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Self-commissioning for sensorless field oriented control of PM motors

H. Rasmussen
Aalborg University, Fredrik Bajers Vej 7

DK-9220 Aalborg, Denmark
email: hr@control.auc.dk

Abstract— Methods for estimation of the parameters in the in-
verter and the PM motor, based on special designed experiments,
are given. Input to the system is the reference values for the sta-
tor voltages given as duty cycles for the Pulse With Modulated
power device. The system output is the measured stator currents.
Inverter parameters, stator resistance and inductance are mea-
sured at stand-still before the initial start-up of the drive. The
strength of the permanent magnet is measured during a initial
manual start-up of the drive. The measured parameters are used
in a field oriented control system and the performance is experi-
mentally verified.

NOMENCLATURE
a complex spatial operatorej2π/3

isA,B ,C stator phase currents A,B and C
usA,B ,C stator phase voltages A,B and C
is stator current complex space vector
us stator voltages complex space vector
ψs stator flux
ψr rotor flux
Rs stator resistances
Ls stator inductance
ω synchronous angular frequency
ωmech rotor speed
p time derivative operatord/dt
Zp number of pole pair
θ rotor position
θf filtered rotor position

I. INTRODUCTION

Because standard inverters must be able to operate on differ-
ent PM motors, the parameters of the PM motor have to be
known before starting the drive. Even if the operator were
familiar with system identification, it would be too expen-
sive to let him carry out a system identification procedure
every time installing a PM motor drive. This calls for an au-
tomated process, where the required electrical parameters
(inverter parameters for dead time compensation and sta-
tor resistance, inductance and the strength of the permanent
magnet for field angle estimation) are obtained from on-line
measurements. For Induction motors two main groups deal-
ing with this are separated. One is identification during the
first power-up, based on special designed test cycles on the
motor ( Schierling [11], Summer and Asher [12], Vas [13],
Rasmussen et. all [7] and [8]), and the other group is on-line
identification of parameters in normal operation of the drive
( Garces [1], Nilsen and Kazmierkowski [5], Marino et.all
[4], Ortega and Espinosa [6], Hurst et. all [2] and Leonhard
[3]).
The first group, usually called self-commissioning, is the

scope of this paper for field oriented control of PM motors
The steps taken in this paper is shortly described by the fol-
lowing.
1. For standard power converters using IGBT’s, the turn

on and turn off time of the device change significantly
with current level, resulting in a noticeable change in
output mean-voltage. Particularly at low voltages, this
inverter nonlinearity has to be considered when using
voltage references instead of measured voltages. This
experiment also gives the stator resistance.

2. The current control system is adjusted in advance by an
auto-tuning method for PI controllers for the d-axis and
q-axis currents [14].

3. The stator inductance is calculated from the relay ex-
periment data or by measuring the open loop current re-
sponse for a step in the stator voltage.

4. The strength of the permanent magnet is measured in a
closed loop current system. Variation of the stator cur-
rent vector leads to a variation of the angle of the perma-
nent magnet and the strength is computed based on the
voltage in the stator.

In the first tree experiments the motor is given a single phase
excitation, i.e., two of the phases are impressed the same
voltage. No net torque is acting on the rotor and the motor
is at stand-still. The stand-still experiments are performed
before the initial start-up of the motor. The last item is per-
formed as the first part of the command for running the mo-
tor in the direction specified.

II. PM MOTOR MODEL AND ROTOR FLUX
OBSERVER

Figure 1 shows the rotor field oriented control system de-
scribed in details in [10] and [9]. The observer for the angle
of the permanent magnet is shown in fig. 2. It is based on
complex space phasors for voltage and currents

is = 2
3 (isA + aisB + a2isC)

us = 2
3 (usA + ausB + a2usC)

(1)

The dynamics for the motor is then given by the following
stator voltage equation and flux linkage equations

dψs

dt = us −Rsis
ψs = Lsis + ψr

ψr = ψMejθ

(2)



Fig. 1. Rotor Field Oriented Control

Fig. 2. Signal flow graph of the rotor angle observer

whereθ is the rotor angle. The electrical rotor speed is ex-
pressed from the mechanical rotor speed as

dθ

dt
= ω = Zpωmech (3)

The estimation ofψr given in (2) requires an open integra-
tion of the voltage equation. The unavoidable offsets con-
tained in the inputs make the output drift. If the offsets are
modelled aŝuoff the estimator for the rotor flux̂ψr is

dψ̂s

dt = = us −Rsis + ûoff

ψ̂r = ψ̂M ejθ̂
(4)

whereûoff has to be designed in a way leading to a flux
estimate with constant amplitude|ψ̂r|.
Figure 2 shows how this is obtained by a feedback of the
estimated errorψM,ref − ψ̂M . For known magnitude of the
permanent magnetψM,ref = ψM is used and the observer
may then be seen as a rotor field angle estimator.
At zero and very low speed BEMF gives no information of
the field angle. A new principle is introduced in this situa-
tion by impressing a current in the direction of the default es-
timated angle. This current then forces the permanent mag-
net to align to this angle and in this way the estimated angle
becomes the correct one only with the error caused by fric-
tion and load.
Figure 3 shows the signal flow graph for the rotor speed es-
timator. Thearg(eje) block solves the modulus problem.

Fig. 3. Speed estimator
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Fig. 4. Inverter nonlinearity givingRs = 4.5, Uth = 11 and
Ith = 0.07

The algorithm for the estimator then becomes

dψ̂s

dt = us −Rsis + c1(ψM,ref − ψ̂M )ejθ̂

ψ̂r = ψ̂s − Lsis
θ̂ = arg(ψ̂r)
ω̂ = Kp(1− 1

Tip
) arg ej(θ̂−θf )

dθ̂f

dt = ω̂

(5)

III. STATOR RESISTANCE AND INVERTER
PARAMETERS

Figure 4 shows the modelled and measured stator reference
voltageus,ref as a function of a slow sweep in the stator
currentis. The stator resistance and the parameters in the
inverter model are based on a static measurement of the ref-
erence stator voltageus,ref as a function of the stator current
is.
The correction of phase voltages are given by

usA,ref = usA + Uinv(isA)
usB,ref = usB + Uinv(isB)
usC,ref = usC + Uinv(isC)

with

Uinv(i) =
{

+Uth(1− e−i/Ith) for i > 0
−Uth(1− e+i/Ith) else

In the experiment we haveisB = isB = 0.5isA giving

finv(isd) = real{2
3
(Uinv(isd)+aUinv(

−isd

2
)+a2Uinv(

−isd

2
)}
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Fig. 5. Setup for relay experiment

A least square fit ofRsisd+ finv(isd) to the measured value
for usd gives as shown in fig. 4 the parametersRs, Uth and
Ith.

IV. TUNING OF CURRENT CONTROLLERS

Fig. 5 shows the relay experiment setup for tuning of the
current controllers. The tuning of the PI-controller is based
on Ziegler-Nichols ultimate period method. An automatic
and robust method giving this performance is developed by
Åström and Ḧagglund [14] based on a relay experiment with
the controller replaced by a relay. When steady state is
achieved, the ultimate periodTu is approximated by the pe-
riod of the limit cycle.With the notation∆u and∆i for the
change ofus and is, the relay experiment gives, as shown
by Åström [14], an approximation of the ultimate gainKu :

Ku ≈ 4∆u

π∆i

With Ku andTu determined from the relay experiment in
fig. 6, the parameters for a PI-controller may be computed
asK = 0.45Ku andTi = Tu/1.2 if Ziegler-Nichols rules
are used. In this paper the tuning parameters are chosen as
K = 0.3Ku andTi = Tu. The step response for a current
controller tuned with these parameters is shown in fig. 7
With all the motor parameters estimated, a controller, giving
a faster response, may be designed and used in the field ori-
ented control system. Lots of laboratory tests have shown
that not much is gained in the total performance by doing
this.

V. STATOR INDUCTANCE

The stator inductanceLs may be calculated from an experi-
ment whereus,ref is switched betweenu0

s,ref andu0
s,ref +d

as shown in fig. 8. u0
s,ref is the steady state value for

is,ref = is,0 From the initial slope of the curveα0 the stator
inductance is calculated as

Ls =
∆ud

α0
(6)

It is also possible to obtainLs from the relay experiment
using the steepest slope asα0 in (6). For the motor used the
difference between the two methods was less than10%. The
step response method is considered as the most reliable and
is used in the following.
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Fig. 6. Relay experiment givingKu = 169 andTu = 0.000125
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Fig. 7. Step response for current controller

VI. T HE PERMANENT MAGNET

The strength of the permanent magnet is measured in a
closed loop current system. The stator current vector is ro-
tated with a constant velocityω0 giving the relation

ψM =
1
ω0

(usq −Rsisq)− Lsisd

Averaging over a cycle gives the strength of the permanent
magnet. Fig. 9 shows that it is possible to obtain a better
approximation by looking at the angle dependency.

VII. MEASURED MACHINE PARAMETERS

For comparison the following table shows values for the mo-
tor in the test setup and factory measured values at20◦C

Rs Ls ψM Zp Nmech

Fact. meass 4.0 0.013 0.30 3 1500
Self comm. 4.5 0.016 0.32

(7)
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Fig. 8. open loop step response givingLs = 0.016
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Fig. 9. ψM estimated with forced speed during one cycle. Aver-
aging givesψM = 0.318

Comments on the result:
• Rs: Because reference voltages to the inverter are used in

the estimate of the stator resistance internal output resis-
tance of the inverter is included in the result. This fact as
well as the temperature variation may explain the differ-
ence between the estimated and the factory measured re-
sistance, and correction would be possible, but because
reference voltages are used later in the controller, the
measured resistance is more appropriate.

• Ls: The difference between the factory measured and the
estimated value may be explained by saturation effects.
What value is most correct is difficult to say, and for the
overall control performance it is not important at all.

• ψM : The difference between the factory measured and
the estimated values may be explained by the angle de-
pendency, which is not considered in the factory mea-
sured data. The peaks on fig. 9 is due to uncompensated

Fig. 10. Laboratory setup

inverter nonlinearities.

VIII. EXPERIMENTS

Fig. 1 shows the rotor field oriented control system. Having
the parameters for dead time compensation, the motor pa-
rameters for flux and speed estimation and the current con-
trollers only parameters for the speed controller have to be
determined. A relay method as used for the current con-
trollers may be used for on line tuning of PI or PID controller
for the speed. At zero and low speed the reference value for
isd is given a value different from zero. If the rotor angle is
estimated correctly a value forisd 6= 0 gives no torque. If
the rotor angle is estimated with an error the rotor is forced
in the direction ofθ̂ used in the controller. This new prin-
ciple means that no manual mode at zero and low speed is
necessary, closed loop control is obtained for all values of
the speed reference. The function forisd,ref is

isd,ref = iref0e
−|ω̂r|/ω0 (8)

The laboratory setup shown in Fig. 10 is based on Real Time
Workshop, Simulink from MathWorks and a DSP based
control board from dSPACE. The drive system is via a signal
conditioner connected to a DSP board in the computer. The
control software is Simulink blocks written in C. Figure 11
shows a step response for the speed and fig. 12 shows the
response of theisd,ref -function. A high speed step response
is shown in fig. 13 and low speed step response is shown in
fig. 14.

IX. CONCLUSIONS

Controllers for the d- and q-axis stator currents in a field
oriented coordinate system is automatically tuned based on
Ziegler-Nichols ultimate gain method. By using a relay-
feedback, approximate values for the ultimate gain and pe-
riod are found and used for tuning the PI-controller. By
impressing different functions for the current reference and
measure values for(is, us,ref ), estimates of the inverter and
motor parameters are found. The basic idea of the methods
are the same as in the referenced self-commissioning liter-
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Fig. 11. Normal Rotor speed step response0− 1000rpm
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Fig. 12. isd response forisd,ref function enabled

ature, but the implementation deviates in many ways from
this literature, making it more feasible for a fully automated
process. Results for a800W -motor are shown and com-
pared to factory measurements. The auto-tuned field ori-
ented control system is tested and the performance of the
speed sensor-less drive is excellent.
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