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Receiver Architectures for MIMO-OFDM

Based on a Combined VMP-SP Algorithm

Carles Navarro Manch́on, Gunvor E. Kirkelund, Erwin Riegler,

Lars P. B. Christensen, Bernard H. Fleury.

Abstract

Iterative information processing, either based on heuristics or analytical frameworks, has been shown

to be a very powerful tool for the design of efficient, yet feasible, wireless receiver architectures. Within

this context, algorithms performing message-passing on a probabilistic graph, such as the sum-product

(SP) and variational message passing (VMP) algorithms, have become increasingly popular.

In this contribution, we apply a combined VMP-SP message-passing technique to the design of

receivers for MIMO-ODFM systems. The message-passing equations of the combined scheme can

be obtained from the equations of the stationary points of a constrained region-based free energy

approximation. When applied to a MIMO-OFDM probabilistic model, we obtain a generic receiver

architecture performing iterative channel weight and noise precision estimation, equalization and data

decoding. We show that this generic scheme can be particularized to a variety of different receiver

structures, ranging from high-performance iterative structures to low complexity receivers. This allows

for a flexible design of the signal processing specially tailored for the requirements of each specific

application. The numerical assessment of our solutions, based on Monte Carlo simulations, corroborates

the high performance of the proposed algorithms and their superiority to heuristic approaches.

Index Terms

MIMO, OFDM, multi-user detection, message-passing algorithms, belief propagation, mean-field

approximation, sum-product algorithm, variational message-passing, iterative channel estimation, equal-

ization and data decoding
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I. INTRODUCTION

During the last two decades, wireless communication systems have undergone a rapid and

steep evolution. While old analog systems mainly focused onproviding voice communications,

today’s digital systems offer a plethora of different services such as multimedia communications,

web browsing, audio and video streaming, etc. Along with thegrowing variety of services offered,

the amount of users accessing them has also experienced a drastic increase. The combination

of applications requiring large amounts of data traffic and high density of users, together with

the scarceness of wireless spectrum resources, dictates high spectral efficiency to be an essential

target in the design of modern wireless systems.

From a physical layer point of view, the emergence of multiple-input multiple-output (MIMO)

techniques [1] together with the development of near-capacity-achieving channel codes, such as

turbo [2] or low-density parity check (LDPC) [3] codes, havebeen the most remarkable steps

towards this goal. The use of multiple antennas allows for increasing the theoretical capacity

of a wireless channel linearly with the minimum of the numberof antenna elements at the

transmitter and at the receiver ends [4]. Depending on the specific MIMO technique employed,

multiple antennas can be used to exploit the number of degrees of freedom of a wireless channel,

its diversity or a mixture of both [5]. The combination with advanced channel codes enables

transmission schemes with unprecedented high spectral efficiency. However, in order to realize

in practice the performance predicted by theory, advanced receiver architectures combining high

performance channel estimators, MIMO detectors and channel decoders are required.

Joint maximum likelihood (ML) receivers are prohibitivelycomplex for most modern commu-

nication systems, especially systems with high MIMO order and concatenated codes. A wide-

spread approach for the design of suboptimal, yet efficient receiver architectures is to separate

the receiver into several individual blocks, each performing a specific task: channel weight

estimation, noise estimation, interference cancellation, equalization or data decoding are some

examples. Inspired by the iterative decoding scheme of turbo codes, some structures in which the

different constituent blocks exchange information in an iterative manner have been proposed [6]–

[10]. In these receivers, each block is designed individually, and the way it exchanges information

with the other blocks is based on heuristics. Consequently,while each block is designed to

optimally perform its task, the full receiver structure does not necessarily optimize any global
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performance criterion. Nevertheless, these structures have shown remarkably good performance

at an affordable complexity, while keeping a large degree offlexibility in their design.

Motivated by the success of heuristic iterative approaches, a set of formal frameworks for

the design of algorithms performing iterative informationprocessing have arisen in recent years.

Among these, methods for variational Bayesian inference inprobabilistic models [11] have

attracted much attention from the communication research community in recent times. These

frameworks allow for the design of iterative algorithms based on the optimization of a global cost

function. Typically, they are derived from the stationary points of a discrepancy measure between

the probability distribution that needs to be estimated anda postulated auxiliary distribution, the

latter distribution providing an estimate of the former. The different frameworks differ on the

particular discrepancy measure selected and the restrictions applied to the postulated auxiliary

function. We especially highlight two main approaches suggested so far in literature: belief

propagation (BP) and mean-field (MF) methods1.

BP [16] is a Bayesian inference framework applied to graphical probabilistic models. In its

message-passing form –referred to as the sum-product (SP) algorithm [17]– messages are sent

from one node of the graphical model to neighboring nodes. The message computation rules for

the SP algorithm are obtained from the stationary points of the Bethe free energy [14]. When

the graphical model representing the system is free of cycles, the SP algorithm provides exact

marginal distributions of the variables in the model. When the graph has cycles, however, the

algorithm outputs only an approximation of the marginal distributions and it is, moreover, not

guaranteed to converge [18]. In most cases, nonetheless, the obtained marginals are still a high

quality approximation of the exact distributions. BP and the SP algorithm have found widespread

application in the decoding of channel codes [17], [19], andhave also been proposed for the

design of iterative receiver structures in wireless communication systems [20]–[24]. However,

modifications of the original algorithm are required for parameter estimation problems, such

as channel estimation. This has been solved by, e.g., combining the SP algorithm with the

expectation-maximization (EM) algorithm [21], [25] or approximating SP messages which are

computationally untractable with Gaussian messages [26],[27].

1Some authors, e.g. Winn and Bishop [12], [13], consider BP outside the variational Bayesian framework, and usually use the

term variational only in the context of MF-like approximations. We use, however, the more general view proposed e.g. in [11],

[14], [15], which considers BP as another algorithm for variational Bayesian inference.
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MF approaches –proposed by Attias in [28] and formulated as the variational Bayesian

expectation-maximization (VBEM) principle by Beal [29]– are based on the minimization of

the Kullback-Leibler (KL) divergence [30] between a postulated auxiliary function and the

distribution to be estimated. The minimization becomes especially computationally tractable

under the MF approximation [31], in which the auxiliary function is assumed to completely

factorize with respect to the different parameters. The obtained iterative algorithm guarantees

convergence in terms of the KL divergence, but convergence to the globally optimum solution can

only be guaranteed when the considered problem has a unique single optimum. However, it has

proven very useful in the design of iterative receiver structures including channel estimation, e.g.,

channel estimation and detection for GSM systems [32], iterative multiuser channel estimation,

detection and decoding [33] or channel estimation, interference cancellation and detection in

OFDM systems [34], [35]. For other applications of MF methods, see [36]–[38]. Message-

passing interpretations of this technique on probabilistic graphs have also been proposed in [12],

[39], [40] and are commonly referred to as variational message-passing (VMP) techniques.

In this contribution, we apply a hybrid message-passing framework to the design of iterative

receivers in a MIMO-OFDM setup. This hybrid framework, recently proposed in [41], [42], com-

bines the SP and VMP algorithms in a unified message-passing technique. Message updates are

obtained from the stationary points of a particular region-based free energy approximation [14]

of the probabilistic system. Specifically, the combined framework allows for performing VMP

in parts of the graph and SP in others, thus enabling a flexible, yet global, design.

From a MIMO-OFDM signal model, we derive a generic message-passing receiver performing

channel estimation, MIMO detection and channel decoding inan iterative fashion. Channel

estimation is not limited to the estimation of channel weights, but also includes estimation of

the noise variance, which proves to be crucial for the operation of the receiver. The application of

a unified framework to the whole receiver design unequivocally dictates the type of information

that should be exchanged by the individual constituents of the receiver in the form of messages.

This is in contrast to heuristic approaches which, for instance, arbitrarily select a-posteriori or

extrinsic probabilities to be exchanged between the channel decoder and other modules based

on intuitive argumentation or trends observed by simulation results [9], [10].

The generic messages derived can easily be particularized by applying different assumptions

and restrictions to the signal model considered. Thus, our framework enables a highly scalable
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and flexible design of the signal processing in the receiver.For instance, applying the messages to

only part of the factor graph yields simplified architectures performing just a subset of the receiver

tasks; also, small modifications to the factor-graph lead todifferent receiver structures with

different performance and computational complexity tradeoffs. These properties are illustrated

in our numerical evaluation, where the performance of a few selected instances of our proposed

receiver is assessed via Monte Carlo simulations. The presented results demonstrate the high

accuracy of our approach, and its superiority to iterative receivers based on heuristics.

The remainder of the paper is organized as follows. The signal model of the MIMO-OFDM

system considered is presented in Section II, followed by a brief review of the combined message-

passing framework proposed in [41], [42] in Section III. In Section IV, the generic messages to be

exchanged in the factor-graph are derived, and the performance of five different receivers obtained

from the generic derivation is tested in Section V. Finally,we draw some final conclusions in

Section VI.

A. Notation

Throughout the paper, lower-case boldface letters represent column vectors, while upper-case

boldface letters denote matrices;(·)T and (·)H denote the transpose and conjugate-transpose

of a vector or matrix respectively;‖ · ‖ denotes the Euclidian norm;A ⊗ B represents the

Kronecker product of matricesA and B; IN denotes the identity matrix of dimensionN .

Moreover,log denotes the natural logarithm;f(x) ∝ g(x) means thatf(x) is equal tog(x) up

to a proportionality constant;〈f(x)〉g denotes the expectation off(x) over g(x), i.e. 〈f(x)〉g =
∫

x
f(x)g(x)dx; S\s denotes all elements in the setS but s.

II. SIGNAL MODEL

In this section a multi-user signal model for MIMO-OFDM is derived. The system is composed

by M synchronous transmitter chains andN receiver antennas, as depicted in Fig. 1. These

transmitters can represent different transmission branches of the same physical transmitter, or

physically separated transmitters at different locations. For themth transmitter, a finite sequence

of information bitsum is encoded and interleaved, yielding a sequence of coded bits cm. The

sequencecm is then complex modulated, resulting in the vectorx
(d)
m of complex-modulated

data symbols. Finally, the data symbols are multiplexed with the pilot symbolsx(p)
m , giving
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the transmitted symbolsxm = [xm(1, 1), . . . , xm(K, 1), . . . , xm(1, L), . . . , xm(K,L)]T, where

xm(k, l) denotes the symbol sent by themth transmitter on thekth subcarrier of thelth OFDM

symbol of a frame. The transmitted symbolsxm are then OFDM modulated using an IFFT and

the insertion of a cyclic prefix.

The signal is transmitted through a wide-sense stationary uncorrelated scattering (WSSUS)

channel. The channel impulse response from transmitterm to receivern during the transmission

of the lth OFDM symboll can be described by

gnm(l, τ) =
Inm∑

i=1

α(i)
nm(l)δ(τ − τ (i)nm) (1)

whereα(i)
nm andτ (i)nm are respectively the complex gain and delay of theith multipath component

andInm is the number of multipath components. We assume that the channel response is static

over the duration of an OFDM symbol, but changes from one OFDMsymbol to the next. Also,

the maximum delay of each wireless linkτ (Inm)
nm is assumed to be smaller than the duration of

the OFDM cyclic prefix2, so that no inter-symbol interference (ISI) degrades the transmission.

From (1), the sample of the channel frequency response at thekth subcarrier of thelth OFDM

symbol is found to be:

hnm(k, l) =
Inm∑

i=1

α(i)
nm(l)e

−j2πk∆fτ
(i)
nm .

In this expression,∆f denotes the OFDM subcarrier spacing.

At the receiver, the signal is OFDM demodulated by discarding the cyclic prefix and applying

an FFT on the received samples. Under the previously stated assumptions that the channel is

block fading and the maximum delays are smaller than the duration of the cyclic prefix, the

signal received at thenth receive antenna on thekth subcarrier of thelth OFDM symbol reads

yn(k, l) =
M∑

m=1

hnm(k, l)xm(k, l) + wn(k, l),

n = 1, . . . , N,

k = 1, . . . , K,

l = 1, . . . , L,

(2)

with wn(k, l) denoting zero-mean additive complex white Gaussian noise (AWGN) with variance

λ−1. The equations in (2) can be recast in a matrix-vector notation as

y =

M∑

m=1

Xmhm +w =

M∑

m=1

Hmxm +w (3)

2We assume without loss of generality that the delaysτ
(i)
nm are ordered in increasing order, i.e.τ

(i+1)
nm ≥ τ

(i)
nm.
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Fig. 1. Block-diagram representation of the transmission model.

wherey = [yT
1 , . . . ,y

T
N ]

T, with yn = [yn(1, 1), . . . , yn(K, 1), . . . , yn(1, L), . . . , yn(K,L)]T denot-

ing the received signal at thenth receive antenna for a frame ofK subcarriers andL OFDM sym-

bols. Additionally,hm = [hT
1m, . . . ,h

T
Nm]

T,Xm = IN⊗diag{xm}, Hm = [diag{h1m}, . . . , diag{hNm}]T

and hnm = [hnm(1, 1), . . . , hnm(K, 1), . . . , hn,m(1, L), . . . , hnm(K,L)]T. Equation (3) can be

further compressed as

y = Xh+w = Hx+w

wherex = [xT
1 , . . . ,x

T
M ]T, h = [hT

1 , . . . ,h
T
M ]T, X = [X1, . . . ,XM ] andH = [H1, . . . ,HM ].

III. M ESSAGEPASSING TECHNIQUES

In this section, we briefly introduce message-passing techniques on factor graphs. First, we

define the concept of factor graph on a probabilistic model, followed by the description of

two standard message-passing schemes: the sum-product (SP) algorithm [17] and the variational

message-passing (VMP) algorithm [12]. Finally, we show howto combine both algorithms to

perform hybrid VMP and SP message passing in a factor graph [41].
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A. Factor Graphs for Probabilistic Models

Let p(z) be the probability density function (pdf) of a vectorz of random variableszi (i ∈ I)

which factorizes according to

p(z) =
1

Z

∏

a∈A

fa(za) (4)

whereza = (zi|i ∈ N (a))T with N (a) ⊆ I for all a ∈ A and Z =
∫

z

∏

a∈A fa(za)dz is a

normalization constant. We also defineN (i) , {a ∈ A|i ∈ N (a)} for all i ∈ I. Similarly,

N (a) = {i ∈ I|a ∈ N (i)} for all a ∈ A. The above factorization can be graphically represented

by means of a factor graph [17]. A factor graph3 is a bipartite graph having a variable nodei

(typically represented by a circle) for each variablezi, i ∈ I and a factor nodea (represented

by a square) for each factorfa, a ∈ A. An edge connects a variable nodei to a factor nodea

if, and only if, the variablezi is an argument of the factor functionfa. The setN (i) contains

all factor nodes connected to a variable nodei ∈ I andN (a) is the set of all variable nodes

connected to a factor nodea ∈ A.

Factor graphs provide a compact and intuitive representation of the statistical dependencies

among the random variables in a probabilistic model. Furthermore, they enable the design of

a class of iterative signal processing algorithms which arebased on the nodes of the graph

iteratively exchanging information (messages) with theirneighbors (connected nodes). This class

of algorithms has been coinedmessage-passingtechniques, and in the following we will describe

the two instances of these techniques which have been most widely applied to signal processing

for communication systems: the SP and VMP algorithms.

B. The Sum-Product Algorithm

The SP algorithm is a message-passing algorithm that computes the exact marginal distribu-

tions pi(zi) of the variableszi associated to the joint distributionp(z) for tree-shaped factor

graphs. When the factor graph does not have a tree structure,the outcome of the algorithm is

only an approximation of the true marginal, and the approximate marginalsbi(zi) ≈ pi(zi) are

called beliefs. The message-passing algorithm is derived from the equations of the stationary

points of the constrained Bethe free energy [14].

3We will use Tanner factor graphs [17] throughout this article
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The algorithm operates iteratively by exchanging messagesfrom variable nodes to factor nodes

and vice-versa. The message computation rules for the SP algorithm read

ma→i(zi) = da〈fa(za)〉∏j∈N (a)\i nj→a
, ∀a ∈ A, i ∈ N (a)

ni→a(zi) =
∏

c∈N (i)\a

mc→i(zi), ∀i ∈ I, a ∈ N (i)

whereda (a ∈ A) are positive constants ensuring that the beliefs are normalized to one. Often

the constantsda need not be calculated explicitly, and it is enough to normalize the beliefs after

convergence of the algorithm (see [42] for more details on normalization issues). We use the

notationn(·)→(·) for output messages from a variable node to a factor node andm(·)→(·) for input

messages from a factor node to a variable node. This convention will be kept through the rest

of the paper, also for other message-passing schemes.

The variables’ beliefs can be calculated at any point duringthe iterative algorithm as

bi(zi) =
∏

a∈N (i)

ma→i(zi) ∀i ∈ I.

The SP algorithm acquired great popularity through its application to iterative decoding of,

among others, turbo codes and LDPC codes, and has since then been used for the design of

many iterative algorithms in a wide variety of fields [21].

C. The Variational Message-Passing Algorithm

The VMP algorithm is an alternative message-passing technique which is derived based on the

minimization of the variational free energy subject to the mean-field approximation constraint

on the beliefs. While it does not guarantee the computation of exact marginals (even for tree-

shaped graphs), its convergence is guaranteed by ensuring that the variational free energy of the

computed beliefs is non-increasing at each step of the algorithm [14].

The operation of the VMP algorithm is analogous to the SP algorithm; the message compu-

tation rules read

ma→i(zi) = exp〈log fa(za)〉∏j∈N (a)\i nj→a
, ∀a ∈ A, i ∈ N (a) (5)

ni→a(zi) = ei
∏

c∈N (i)

mc→i(zi) ∀i ∈ I, a ∈ N (i) (6)
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whereei (i ∈ I) are positive constants ensuring thatni→a are normalized. As in the SP algorihtm,

the beliefs can be obtained as

bi(zi) = ei
∏

c∈N (i)

mc→i(zi) = ni→a(zi) ∀i ∈ I, a ∈ N (i).

The VMP algorithm has recently attracted the attention of the wireless communication re-

search community due to its suitability for conjugate-exponential probabilistic models [12]. The

computation rule for input messages from factor to variablenodes allows for the obtention of

closed-form expressions in many cases in which the SP algorithm typically requires some type

of numerical approximation.

It is shown in [42] that a message-passing interpretation ofthe EM algorithm can be obtained

from the VMP algorithm. Assume that for a certain subset of variableszi, i ∈ E ⊆ I we want to

apply an EM update while still using VMP for the rest of variables. To do so, the beliefsbi are

restricted to fulfill the constraintbi(zi) = δ(zi − z̃i) for all i ∈ E additionally to the mean-field

factorization and normalization constraints. Minimizingthe variational free energy subject to

these conditions leads to a message passing algorithm identical to the one described in (5) and

(6) except that the messagesni→a for all i ∈ E anda ∈ N (i) are replaced by

ni→a(zi) = δ(zi − z̃i) with z̃i = argmaxzi




∏

a∈N (i)

ma→i(zi)



 . (7)

D. Combined VMP-SP Algorithm

As stated previously in this section, the VMP and the SP algorithms are two message-passing

techniques suitable for different types of models. While SPis especially suitable in models

with deterministic factor nodes, e.g. code or modulation constraints, VMP has the advantage

of yielding closed-form computationally tractable expressions in conjugate-exponential models,

as are found in channel weight estimation and noise varianceestimation problems. Based on

these facts, it seems natural to try to combine the two methods in a unified scheme capable of

preserving the advantages of both.

A combined message-passing scheme based on the SP and VMP algorithms was recently

proposed in [41], [42]. This hybrid technique is based on splitting the factor graph into two

different parts: a VMP part and a SP part. To do this, part of the factor nodes are assigned to
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the VMP set (AVMP) and the rest are assigned to the SP set (ASP). Given this classification, we

can express the probabilistic model in (4) as

p(z) =
1

Z

VMPpart
︷ ︸︸ ︷
∏

a∈AVMP

fa(za)

SPpart
︷ ︸︸ ︷
∏

c∈ASP

fc(zc)

whereAVMP ∪ ASP = A andAVMP ∩ ASP = ∅. By applying the Bethe approximation to the

SP part and the mean-field approximation on the VMP part, a newmessage-passing scheme

is derived from the stationary points of the region-based free energy [41], [42]. The message

computation rules for this algorithm read

mVMP
a→i (zi) = exp〈log fa(za)〉∏j∈N (a)\i nj→a

, ∀a ∈ AVMP, i ∈ N (a) (8)

mSP
a→i(zi) = da〈fa(za)〉∏j∈N (a)\i nj→a

, ∀a ∈ ASP, i ∈ N (a) (9)

ni→a(zi) = ei
∏

c∈N (i)∩AVMP

mVMP
c→i (zi)

∏

c∈N (i)∩ASP\a

mSP
c→i(zi) ∀i ∈ I, a ∈ N (i) (10)

where, again,da andei are positive constants ensuring normalized beliefs. The computation rules

for messages outgoing factor nodes are preserved: for factor nodes in the VMP part (a ∈ AVMP)

the messages are computed using (8) as in standard VMP; for factor nodes in the SP part

(a ∈ ASP) the messages are computed via (9), which corresponds to a standard SP message.

A message from a variable nodei to a factor nodea is computed as a VMP message when

a ∈ AVMP and as a SP message whena ∈ ASP, as can be deduced from (10).

As with the VMP and SP algorithms, the beliefs of the variables can be retrieved at any stage

of the algorithm as

bi(zi) = ei
∏

a∈N (i)∩AVMP

mVMP
a→i (zi)

∏

a∈N (i)∩ASP

mSP
a→i(zi) ∀i ∈ I.

Note that we can apply the EM restriction to the belief of variableszi which are only connected

to VMP factors (i.e.N (i) ∩ ASP = ∅). In that case, the message update rules remain the same

except that the messageni→a in (10) is replaced by (7) for the selected variables.

IV. MIMO-OFDM RECEIVER BASED ON COMBINED VMP-SPA

In this section, we present a generic iterative receiver forMIMO-OFDM systems based on

the mixed VMP and SP message-passing strategy outlined in Section III-D. Recalling the signal

model presented in Section II, we can now postulate the probabilistic model to which we will
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Fig. 2. Generic factor graph of the receiver.

apply the combined VMP-SP technique. In our case, we identify the observation to be the

received signal vectory. As unknown parameters, we include the vector of information bits

u = [uT
1 , . . . ,u

T
M ]T, the vector of coded bitsc = [cT

1 , . . . , c
T
M ]T, the vector of modulated symbols

x = [x1, . . . ,xM ]T, the vector of complex channel weightsh = [h1, . . . ,hM ]T and the AWGN

precisionλ. The system function of our model is the joint pdf of all parameters, which can be

factorized as

p(u, c,x,h, λ,y) = p(y|h,x, λ)
︸ ︷︷ ︸

fO

p(h)
︸︷︷︸

fC

p(λ)
︸︷︷︸

fN

p(x, c,u)
︸ ︷︷ ︸

fM

(11)

where we have chosen to group the factors on the right-hand side into four functions. Factor

fO(y,h,x, λ) , p(y|h,x, λ) denotes the likelihood of the channel weightsh, the noise precision

λ and the transmitted symbolsx given the observationy. FactorfC(h) , p(h) contains the

assumed prior model of the channel weights, which is relevant for channel weight estimation.

Function fN(λ) , p(λ), likewise, contains the assumed prior model for the noise precision

parameterλ which defines how estimation of the noise precision is done. Finally, function

fM(x, c,u) , p(x, c,u) denotes the modulation and code constraints. Note that further factor-

ization of the factors in (11) is possible and will, in fact, be used later in this section.

A schematic factor-graph-like representation of the modelin (11) is depicted in Fig. 2. The

observation factor nodefO is connected to three ovals: channel weights, noise precision and

modulation and coding. Each of the ovals represents a subgraph corresponding to factorsfC, fN

andfM in (11). The three subgraphs are connected tofO, which reads

fO(y,x,h, λ) ∝ λKNL exp
{
−λ‖y −Xh‖2

}
= λKNL exp

{
−λ‖y −Hx‖2

}
.
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Each of the subgraphs in Fig. 2 will be detailed in the remainder of this section. For now, we

define the setsAC, AN and AM as the set of factor nodes inside the channel weights, noise

precision and modulation and coding subgraphs respectively. Likewise, we define the setsIC, IN

andIM as the set of variable nodes inside the channel weights, noise precision and modulation

and coding subgraphs respectively. With these definitions,the set of all factor nodes in the graph

is given by4

A = {fO} ∪ AC ∪AN ∪ AM,

and the set of all variable nodes reads

I = IC ∪ IN ∪ IM.

From the observation factor nodefO, sets of messagesMC, MN and MM are sent to the

respective subgraphs. These sets are composed of individual messagesmfO→z, z ∈ I. The

specific composition of the sets of messages depends on the exact configuration of variable and

factor nodes of the corresponding subgraph, which will be described later in the section. After

processing is completed at each subgraph, sets of messagesNC, NN andNM, which correspond

to the updated estimates of the channel weights, the noise precision and the transmitted symbols

respectively, are send back tofO.

In order to apply the combined VMP-SP algorithm, we need to define which factor nodes

are assigned to the VMP setAVMP and which are assigned to the SP setASP. We select the

following splitting:

AVMP ,{fO} ∪ AC ∪AN

ASP ,AM

i.e. the observation factor node and all factors in the channel weight and noise precision subgraphs

are assigned to the VMP set, and all factor nodes in the modulation and coding subgraph are

assigned to the SP set.

In the remainder of this section, we will present the detailsof each of the subgraphs, with

several alternative factor-graph representations yielding different message-passing configurations.

4With a slight abuse of notation, from this point on we use the names of functions and variables as indices of the setsA and

I respectively.
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fO λ fN

MM

MN

NNMC

NC

NM

mfO→λ

nλ→fO mfN→λ

Noise Precision

Fig. 3. Subgraph corresponding to the noise precision priormodel.

The performance of the individual receiver structures obtained will be evaluated and compared

in Section V.

A. Noise Precision Subgraph

The noise precision subgraph is the graphical representation of fN in (11), which we specify

now as

fN(λ) , p(λ)

wherep(λ) denotes the prior distribution ofλ. With this, we can now specify the sets

AN ={fN}

IN ={λ}.

The factor graph representation of the subgraph is depictedin Fig. 3. It only consists of the

variable nodeλ and the factor nodefN. Since there is only one variable node connected tofO,

the set of messagesMN reduces toMN = {mfO→λ}. Analogously,NN = {nλ→fO}.

According to the message-computation rules given in Section III, the message transmitted

from fO to λ is calculated as

mfO→λ(λ) = exp {〈log fO(y,x,h, λ)〉NCNM} = λKLN exp {−λA} (12)

with

A = ‖y − X̂ĥ‖2 + Tr
{

B̂
H
ĈB̂ + B̂

H
Ĥ

H
ĤB̂

}

+ Tr
{

X̂Σ̂hX̂
H
}

.
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In the above expression,̂h = 〈h〉NC, Ĥ = 〈H〉NC, x̂ = 〈x〉NM , X̂ = 〈X〉NM are the means of

h, H, x andX respectively taken with respect to the channel weights and modulation and coding

output messages. Moreover,Σ̂h = 〈hhH〉NC − ĥĥ
H
, and Ĉ = 〈HHH〉NM − Ĥ

H
Ĥ. Finally,

B̂ = UΛ
1/2 whereΛ is the diagonal matrix of eigenvalues andU is the matrix containing the

eigenvectors of̂Σx = 〈xxH〉NM − x̂x̂H, i.e. Σ̂x = UΛUH.

The message in (12) is proportional to the pdf of a complex central Wishart distribution of

dimension 1,KLN + 1 degrees of freedom and associated covarianceA−1 [43]. We select the

prior pdf p(λ) to be conjugate, i.e., a complex Wishart. This yields the message

mfN→λ(λ) = p(λ) ∝ λa−1 exp{−λAprior}.

Given the two incoming messagesmfN→λ and mfO→λ, the outgoing message fromλ is also

proportional to a complex Wishart pdf

nλ→fO(λ) ∝ mfN→λ(λ)mfO→λ(λ) ∝ λKLN+a−1 exp{−λ(A + Aprior)}.

Since usually no prior information on the noise precision isavailable at the receiver, we select

p(λ) non-informative with parametersa = 0 andAprior = 0. With this choice, the mean ofλ

with respect toNN reads

λ̂ = 〈λ〉NN =
KLN

A
. (13)

Note that the above update forλ̂ coincides with the ML estimate of the noise precision. Since, as

we will see later in the section, only the first moment ofλ is needed to compute other messages,

it is sufficient to pass just this value to the rest of the graph.

B. Channel Weights Subgraph

The channel weights subgraph includes the graphical description of the factorfC in (11). We

will present in the following two alternative subgraphs representing two possible definitions of

fC: in the first one, coinedjoint channel weights subgraph, all channel weights for all transmit

antennas are grouped together in a single variable nodeh; in the second one, which we refer to

as disjoint channel weights subgraph, the weights are split intoM variable nodesh1, . . . ,hM

each of them containing the channel weights associated withan individual transmit antenna.
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fOhfC

MM

MN

NNMC

NC

NM

mfO→h

nh→fOmfC→h

Joint Channel Weights

Fig. 4. Subgraph corresponding to the prior model of the joint channel weights.

1) Joint Channel Weights Model:The joint channel weights subgraph is obtained from the

following definition:

fC(h) , p(h)

with p(h) denoting the prior pdf of the vector of channel weightsh. Using this model forfC

leads to defining the factor and variable node sets as

AC ={fC}

IC ={h}.

The factor graph describing the joint channel weight optionis presented in Fig. 4. As there is

only one variable node connected to the factor nodefO, the set of input messages to the channel

weights subgraph is simplyMC = {mfO→h} and the set of output messages is the singleton

NC = {nh→fO}.

The message fromfO to h is given by

mfO→h(h) = exp{〈log fO(y,x,h, λ)〉NMNN} ∝ exp
{

−λ̂
(

‖y − X̂h‖2 + hHD̂h
)}

with D̂ = 〈XHX〉NM − X̂
H
X̂. Hence,mfO→h(h) is proportional to a Gaussian pdf. We also

impose the priorp(h) to be Gaussian, which yields the message

mfC→h(h) = p(h) ∝ exp
{

−(h− hprior)
H
Σ

−1
hprior

(h− hprior)
}

.

For most practical channels it is reasonable to assume thathprior = 0. The receiver needs an

estimate of the prior covariance of the channelΣhprior. In order to obtain the outgoing message
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nh→fO(h), the two incoming messages are combined, leading to

nh→fO(h) ∝ mfO→h(h)mfC→h(h) ∝ exp
{

−(h− ĥ)H
Σ̂

−1

h (h− ĥ).
}

Thus,nh→fO is proportional to a Gaussian pdf with covariance matrix

Σ̂h =
(

λ̂X̂
H
X̂ + λ̂D̂ +Σ

−1
hprior

)−1

and mean value

ĥ = Σ̂h

(

λ̂X̂
H
y +Σ

−1
hprior

hprior

)

.

2) Disjoint Channel Weights Model:The disjoint channel weights subgraph is obtained by

factorizingfC with respect to each transmitter. More specifically, we define

fC(h) =

M∏

m=1

fCm
(hm)

with fCm
(hm) , p(hm), m = 1, . . . ,M denoting the prior pdf of the channel weights for the

mth transmit antenna. We also specify the sets

AC ={fCm
|m = 1, . . . ,M}

IC ={hm|m = 1, . . . ,M}.

Fig. 5 shows the factor graph of the disjoint channel weightsmodel with the above definitions.

With this configuration, the channel weight vectorh is split intoM variable nodesh1, . . . ,hM ,

each of them containing the weights associated with one transmit antenna. Each of these vari-

able nodes is furthermore connected to a factor nodefCm
. Due to this separation, the set of

incoming messages readsMC = {mfO→hm
|m = 1, . . . ,M}, while the set of outgoing messages

is NC = {nhm→fO|m = 1, . . . ,M}. With this structure, the channel weight vectors are estimated

sequentially by iterating through the transmit antenna index m.

For themth transmit antenna, the incoming message reads

mfO→hm
(hm) = exp

{

〈log fO(y,x,h, λ)〉NMNNN
(m)
C

}

∝ exp

{

−λ̂

(

∥
∥y −

∑

m′ 6=m

X̂m′ĥm′ − X̂mhm

∥
∥2 + hH

mD̂mhm

)}

whereN
(m)
C =

{
nhm′→fO

}

∀m′=1,...,M
m′ 6=m

denotes the set of all output channel weight messages

except themth one. Furthermore,̂hm′ = 〈hm′〉
N

(m)
C

, X̂m = 〈Xm〉NM andD̂m = 〈XH
mXm〉NM −

December 13, 2011 DRAFT



18

fO

h1fC1

hMfCM

MM

MN

NNMC

NC

NMnh1→fO

mfC1
→h1

nhM→fOmfCM
→hM

mfO→hM

Disjoint Channel Weights

Fig. 5. Subgraph corresponding to the prior model of the disjoint channel weights.

X̂
H

mX̂m. Again,mfO→hm
is observed to be proportional to a Gaussian pdf. Analogously to the

joint channel weights case, we need to specify the prior of each individual channel vectorhm.

Defining them as Gaussians leads to the message

mfCm→hm
(hm) = p(hm) ∝ exp

{

−(hm − hm,prior)
H
Σ

−1
hm,prior

(hm − hm,prior)
}

where, once more, the receiver requires estimates of the prior parameters of the channel for

each transmitter. The outgoing message from variable nodehm is obtained by multiplying both

incoming messages, leading to

nhm→fO(hm) ∝ mfO→hm
(hm)mfCm→hm

(hm) ∝ exp
{

−(hm − ĥm)
H
Σ̂

−1

hm
(hm − ĥm)

}

,

which equals, up to a proportionality constant, a Gaussian pdf with covariance matrix

Σ̂hm
=
(

λ̂X̂
H

mX̂m + λ̂D̂m +Σ
−1
hm,prior

)−1

and mean value

ĥm = Σ̂hm

(

λ̂X̂
H

m

(

y −
∑

m′ 6=m

X̂m′ĥm′

)

+Σ
−1
hm,prior

hm,prior

)

.

It is important to note that every time a new messagenhm→fO is computed, the set of messages

MC needs to be recomputed again, as allmfO→hm′ , m
′ 6= m depend on the updated messages

nhm→fO.
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C. Modulation and Coding Subgraph

The modulation and coding subgraph describes the factorfM in (11). We choose to factorize

this factor according to

fM(x, c,u) =

M∏

m=1

fPm
(x(p)

m )fMm
(x(d)

m , cm,1, . . . , cm,Cm
)fCm(cm,1, . . . , cm,Cm

, um,1, . . . , um,Um
)
Um∏

i=1

fum,i
(um,i)

where fPm
(x

(p)
m ) , p(x

(p)
m ) denotes the prior pdf of the pilot symbols transmitted from the

mth transmitter,fMm
(x

(d)
m , cm,1, . . . , cm,Cm

) , p(x
(d)
m |cm,1, . . . , cm,Cm

) denotes the modulation

constraints on the data symbols of themth transmitter,fCm(cm,1, . . . , cm,Cm
, um,1, . . . , um,Um

) ,

p(cm,1, . . . , cm,Cm
|um,1, . . . , um,Um

) represents the code constraints for themth codeword and

fum,i
(um,i) , p(um,i) is the prior pdf of theith information bit transmitted by themth antenna.

In addition, the vectorsx(p)
m andx(d)

m contain, respectively, the modulated pilot and data symbols

transmitted from themth antenna. Finally,Cm andUm denote the number of coded and informa-

tion bits respectively transmitted in a codeword from themth antenna. Using this factorization

of fM, we define the setsAM andIM as

AM ={fPm
|m = 1, . . . ,M} ∪ {fMm

|m = 1, . . . ,M} ∪ {fCm |m = 1, . . . ,M}

∪ {fum,i
|m = 1, . . . ,M, i = 1 . . . Um}

IM ={x(p)
m |m = 1 . . . ,M} ∪ {x(d)

m |m = 1 . . . ,M} ∪ {cm,i|m = 1, . . . ,M, i = 1 . . . Cm}

∪ {um,i|m = 1, . . . ,M, i = 1 . . . Um}.

The factor graph with the modulation and coding constraintsis shown in Fig. 6. As it can be

observed, the modulated symbols have been separated into different variable nodes according

to the transmit antenna indexm from which they are sent. The symbols corresponding to each

transmit antenna port have been further subdivided into twodifferent variable nodesx(p)
m andx(d)

m ,

the first containing the pilot symbols and the second containing the modulated data symbols. The

modulated data symbolsx(d)
m are connected to the encoded bitscm,1, . . . , cm,Cm

via the modulation

factor nodefMm
, which describes the mapping of bits onto a complex constellation. The coded

bits are, in turn, related to the information bitsum,1, . . . , um,Um
through the specific channel

code and interleaving scheme utilized, which is represented in a simplified manner by the factor

fCm in Fig. 6. Finally, every information bitum,i has an associated prior probability represented
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n
x
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→x
(p)
M

m
fM1→x

(d)
1

n
x

(d)
1 →fM1

Modulation and coding

fC1

Fig. 6. Subgraph corresponding to the modulation and codingconstraints.

by the factor nodefum,i
. For the vast majority of applications, however, the valuesof the bits

will be assumed to be equiprobable. With the proposed structure, the set of incoming messages

is defined asMM =
{

m
fO→x

(p)
m
|m = 1, . . . ,M

}

∪
{

m
fO→x

(d)
m
|m = 1, . . . ,M

}

, while the set of

outgoing messages becomesNM =
{

n
x
(p)
m →fO

|m = 1, . . . ,M
}

∪
{

n
x
(d)
m →fO

|m = 1, . . . ,M
}

.

In order to ease the derivation of the messages for this subgraph, we can re-writefO(y,x,h, λ)

as

fO(y,x,h, λ) ∝ λKNL exp

{

−λ
∥
∥
∥y

(d) −
M∑

m=1

H(d)
m x(d)

m

∥
∥
∥

2

− λ
∥
∥
∥y

(p) −
M∑

m=1

H(p)
m x(p)

m

∥
∥
∥

2
}
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where the contribution of pilot and data symbols has been split into two separate terms. We start

by computing the message that factor nodefO sends tox(d)
m :

m
fO→x

(d)
m
(x(d)

m ) = exp
{

〈log fO(y,x,h, λ)〉NNNCN
(m)
M

}

∝ exp

{

−λ̂

(
∥
∥
∥y

(d) −
∑

m′ 6=m

Ĥ
(d)

m′ x̂
(d)
m′ − Ĥ

(d)

m x(d)
m

∥
∥
∥

2

+ (x(d)
m )HĈ

(d)

m x(d)
m

+
∑

m′ 6=m

(

(x(d)
m )HĈ

(d)

mm′x̂
(d)
m′ + (x̂

(d)
m′ )

H(Ĉ
(d)

mm′)Hx(d)
m

)
)}

. (14)

In the above expression, and similarly to previous definitions,x̂(d)
m′ = 〈x(d)

m′ 〉NM , Ĥ
(d)

m′ = 〈H(d)
m′ 〉NC,

Ĉ
(d)

m = 〈(H(d)
m )HH(d)

m 〉NC − (Ĥ
(d)

m )HĤ
(d)

m and Ĉ
(d)

mm′ = 〈(H(d)
m )HH

(d)
m′ 〉NC − (Ĥ

(d)

m )HĤ
(d)

m′ .

Additionally, N (m)
M = {n

x
(p)
i →fO

|i = 1, . . . ,M} ∪ {n
x
(d)
i →fO

|i = 1, . . . ,M, i 6= m} denotes

the set of all outgoing detection messages exceptn
x
(d)
m →fO

. The message in (14) is proportional

to a Gaussian pdf with covariance matrix

Σ̂
x
(d)
m,VMP

= λ̂−1
(

(Ĥ
(d)

m )HĤ
(d)

m + Ĉ
(d)

m

)−1

and mean

x̂
(d)
m,VMP = λ̂Σ̂

x
(d)
m,VMP

(

(Ĥ
(d)

m )H

(

y(d) −
∑

m′ 6=m

Ĥ
(d)

m′ x̂
(d)
m′

)

−
∑

m′ 6=m

Ĉ
(d)

mm′x̂
(d)
m′

)

.

The outgoing messagen
x
(d)
m →fO

(x
(d)
m ) is obtained by multiplying the messagesm

fO→x
(d)
m
(x

(d)
m )

andm
fMm→x

(d)
m

. In this case,m
fMm→x

(d)
m

is a SP message reading

m
fMm→x

(d)
m

∝

Nd∏

i=1

(
∑

s∈Sm

β
x
(d)
m (i)

(s)δ(x(d)
m (i)− s)

)

(15)

whereSm is the modulation set for userm and β
x
(d)
m (i)

(s) represents the extrinsic values of

x
(d)
m (i) for each constellation points ∈ Sm, obtained from the SP demodulator and decoder. The

combined message fed back to the observation factor node reads

n
x
(d)
m →fO

(x(d)
m ) ∝ m

fO→x
(d)
m
(x(d)

m )m
fMm→x

(d)
m
(x(d)

m )

∝
Nd∏

i=1

(
∑

s∈Sm

β
x
(d)
m (i)

(s) exp

{

−|s− x̂
(d)
m,VMP(i)|

2

σ2

x
(d)
m

(i)

}

δ(x(d)
m (i)− s)

)

, (16)

whereσ2

x
(d)
m

(i) is theith entry in the main diagonal of̂Σ
x
(d)
m,VMP

. It can be observed that the message

factorizes with respect to the individual modulated symbols x
(d)
m (i), so the mean and variance
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of each data symbol can be computed independently and used tobuild the mean vector̂x and

the covariance matrix̂Σx by inserting the updated mean and variances in their corresponding

positions.

It is important to note that, because the factor nodefMm
is a SP factor node, the message

n
x
(d)
m →fMm

is obtained by multiplying all messages received at variable nodex(d)
m except the

message coming fromfMm
, which in this particular setup reduces to

n
x
(d)
m →fMm

(x(d)
m ) = m

fO→x
(d)
m
(x(d)

m ).

All message-passing among the modulation factor nodes, coded bits and information bits is

completed by using the standard SP algorithm, and will therefore not be described here.

It remains to describe the income and outcome messages involving pilot symbols. As pilot

symbols are known by the receiver, their prior distributionis p(x
(p)
m (i)) = δ(x

(p)
m (i) − pm(i))

with pm(i) denoting theith pilot symbol sent from transmit antennam. This imposes that the

outgoing messagen
x
(p)
m →fO

is also a Dirac delta, which can also be described as a degenerate

Gaussian message with meanx̂(p)
m = pm and covariancêΣ

x
(p)
m

= 0.

V. SIMULATION RESULTS

In this section, we propose a number of receiver structures based on the derivations made

in Section IV and evaluate their performance by means of Monte-Carlo simulations. First, we

present the parameters of the MIMO-OFDM system considered,followed by a description of the

specific receiver structures that will be evaluated. Finally, the BER performance results obtained

are presented and discussed.

A. Description of the MIMO-OFDM System

We begin by describing the MIMO-OFDM system used for obtaining the numerical results.

Its main parameters are summarized in Table I. We consider anOFDM system withM = N = 2

antennas at both transmitter and receiver ends. Two streamsof random bits are independently

encoded using a convolutional code with rate 1/3 and generating polynomials 133, 171 and

165 (octal). After channel interleaving, the coded bits aremapped onto symbols of a QPSK

or 16QAM constellation (with Gray mapping) which are then inserted into an OFDM frame

consisting ofL = 7 OFDM symbols withK = 75 subcarriers and with a subcarrier spacing of
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TABLE I

PARAMETERS OF THE SIMULATEDOFDM SYSTEM

Parameter Value

Tx antennas (M ) 2

Rx antennas (N ) 2

Subcarriers (K) 75

OFDM symbols (L) 7

Subcarrier spacing (∆f ) 15 kHz

Channel coding 1/3 Convolutional

Symbol mapping 16QAM

Pilot symbols 13

Channel model 3GPP ETU

15kHz. Part of the time-frequency elements are reserved forthe transmission of pilot symbols.

We specify the following pilot patterns: pilot symbols are transmitted in the first and fifth OFDM

symbol of the frame, with a frequency spacing of 12 subcarriers, resulting in a total of 13 pilot

symbols per frame. Note that both transmit antennas share the same time-frequency elements

for the simultaneous transmission of pilot symbols. Pilot symbols are randomly chosen from a

QPSK constellation.

Realizations of the channel time-frequency response are randomly generated using the ex-

tended typical urban (ETU) model from the 3GPP LTE standard [44] with 9 Rayleigh-fading

taps. The channel responses corresponding to two differenttransmitters are uncorrelated and

remain static over the duration of an OFDM frame. A new channel response is generated for

each OFDM frame, with the responses of two different frames being also uncorrelated.

B. Receiver Structures

We introduce now the specific receiver architectures that will be evaluated in this section.

All receivers are based on the generic message-passing receiver presented in Section IV. The

messages exchanged can be obtained by particularizing the generic messages according to the

specific receiver configuration, as it will be detailed in thefollowing. We evaluate three main

types of VMP-SP receiver, which are described next.

1) I-DJC-DD and I-DSC-DD Receivers:First, we introduce a full iterative receiver using

exactly the messages derived in Section IV. The receiver operates by iteratively updating the
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beliefs of the channel weight vector, the data symbols and information bits and, finally, the noise

precision parameter.

Initialization of the beliefs of the channel weights and thetransmitted symbols is required.

The initialization of the channel weights is obtained from apilot-based joint linear minimum

mean-squared-error (LMMSE) channel estimator. For the initialization of the transmitted sym-

bols, maximum-likelihood detection (MLD) is used, followed by soft-in soft-out (SISO) BCJR

decoding. The belief of the transmitted data symbols is set to a Gaussian pdf with mean and

covariance values obtained from soft modulation of the a-posteriori probabilities (APP) of the

coded bits obtained from the SISO BCJR decoder. An initial estimate of the noise precision is

obtained as in Section IV-A. After the initialization, a full iteration of the receiver consists of

updating the beliefs of the channel weight vectors (using either the joint channel weight model in

Fig. 4 or the disjoint channel weight model in Fig. 5), a message-passing run on the modulation

and coding subgraph (updating the beliefs of transmitted symbols, coded bits and information

bits) and, finally, an update of the noise precision parameter. Note that the message-passing

operations done through the channel code factor node can be replaced by SISO BCJR decoding.

In this case, the SP messagesncm,k→fMm
can be identified to be the extrinsic values of the coded

bits output by the BCJR decoder.

We refer to the described architectures as Iterative - Data-aided Joint Channel estimation -

Data Decoding (I-DJC-DD) for the receiver using the joint channel weights model and Iterative -

Data-aided Sequential Channel estimation - Data Decoding (I-DSC-DD) for the receiver obtained

using the disjoint channel weights model.

2) DJC-DD and DSC-DD Receivers:We introduce now a class of receivers which perform

iterative data-aided channel weights and noise precision estimation together with equalization and

demodulation of the transmitted symbols. Compared to the receivers presented before, channel

decoding is left outside of the iterative process, and is performed only once at the end after

convergence of the algorithm. The receiver capitalizes on just the knowledge of the complex

modulation structure of the transmitted signal to refine itschannel estimates, and not on the code

structure. This receiver architecture is obtained by applying a special scheduling to the message

computation and exchange between the subgraphs. Specifically, no messages are passed from

variable nodesx(d)
m to factor nodesfMm

until the last iteration of the algorithm. Instead, after
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the messagesm
fO→x

(d)
m

are computed, the updated messagen
x
(d)
m →fO

is directly computed using

(16). To this end, an initial value of the messagesm
fMm→x

(d)
m

is needed. This can be obtained

by setting

β
x
(d)
m (i)

(s) =
1

|Sm|
∀m = 1, . . . ,M, i = 1, . . . , Nd, s ∈ Sm

in (15). In the expression above,|Sm| denotes the cardinality of the setSm. Note that this

initialization corresponds to assuming that all modulatedsymbols in the constellation are equally

likely, which is a valid assumption when the information bits are equiprobable and the channel

code is regular.

As for the previous receivers, an initialization of the beliefs of the channel weight vector,

noise precision and transmitted symbols is required. The channel weight vectors are initialized

as a Gaussian pdf, with mean obtained from a pilot-based LMSSE channel estimator and

null covariance. Similarly, the beliefs of the transmittedsymbols are also set to a Gaussian

pdf with mean and covariance values obtained from a MIMO MLD (no BCJR decoding is

done, as opposed to the I-DJC-DD and I-DSC-DD receivers). Aninitial estimate of the noise

precision is then obtained following the procedure in Section IV-A. After the initialization, the

receiver operates by iteratively updating the beliefs of the channel weights (either jointly as

in Fig. 4, or sequentially as in Fig. 5), the transmitted symbols and noise precision parameter.

After convergence of the algorithm (or maximum number of iterations attained), the messages

n
x
(d)
m →fMm

are computed, and a round of decoding based on the SP algorithm is performed,

yielding the beliefs of the information bits.

We refer to these receivers as Data-aided Joint Channel estimation - Data Decoding (DJC-

DD) for the receiver using the joint channel weight prior model (Section IV-B1) and Data-aided

Sequential Channel estimation - Data Decoding (DSC-DD) forthe receiver using the disjoint

channel weight prior model (Section IV-B2).

3) PSC-DD Receiver:Finally we present a simple receiver consisting of a pilot-aided chan-

nel estimator, a MIMO maximum likelihood detector (MLD) anddata decoding. The channel

estimation module is based on the VMP-SP generic receiver described in Section IV. It updates

iteratively the beliefs of the channel weight vectors corresponding to each transmit antenna and

the noise precision. To this end, the channel estimator onlyexploits the pilot signals transmitted

from each transmit antenna and does not capitalize on data symbols to refine its estimates.
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In order to obtain this pilot-aided channel estimator from the generic receiver architecture in

Section IV, the messagesn
x
(d)
m →fO

must be set to

n
x
(d)
m →fO

(x(d)
m ) =

∏

i

δ(x(d)
m (i)).

This enforces that data symbols are not employed for channelweight estimation. In addition,

the disjoint channel weights setup (see Fig. 5) is selected.With this configuration, the output

messagesNM are constant, reflecting the receiver’s knowledge on the value of the pilot symbols.

Hence, expectations taken overNM in the channel weights and noise precision subgraphs reduce

to the value of the pilot symbols (or zero for data symbols), with all second-order terms vanishing.

Note that, for this channel estimator, no update of the beliefs of the data symbols is performed.

Equalization and decoding are done outside the VMP-SP framework.

Additionally, a small modification in the processing corresponding to the noise precision

subgraph is required. Note that, for the computation of the messagemfO→λ, the signal received

at all –pilot and data– subcarriers is used, while only the signals received at pilot positions are

utilized for channel weight estimation. This can be avoidedby restricting this message to include

only the observation at pilot positions, i.e. calculatingmf
O(p)→λ instead, where

fO(p)(y(p),x(p),h(p), λ) , p(y(p)|x(p),h(p), λ) ∝ λN(p)

exp

{

−λ
∥
∥
∥y

(p) −X(p)h(p)
∥
∥
∥

2
}

,

with N (p) denoting the total number of pilots in a frame.

The initialization for this estimator is simpler compared to that of the other receivers. It

consists of setting the beliefs of the channel weight vectorcorresponding to each transmit antenna

to a Gaussian prior with zero mean and zero covariance, whilean initial value for the noise

precision can be obtained from the signal received at pilot subcarriers. The receiver operates by

sequentially updating the channel weight vectors corresponding to each transmitterh1, . . . ,hM

following the procedure described in Section IV-B2. This isfollowed by an update of the noise

precision parameter. The channel responses belonging to each transmit antenna obtained after

convergence of the iterative estimator are fed to a MIMO maximum likelihood detector (MLD),

followed by BCJR decoding. Thus, we can obtain BER performance results and benchmark them

with analogous receiver structures using a different channel estimator.

As we will see in the performance evaluation, this iterativeestimator approximates the per-

formance of a pilot-based joint LMMSE channel estimator with perfect knowledge of the noise
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TABLE II

SUMMARY OF RECEIVER STRUCTURES

Initialization Operation

Receiver Channel Weights Transmitted Symbols Channel Weight Model Demodulation & Decoding

PSC-DD Null mean and covariance – Disjoint –

DJC-DD LMMSE estimator ML detector Joint Demodulation only

DSC-DD LMMSE estimator ML detector Disjoint Demodulation only

I-DJC-DD LMMSE estimator MLD + BCJR Joint Demodulation and decoding

I-DSC-DD LMMSE estimator MLD + BCJR Disjoint Demodulation and decoding

variance. The iterative estimator, however, presents the advantage of avoiding cumbersome matrix

inversions depending on the specific values of the pilot-symbols. This estimator was presented

(outside the context of message-passing techniques) in [34]. A more detailed discussion of

the computational advantages of this estimator over the LMMSE estimator is provided in this

contribution.

In the following, we refer to this receiver as Pilot-aided Sequential Channel estimation - Data

Decoding (PSC-DD) receiver.

The main characteristics of all the receivers presented above are summarized in Table II.

C. Numerical Results

We evaluate separately the performance of the three architectures described in Section V-B,

beginning with the simplest scheme, the PSC-DD receiver; wefollow with the DJC-DD and

DSC-DD receivers and conclude with the most advanced structures: the I-DJC-DD and I-DSC-

DD receivers.

In Fig. 7, the mean squared error (MSE) of the estimates of thechannel weights obtained

with the PSC-DD receiver is depicted. The MSE is plotted for three differentEb/N0 values

as a function of the number of iterations performed. It is observed that the performance of

the sequential pilot-based estimator approaches the performance of a joint LMMSE estimator

with sufficient number of iterations. It is especially interesting to note the dependency of the

number of iterations required for convergence on theEb/N0 value. ForEb/N0 = −2dB and

Eb/N0 = 2dB, between 2 and 3 iterations are sufficient to achieve an MSEvirtually equal to the

LMMSE bound. When increasingEb/N0 to 6dB, however, a minimum number of 5 iterations
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Fig. 7. MSE of the estimates of the channel weights for the PSC-DD receiver versus the iteration index. 13 pilot symbols

are inserted per OFDM frame. The dashed black lines represent the MSE obtained with pilot-based LMMSE joint channel

estimation.
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Fig. 8. BER as a function ofEb/N0 for the PSC-DD receiver with QPSK modulation. 13 pilot symbols are inserted per OFDM

frame. The BER performance of a similar receiver using LMMSEchannel estimation with knowledge of the noise variance is

included as a reference.
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Fig. 9. BER as a function ofEb/N0 for the DJC-DD and DSC-DD receivers with QPSK modulation. 13pilot symbols are

inserted per OFDM frame.

is needed, and about 10 iterations are required forEb/N0 = 10dB. Similar observations can

be made when evaluating the BER of the receiver with QPSK modulation, as shown in Fig. 8.

Again, the performance of the PSC-DD receiver equals that ofthe receiver with the LMMSE

estimator when enough iterations for the receiver to converge have been run, and fewer iterations

are needed the smallerEb/N0 is. These results suggest that the iterative channel estimator in

the PSC-DD receiver would be a good choice to obtain an initial channel estimate for the more

complex iterative structures that we will discuss next. Furthermore, this channel estimator has

the additional benefit of outputting soft estimates (the beliefs) of both the channel weights and

the noise precision. Classical channel estimators, on the other hand, typically require separate

noise estimation prior to the estimation of the channel weights, and only provide hard (point)

estimates.

BER results for the DJC-DD and DSC-DD receivers are portrayed in Fig. 9. The results have

been obtained using a QPSK constellation for the modulationof data symbols. They indicate

that a significant performance gain can be obtained by iteratively updating the channel weights,

transmitted data symbols and noise precision parameter after the initialization, even though

the receiver does not capitalize on the code structure within the iterative process. For both
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Fig. 10. BER as a function ofEb/N0 for the I-DJC-DD and I-DSC-DD receivers with 16-QAM modulation. 13 pilot symbols

are inserted per OFDM frame.

receivers (with joint and sequential channel estimation),most of the improvement with respect

to the initialization is obtained in the first three iterations, with only marginal gains obtained

after further processing. Regarding the channel estimation approach, DJC-DD leads to a slightly

better performance than DSC-DD in the whole simulatedEb/N0 range; the improved accuracy

of the joint estimation approach comes at the expense of a larger computational complexity,

as it operates with vectors and matrices of dimensionsM times as large as in the sequential

estimation approach, which can be a problem when calculating the necessary matrix inversions.

Note that the receivers evaluated in Fig. 9 operate by capitalizing on the structure of the constel-

lation used for the modulation of data symbols. Hence, theirperformance strongly depends on the

type of modulation used. Low-order modulations, such as BPSK or QPSK, favor this receiver,

as there is a relatively large distance between the points inthe constellation, allowing better

refining (through SP message-passing) of the VMP estimates of the transmitted symbols. When

using higher order modulations, however, the receiver’s performance suffers from the relatively

small distance between adjacent constellation points. Specifically for the system investigated

in this work, we found that the DJC-DD and DSC-DD receivers for 16-QAM or higher order

modulations do not improve the performance with respect to the initialization.
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The aforementioned problem with high-order modulations can be circumvented with the

inclusion of the channel code structure in the iterative processing, as done in the I-DJC-DD

and I-DSC-DD receivers. The BER performance of both receivers with 16-QAM modulated

data symbols is depicted in Fig. 10. For benchmarking purposes, the BER performance of a

heuristically designed iterative receiver with analogousfeatures to the I-DJC-DD receiver is also

plotted. We refer to this receiver as LMMSE receiver, as the channel estimation and MIMO

detection modules are separately designed after the LMMSE principle. The LMMSE receiver

is based on the design proposed in [9] for a multiuser CDMA receiver, and was adapted to

MIMO-OFDM in [40], where a detailed description of its operational principles can be found.

In addition, the BER performance of a modified version of the I-DJC-DD receiver has also been

included. This receiver, which we denote as I-DJC-DD(EM) receiver, results from applying the

EM restriction to the beliefs of the channel weightsh and the noise precision parameterλ. Thus,

this receiver is identical to the I-DJC-DD receiver except that the messagesnh→fO andnλ→fO

are computed according to (7). This modified messages imply that all terms depending on the

second order moments ofbh = nh→fO vanish.

The results show that vast improvements in BER of the I-DJC-DD and I-DSC-DD receivers

with respect to the initialization are obtained, even for very low Eb/N0 values. As in the case of

the DJC-DD and DSC-DD receivers, joint estimation of the channel weights performs marginally

better than sequential estimation. Both message-passing receivers clearly outperform the heuristic

LMMSE receiver, withEb/N0 gains close to 1dB at a BER of 1%. We explain these gains by

the fact that, contrary to the separate design of the different modules in the LMMSE receiver,

our VMP-SP receivers are analytically derived based on a global objective function, namely the

region-based free energy. This global design ensures that the information shared by the different

receiver components is treated correctly, and resolves thechoice of the appropriate type of

information to be passed from the channel decoder to the other component parts of the receiver.

It is also remarkable that the EM-constrained version of theI-DJC-DD receiver achieves roughly

the same performance as the non-constrained version. This result seems to indicate that there

is no significant gain to be achieved by computing soft channel estimates as compared to just

point estimates, at least for the system considered.

Another key feature of the I-DJC-DD and I-DSC-DD receivers is the estimation of the noise

precision. This functionality does not only account for theAWGN, but also includes inaccuracies
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Fig. 11. Average noise variance estimated by the I-DJC-DD receiver as a function of the iteration index. 13 pilot symbolsare

inserted per OFDM frame. The dashed black lines represent the true noise variance for eachEb/N0 value.

in the estimates of the channel weights and data symbols. Fig. 11 depicts the averaged noise

variance estimate (inverse of the noise precision estimateλ) provided by the I-DJC-DD receiver

as a function of the iteration index for three differentEb/N0 levels. The true AWGN variances

are also depicted as dashed black lines. It is apparent from the results that the behavior of the

noise variance estimates (with respect to the true value) depends heavily on the regime in which

the receiver is operating. For the very lowEb/N0 regime, the receiver significantly overestimates

the noise variance; this is due to the low accuracy of the channel weights estimates and the large

amount of errors in the estimates of the data symbols obtained. At the other extreme, for high

Eb/N0 values, the estimates of the channel weights and data symbols become so accurate (as it

can be observed from the low BER values) that the noise variance estimate rapidly converges to

the true AWGN variance, as the contribution of the estimates’ inaccuracies becomes negligible.

In the mediumEb/N0 range, the noise variance estimate slowly converges to a value larger than

the true variance, the difference between both values depending again on the accuracy of the

other parameters’ estimates.

Conceptually, the estimate of the noise precision represents the amount of ‘trust’ that the

algorithm has on the beliefs of the channel weights and data symbols. With high noise precision
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values, the receiver has high confidence on these beliefs, leading to a rapid convergence towards

a stable solution. On the contrary, low noise precision values will yield slower changes on the

beliefs from one iteration to the next, resulting in a slowerconvergence rate.

VI. CONCLUSION

In this article we have used a hybrid VMP-SP message passing framework [41], [42] for the

design of iterative receivers for wireless communication.The framework has been applied to

the factor graph of a generic MIMO-OFDM system. The messagesobtained from the generic

derivation have been used to obtain a set of receiver architectures ranging from computationally

simple solutions to full-scale iterative architectures performing channel weight estimation, noise

precision estimation, MIMO equalization and channel decoding. The performance of the pro-

posed receivers has been assessed and compared to state-of-the-art solutions via Monte Carlo

simulations.

A fundamental contribution of this work is the application of a unified framework that jointly

optimizes the receiver architecture based on a global cost function, namely the region-based

variational free energy. The message-passing scheme used in this work can be obtained from

the equations of the stationary points of a particular region-based free energy approximation.

The resulting algorithm applies the VMP and SP algorithms todifferent parts of the graph and

unequivocally defines how the messages of the two respectiveframeworks are to be combined. As

a result, the hybrid technique allows for a convenient design of wireless receivers in which the SP

algorithm is used for demodulation and channel decoding andthe VMP algorithm is applied for

channel weight estimation, noise covariance estimation and MIMO equalization. The connection

between the specific receiver component parts is defined by the message-computation rules, in

contrast to other approaches in which the selection of information to be exchanged among the

specific receiver components is done based on numerical results and/or intuitive argumentation.

We illustrate the application of the framework by applying it to the design of receivers in

a MIMO-OFDM communications system. From the factor-graph representing the underlying

probabilistic model, a set of generic messages exchanged between different parts of the model,

represented by sub-graphs, is derived. We choose to split the factor graph in three main subgraphs

corresponding to the channel weights prior model, the noiseprecision model and the modulation

and coding constraints. The advantage of this modular approach is that it enables a scalable,
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flexible design of the receiver in which the modification of a specific sub-graph does not modify

the processing performed in other parts of the graph. Thus, acollection of different receiver

architectures can be obtained by applying different initialization and scheduling strategies.

In order to assess the performance of the receivers derived with the proposed framework, we

define five specific instances of the generic message-passingreceiver. The particular architectures

selected span from to full-scale iterative schemes, in which the output of the channel decoder

is used to refine the estimates of the channel parameters and the transmitted symbols, to low-

complexity solutions, in which only pilot symbols are used for channel weight and noise variance

estimation. This particular selection of receiver architectures serves as an illustration of how the

tradeoff between computational complexity and receiver performance can be adjusted, with the

generic message-passing receiver as a starting point. The numerical results, obtained via Monte

Carlo simulations in a realistic MIMO-OFDM setup, confirm the effectiveness of the receivers

derived following the hybrid VMP-SP framework. In particular, the convergence behavior of

the receivers tested is especially remarkable. All receiver instances yield an improved or equal

performance with increasing number of iterations, both in terms of BER and MSE of the channel

weight estimates. We explain these favorable convergence properties by the use of the unique,

global cost function from which the algorithm is derived. The estimation of the noise precision

parameter, accounting for the uncertainty on the estimatesof the channel weights and transmitted

symbols in addition to the AWGN variance, is another key feature of the proposed architecture.
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