
case, (|Up| = 1, |M i| = 2) was the better option), and we again proceeded by
attempting to extend the model in either of the two possible directions. This
time, increasing the model size did not pay off in terms of estimated MAE, and
we chose to use the candidate model (|Up| = 1, |M i| = 2) as our final model.
The greedy approach is time saving to the extent that not all structures need
to be examined; in our model search only five of the smallest structures were
inspected. Furthermore, Figure 5 indicate that the predictive quality of our
model is fairly robust wrt. both structure and reasonable values of the prior
precision for the parameters.

An alternative view of this information is given in Figure 6. Here, the
relation between the number of latent variables representing users and movies
and the estimated MAE is shown. The minimum MAE is found at |Up| = 1
and |M i| = 2 with an MAE of 0.685 (calculated using a prior precision of 25
for the regression parameters).

Finally, to evaluate the predictive properties of the proposed model, we have
empirically compared it with other collaborative filtering algorithms on the same
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Figure 5: The figure shows the MAE as a function of the prior precision α for the regression
vectors. Each plot corresponds to a certain configuration of the number of latent variables.

dataset and with the cross-validation folds specified previously. Specifically, we
have considered the following straw-men:

Pearson(k) denotes a memory-based approach, where the predicted rating of
the active item is calculated as a weighted sum of the ratings given to
the k items deemed most important (measured using Pearson correlation)
wrt. the active item [19].

Euclidean(k) is the k-nearest neighbors algorithm, where the distance is cal-
culated using Euclidean norm [35].

DM is the decoupled model for rating patterns and intrinsic preferences. This
model uses two separate latent variables to explicitly model a user’s rating
patterns and the intrinsic preference of the users [25].

ML+IMDB(I1; EQ) is a model combining a collaborative filtering model
with content information (from the Internet Movie Database). de Campos
et al. [9] investigate several ways of merging the collaborative information
with the content information, and the results reproduced here are the best
results they obtain.
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Figure 6: The figure shows the MAE as a function of the number of latent variables. A
minimum (0.685) is found at |Up| = 1 and |M i| = 2.

Triadic uses a latent variable relating the triplet (user, item, rating) to enable
a user to have a set of different “reasons” to give an item a specific rating
[20]; the results have been reproduced from [9].

FA-U(q) corresponds to the user-centered factor analysis model, where q de-
notes the number of latent variables [26], see Equation (5). The model
was learned using the EM algorithm with standard parameter settings.
The value for q was chosen as the number of latent variables yielding the
lowest MAE in the range [1, 25].

FA-I(q) is as for FA-U(q), but with the item-centric view.

SVD(q, λ) performs a singular value decomposition in q dimensions. λ is the
regularization weight (see Equation (3)). For each setting of λ we ran
experiments with values for q ranging from one to twenty-five, and we
represent the best of these results here. Note that when choosing the
q-parameter based on the obtained results, we slightly favor the SVD
algorithm over the other algorithms. Two options were considered for λ:
λ = 0 resulting in a non-regularized model, and λ = 0.01 (as done by [44]).

The results are shown in Table 6, where we see that the proposed model
outperforms the straw-men models on all the folds in the data set; before calcu-
lating the MAE we rounded off the predicted ratings to the nearest integer value
between one and five as this slightly improved the results (this was done for all
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models except for DM, ML+IMDB, and Triadic where the originally reported
results have been reproduced). Note also that the user-centered factor analy-
sis method selects a single latent variable to encode the correlation among the
ratings. This is consistent with the proposed model, where |Up| = 1 is chosen.
For the item-centered factor analysis model, results were best for small number
of factors, and with q = 1 marginally better than q = 2 overall. Also this result
is related with the results of the proposed model, where |M i| = 2 is selected.9

It is difficult to find results in the scientific literature that are directly com-
parable to ours, mainly because the experimental setting is different. Many
researchers using the MovieLens dataset have made their own training and
test sets without further documentation. However, the reported MAE values
are typically about 0.73 – 0.74 or poorer [19, 48, 37, 32, 38, 27, 7, 40, 31, 55].

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

Pearson(all)† 0.7225 0.7133 0.7062 0.7063 0.7130 0.7122
Euclidean(all)† 0.7306 0.7195 0.7181 0.7210 0.7211 0.7220
Pearson(10)† 0.7367 0.7297 0.7230 0.7270 0.7311 0.7295
Euclid(10)† 0.7532 0.7354 0.7410 0.7448 0.7488 0.7446
Pearson(25)† 0.7185 0.7071 0.7065 0.6998 0.7082 0.7080
Euclidean(25)† 0.7306 0.7192 0.7237 0.7213 0.7272 0.7244
Pearson(50)† 0.7157 0.7049 0.7133 0.7107 0.7102 0.7110
Euclidean(50)† 0.7373 0.7314 0.7315 0.7335 0.7305 0.7328
Pearson(75)† 0.7140 0.7002 0.7027 0.6982 0.7043 0.7039
Euclidean(75)† 0.7260 0.7147 0.7157 0.7160 0.7205 0.7185
DM† 0.7580 0.7418 0.7284 0.7509 0.7497 0.7458
ML+IMDB(EQ)† 0.7304 0.7206 0.7069 0.7201 0.7209 0.7198
Triadic† 0.7500 0.7369 0.7306 0.7328 0.7324 0.7365
FA/U(q = 1)† 0.7324 0.7280 0.7257 0.7279 0.7208 0.7269
FA/I(q = 1)† 0.8048 0.8051 0.8039 0.8000 0.8067 0.8041
SVD(q = 5, λ = 0)• 0.7005 0.6909 0.6971 0.6918 0.6992 0.6959
SVD(q = 4, λ = 0.01)∗ 0.6987 0.6876 0.6899 0.6893 0.6926 0.6916
CF(|Up| = 1, |M i| = 2, τ = 1/25) 0.6837 0.6869 0.6846 0.6861 0.6828 0.6848

Table 6: The mean absolute error (MAE) for the MovieLens dataset using the proposed
method as well as different straw-men. The MAE is given for each of the five folds together
with the average MAE for all the folds. The adjusted t-test [39] was used to compare the
classifiers: Results that are significantly poorer than the proposed method at the 10%-level
are marked with “∗”, results significant at the 5%-level are marked with “•”, and 1%-level
with “†”.

For the Jester dataset, no predefined training/test-set division of the data
is given and in our test setup we have therefore randomly selected 80% of the
data for training and 20% for testing. The size of the original dataset does,
however, cause complexity problems for the current learning algorithm: recall
that we need the full covariance matrix over the latent variables for all users and
items, hence with e.g. |Up| = |M i| = 2 we would be working with a covariance
matrix of size 147, 042×147, 042. Instead we have randomly selected four subsets

9The number of latent variables in this model equals #M · |M i|+#U · |Up| = 4307.
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from the database containing 100, 500, 1000, and 2000 users, respectively. For
the actual learning we fixed the precision on the regression vectors to 25 based
on preliminary experiments, and for finding an appropriate model structure we
used the greedy search method described above. The results of the experiments
can be see in Table 7.

100 500 1000 2000 Mean
Pearson(all) 3.6357/20.9568 3.5661/20.1514 3.6036/20.3130 3.5998/20.5749 3.6013/20.4990
Euclidean(all) 3.6061/21.2762 3.5630/20.3065 3.6249/20.6502 3.6232/20.8279 3.6043/20.7652
Pearson(10) 3.5986/21.1074 3.5748/20.7775 3.6393/21.1773 3.6903/21.7777 3.6258/21.2099
Euclidean(10) 3.6312/21.3128 3.5949/20.8643 3.6764/21.3474 3.7043/21.9191 3.6517/21.3609
Pearson(25) 3.5883/20.9083 3.4995/19.9487 3.5554/20.1860 3.5825/20.5863 3.5564/20.4073
Euclidean(25) 3.6129/21.0946 3.5475/20.1318 3.6151/20.5942 3.6341/20.9933 3.6024/20.7035
Pearson(50) 3.5666/20.4993 3.4848/19.7149 3.5282/19.8560 3.5473/20.1967 3.5317/20.0667
Euclidean(50) 3.6147/21.2668 3.5376/19.9798 3.5966/20.3322 3.6071/20.6362 3.5890/20.5538
Pearson(75) 3.6371/20.9768 3.4851/19.6928 3.5263/19.8025 3.5355/20.0705 3.5460/20.1357
Euclidean(75) 3.6057/21.2597 3.5366/19.9969 3.5972/20.3051 3.6004/20.5383 3.5849/20.5250
FA/U 3.7304/22.9915 3.5840/20.5061 3.6307/20.6807 3.6125/20.6852 3.6394/21.2159
SVD(λ = 0) 3.6071/21.0929 3.5042/20.6272 3.6242/22.3482 3.5433/21.5128 3.5697/21.3953
SVD(λ = 0.01) 3.4768/20.2950 3.5313/21.0954 3.6612/23.2504 3.5591/21.4473 3.5571/21.5220
CF 3.5646/20.6831 3.4934/20.2447 3.4590/19.2550 3.4435/19.4577 3.4901/19.9101

Table 7: The mean absolute error and the mean squared error for four different subsets of
the Jester dataset. The subsets contain 100, 500, 1000, and 2000 users respectively, and the
results are given for the proposed model as well as different straw-men models.

6.3. Group Recommendations

Next, let us turn to the multi-rating aspect of our model, as outlined in
Section 4.3.2. To exemplify, we will again focus on the MovieLens dataset,
and we have initially chosen to restrict our attention to the first cross-validation
split of the dataset. This gives us a dataset of 80,000 ratings from which we have
learned a model with |M i| = 2 and |Up| = 1. We have somewhat arbitrarily
chosen the two users “User ID 49” and “User ID 279”; let us call them One

and Two in the following. The two were selected mainly because both users
have rated a significant number of movies in both the training set and the test
set. One has rated 107 movies in the training data with an average rating of
2.73. Among One’s favourites are “classic” comedies, like “Monty Python’s
Life of Brian”, “In the Company of Men”, and “This is Spinal Tap”. Two has
rated 242 movies in the training-set with an average score of 3.17 stars. Two is
also fond of comedies, and in particular action-comedies, like “Men in Black”,
“Blues Brothers”, and “Bad Boys”. There are 18 movies that are rated by both
users in the training set, and even though the users apparently share an interest
in comedies, their empirical Pearson correlation coefficient is -0.59. The movie
“Harold and Maude”, a romantic comedy from 1971, is for instance given the
maximum score by One, and the minimum score by Two. Similarly, “Jackie
Chan’s First Strike”, an action/comedy from 1996, is loved by Two but hated
by One.

For a given utility function (like the ones proposed in Section 4.3.2), the
system must look at all movies that are unrated by both users, and find the one
that maximises the expected utility. However, in order to be able to evaluate the
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recommendation process, we here restrict our attention to the 21 movies that
both users have rated in the test-set. These movies mostly include comedies of
different varieties, like “Cold Comfort Farm”, “Addams Family Values”, “The
Cable Guy”, “Monty Python and the Holy Grail”, and “Dave”, but also some
thriller movies and a drama. To find a movie that both users can enjoy, the
system needs to understand the more subtle reasons why a user finds some
comedies funnier than others, or alternatively to find a quality movie outside
that genre.

If we try to find a movie that fits One (disregarding Two’s preferences), the
system recommends “Cold Comfort Farm”, a romantic comedy released directly
for TV in 1995. This turns out to be a reasonable guess, as One gave this movie
4 stars. However, Two only gave this movie one star, and the movie is thus not
a good choice for the pair to watch together. On the other hand, the system
would suggest the thriller “The Crow” if it only considers the preferences of
Two. This is also a reasonable suggestion, as Two gave this movie 4 stars.
However, One gives it only a single star, and again the system has not found a
good movie for the two users together. Using the independence-definition makes
the system choose “Cold Comfort Farm”, as it did when disregarding Two, and
which is not really a choice that fits the pair well (recall that Two gave this
movie a single star). The Maximin utility function of Section 4.3.2 is, on the
other hand, specially defined to select a movie that both users will enjoy. This is
obtained by looking for a movie that one can be pretty sure neither will dis-like.
To this end, the system ends up suggesting the movie “Brazil” (1985) by Terry
Gilliam from Monty Python. This suggestion is perfect, as it was given five
stars by both One and Two.

Let us examine further the underlying mathematics of the Maximin predic-
tions. Assume that we calculate the joint predicted ratings of two users for a
given movie. These predictions will be in terms of a bivariate Normal distribu-
tion, and two possible examples are shown in Figure 7 (a). Both distributions
share the same mean and marginal variances, but where the black ellipsoid
shows the distribution for positively correlated predictions (Pearson correlation
coefficient ρ = +0.99), the grey ellipsoid depicts a distribution with negative
correlation (ρ = −0.99); each ellipsoid contain 90% of the associated probability
mass. As the two predictive distributions have the same means and marginal
variances, they will lead to identical recommendations when the Independence
utility function is employed. On the other hand, this is not the case for the Max-
imin utility function. For a strongly positively correlated predictive distribution
(black ellipsoid), the two ratings will be close to identical, and the minimum
rating is thus almost equal to either rating. The distribution of the minimum
rating, which in this case appears to be “almost Gaussian” (it is identical to a
Gaussian when the Pearson correlation coefficient equals one), is depicted with
the black line in Figure 7 (b). When the predictive distribution is negatively
correlated, the distribution of the minimum is distinctly non-Gaussian (grey
line in Figure 7 (b)). Similar results are obtained when considering the effect
of the predictive variances: The two predictive distributions in Figure 7 (c)
differ only by their variance, one having a variance of 0.01 (black circle), the
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other a variance of 1.0 (grey circle). The corresponding distributions of the
minimum ratings are shown in Figure 7 (d), where we can see that lower pre-
dictive variance will be preferred when using the Maximin utility function. The
lesson learned from this analysis is that generating group recommendations is
potentially far more difficult than producing recommendations for a single user,
as the predictive covariance can play a key role in the group recommendation
process. This is in stark contrast to single user recommendations, where it is
sufficient to use the predictive mean.
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(a) Joint predictive distribution. (b) Density of minimum rating.
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Figure 7: The effect the predictive covariance matrix has on group recommendations.

We end this discussion by evaluating the importance of these effects in the
MovieLens data.10 For each of the five pre-defined cross validation folds, we
randomly selected 50 user pairs making sure that at least five movies were rated
by both users in the test-set. For each pair, we looked at the items both users
have rated in the test-set, and considered for each type of utility function which
of these movies to recommend for that user pair. Independence and Maximin
behaved differently in the 29 cases listed in Table 8. The table gives the user
IDs of the two randomly selected users, the recommendation based on the in-
dependence utility function, and the observed ratings the two users gave the
recommended item together with the anticipated group-evaluation (calculated
as the minimum of the two users’ ratings). This is followed by the same informa-
tion for the Maximin utility function, and finally we calculate the difference in

10We would have liked to be able to perform a more systematic analysis of the multi-rating
prediction problem, but we are unfortunately not aware of any databases supporting this kind
of analysis.
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the group ratings for the two suggested items. A positive difference means that
the Maximin approach gives the better recommendation, a negative value means
that the independence-approach was superior. Results from different folds are
separated by a dashed line. Overall, the Maximin approach seems to be slightly
better than the independence assumption, with improvement shown in 18 of
the 29 cases. The independence approach is better in 6 cases, and 5 cases are
drawn. By further examination, we see that the independence approach often
recommends “Pulp Fiction” from 1994, a movie that is highly regarded albeit
controversial due to its level of violence. These characteristics lead to a high
predictive mean rating for the movie, but also a large predictive variance, thus
making it less attractive seen from the Maximin utility function’s point of view.
Correspondingly, the Maximin approach seems to have a bias towards less de-
batable “classics”, again in correspondence with our mathematical intuition.

7. Conclusions

In this paper we have proposed a new model for collaborative filtering, where
the traditional user and item perspectives are combined into a single (relational)
model. We have shown how to learn these models from rating-data using the
EM-algorithm, and we have demonstrated that the framework offers very good
predictive abilities. Furthermore, through examples we have shown that our
model also carries implicit information about the domain captured in its latent
variables. We anticipate that this information can be utilized to explain model
predictions for a user and thereby increase the user’s trust in the recommenda-
tions, and we are currently in the process of considering how this information
can be used to generate explanations automatically.

The main contribution of the paper is the proposed model class together with
the model learning algorithms and the analysis of the properties of the learned
models. In particular, for the empirical experiments we have relied on exact
inference algorithms when learning and analyzing the models, thus putting less
emphasis on computational complexity. Using exact inference algorithms when
learning models for large data sets will, however, be prohibitive in general.
An immediate direction for future research is therefore the design of efficient
approximate inference algorithms (e.g. based on variational approximations)
tailored specifically to the proposed model class.

Other directions for future research include extending the model to allow
a flexible and seamless integration of content information. We anticipate that
content information will mainly be represented by discrete variables, and a par-
ticular challenge will therefore be the complexity of the model.

Appendix A. The EM algorithm

In this section we specify the EM algorithm for the proposed model. First
of all, we note that the joint probability distribution over (R,U ,M ) can be
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User IDs Independence recommendation Ratings Maximin recommendation Ratings Difference
R1 R2 min R1 R2 min

175 363 Field of Dreams (1989) 5 3 3 Alien (1979) 4 4 4 1
128 409 Hoop Dreams (1994) 4 2 2 Star Wars (1977) 4 5 4 2
14 296 Pulp Fiction (1994) 5 5 5 The Silence of the Lambs (1991) 3 5 3 -2

217 328 Psycho (1960) 3 4 3 Braveheart (1995) 5 5 5 2
299 303 Citizen Kane (1941) 4 5 4 Schindler’s List (1993) 4 5 4 0
269 321 Dr. Strangelove or: How I Learned. . . (1963) 4 4 4 Casablanca (1942) 4 5 4 0
57 250 Pulp Fiction (1994) 3 4 3 Back to the Future (1985) 4 2 2 -1
24 269 Dead Man Walking (1995) 5 4 4 Fargo (1996) 5 5 5 1

151 426 The Big Sleep (1946) 4 4 4 The Silence of the Lambs (1991) 4 4 4 0
437 608 Leaving Las Vegas (1995) 5 2 2 On Golden Pond (1981) 4 3 3 1
433 435 Dr. Strangelove or: How I Learned . . . (1963) 3 3 3 The Usual Suspects (1995) 5 5 5 2
62 326 Casablanca (1942) 4 5 4 Raiders of the Lost Ark (1981) 4 4 4 0

472 487 The Terminator (1984) 5 4 4 Return of the Jedi (1983) 5 4 4 0
59 354 Dead Man Walking (1995) 4 3 3 Three Colors: Red (1994) 5 5 5 2
56 371 The Rock (1996) 5 3 3 Indiana Jones and the Last Crusade (1989) 5 4 4 1

271 450 Indiana Jones and the Last Crusade (1989) 4 3 3 Groundhog Day (1993) 4 4 4 1
524 606 The Terminator (1984) 2 5 2 The African Queen (1951) 5 4 4 2
314 504 Corrina, Corrina (1994) 4 3 3 Four Weddings and a Funeral (1994) 1 3 1 -2
543 661 Good Will Hunting (1997) 3 4 3 North by Northwest (1959) 4 5 4 1
655 667 Taxi Driver (1976) 3 3 3 Good Will Hunting (1997) 3 5 3 0
881 942 E.T. the Extra-Terrestrial (1982) 4 5 4 Star Wars (1977) 3 5 3 -1
409 881 The Godfather (1972) 4 4 4 One Flew Over the Cuckoo’s Nest (1975) 5 5 5 1
764 805 Pulp Fiction (1994) 4 4 4 Raiders of the Lost Ark (1981) 5 3 3 -1
514 645 Apocalypse Now (1979) 3 4 3 Amadeus (1984) 5 5 5 2
524 781 Pulp Fiction (1994) 4 3 3 L.A. Confidential (1997) 5 5 5 2
650 897 Raiders of the Lost Ark (1981) 4 5 4 The Princess Bride (1987) 5 3 3 -1
267 889 2001: A Space Odyssey (1968) 5 2 2 The Terminator (1984) 4 4 4 2
548 592 The Godfather (1972) 5 5 5 Alien (1979) 5 5 5 0
661 882 Terminator 2: Judgment Day (1991) 4 4 4 The Bridge on the River Kwai (1957) 5 5 5 1

Table 8: Users pairs were Maximin recommendation differs from the Independence recommendation.
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expressed as
f(r,u,m) = f(r|m,u)f(m)f(u),

where

f(r|m,u) =

N
∏

p=1

∏

i∈I(p)

(2πθ)−1/2 exp(−
1

2θ
(r (p, i)− (vT

pmi +wT

i up + φp + ψi))
2)

f(mi) = N (0s, Is×s)

f(up) = N (0t, It×t)

The M-step for the EM algorithm can now be derived by considering the
partial derivatives of the expected data-complete log-likelihood of the model:

Q =−
#M · s

2
log(2π)−

#M

2
E(MTM )−

#U · t

2
log(2π)−

#U

2
E(UTU )

−
d

2
log(2π)−

d

2
log(θ)

−
1

2θ

#U
∑

p=1

∑

i∈I(p)

E((r (p, i)− (vT

pM i +wT

i Up + φp + ψi))
2),

where d =
∑#U

p=1 |I(p)|, #M is the number of movies, and #U is the number
of users. Note that the expectations are implicitly conditioned on the observed
ratings.

For the standard deviation θ we now get

∂Q

∂θ
=
−d

2θ
+

1

2θ2

#U
∑

p=1

∑

i∈I(p)

E[(r (p, i)− (vT

pM i +wT

i Up + φp + ψi))
2]

and the updating rule for θ therefore becomes

θ̂ ←
1

d

#U
∑

p=1

∑

i∈I(p)

E[(r (p, i)− (vT

pM i +wT

i Up + φp + ψi))
2],

which involves the expectations E(Up), E(M i), E(M iM
T

i ), E(M iU
T

p ), and
E(UpU

T

p ).
For vp we get

∂Q

∂vp
=

1

θ

∑

i∈I(p)

(E(M iM
T

i )vp − E(M i)rp.i + E(M iU
T

p )wi + E(M i)(φp + ψi))
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and therefore

v̂p ←





∑

i∈I(p)

E(M iM
T

i )





−1

×





∑

i∈I(p)

(E(M i)r (p, i)− E(M iU
T

p )wi − E(M i)(φp + ψi))





The updating rule for φp follows from

∂Q

∂φp
=

1

θ

∑

i∈I(p)

(r (p, i)− (vT

pE(M i) +wT

i E(Up) + φp + ψi)),

and is given by

φ̂p ←
1

|I(p)|

∑

i∈I(p)

(r (p, i)− (vT

pE(M i) +wT

i E(Up) + ψi)).

Finally, analogously to the updating rules for vp and φp, we have the following
rules for wi and ψi:

ŵi ←





∑

p∈P(i)

E(UpU
T

p )





−1

×





∑

p∈P(i)

E(Up)r (p, i)− E(UpM
T

i )vp − E(Up)(φp + ψi)





ψ̂i ←
1

|P(i)|

∑

p∈P(i)

(r (p, i)− (vT

pE(M i) +wT

i E(Up) + φp)).

The required expectations can be calculated from the joint distribution over
the latent variables conditioned on the observed ratings:

[UT,MT]T|r ∼ N
(

Σ(LTθ−1(r − (φ + ψ))),Σ
)

,

where the covariance matrix is given by

Σ = (I +LTθ−1L)−1.

and L is the regression matrix for the ratings given U and M (i.e., consisting
of the vps and wis).

Specifically, E(Up) and E(M i) can be extracted directly from the mean
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vector, and e.g. E(M iU
T

p ) can be calculated as

E(M iU
T

p ) = Σi,p − E(M i)E(Up)
T,

where Σi,p is the sub-matrix of Σ restricted to the variables M i and Up.
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