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Abstract- Due to the smaller inertia feature of a Wind 

Turbine (WT) involved Distributed Generation System (DGS), 
the WT’s induction generator are more vulnerable to frequency 
and voltage disturbances. Therefore the study investigates the 
DGS characteristics respectively from power plants, i.e. WTs 
and load. Two kinds of wind turbines: Doubly-fed Induction 
Generator (DFIG) and Fixed-speed Wind Turbine (FSWT) are 
compared in this study. A conventional power system protective 
scheme may not response promptly, which could lead an 
undesired disconnection of WTs for the turbine protection 
purpose. Consequently a fast protective load control strategy to 
such a DGS is studied. In order to implement such a strategy a 
communication system associated with a DGS is configured. 
With this strategy a precise and prompt load shedding operation 
can be performed to ensure the stability of a DGS and WTs. The 
impacts of load characteristics are analyzed and utilized in the 
fast control strategy. Subsequently a case study is presented to 
demonstrate the theoretical investigations and analyses. 

Index Terms—Wind Turbine (WT), Combined Heat and 
Power (CHP), Distributed Generation System (DGS), Doubly-
fed Induction Generator (DFIG), Fixed-speed Wind Turbine 
(FSWT), load shedding, Ethernet. 

I. INTRODUCTION 

With the fast development of the renewable energy in 
power industry, the monitoring, control and protection of a 
Distributed Generation System (DGS) with Wind Turbines 
(WT) have attracted significant attentions. A DGS with 
renewable sources such as WTs and solar panels is distinct 
from a conventional power system. The renewable generation 
units make a DGS to be increasingly distributed, 
decentralized and deregulated. Moreover the increasing 
involvement of power electronics devices in DGS has 
changed the power system characteristics, for example, the 
dependency feature between power and frequency may 
become less significant than before. Some literature surveys 
reveal that the recent large scale system blackouts are 
increasingly due to voltage collapses caused by reactive 
power deficiency, rather than frequency drops [1]. 
Additionally induction generator based fixed-speed wind 
turbine (FSWT) and doubly-fed induction generator wind 
turbine (DFIG) have different characteristics, when different 
type of WTs are integrated into a DGS, the DGS presents 
different properties. Therefore the controlling and protection 
schemes of operating a DGS with WTs, for instance load 
shedding strategies, should be adaptive to the new properties 
of the systems.  

Due to the smaller inertia, a wind generator is more 
vulnerable to frequency and voltage disturbances. However a 
conventional system protective scheme, such as low 
frequency load shedding or low voltage load shedding, may 
not response promptly and could lead an undesired 
disconnection of WTs by the turbine protection. 
Consequently a fast protective strategy to such a DGS is 
necessary to avoid the loss of wind power generation. In this 
study the response time requirements of a load control 
strategy are investigated and elaborated. In order to 
implement such a strategy an associated communication 
system to a DGS is indispensable. With this communication 
system, a DGS is monitored and controlled by the gathered 
real-time information. Accordingly the latencies of the 
protective operations can satisfy IEC61850 standards. 

In this paper, Section II introduces distributed generation 
system’s characteristics, which include load characteristics, 
the induction generator based FSWT and DFIG features. 
Section III describes a communication system associated with 
a DGS. In Section IV, an Ethernet communication network 
based protective load control strategy is proposed. Section V 
demonstrates the effectiveness of the protective load control 
strategy by a case study. Conclusions are drawn in Section 
VI. 

II. DISTRIBUTED GENERATION SYSTEM CHARACTERISTICS 

In this section the DGS is characterized with FSWTs, 
DFIGs and CHPs as DG units. The load characteristics are 
also studied. The dynamic analyses on WTs’ behaviour are 
presented. 

A. Load characteristics 
The load characteristics have a significant influence on 

system stability. Regarding load shedding operations, the 
response speed of a DGS is critically related with the 
characteristics of the loads to be shed and the loads to be kept 
in a DGS. In this part, the load characteristics are presented. 

The static model of loads may be represented as (1) [2]. 
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Where V = V/V0, a= dP/dV, (0.51.8); b= dQ/dV, (1.56); 
Kpf = dP/df, (0 3.0); Kqf = dQ/df, (-2.00); P0, Q0, V0 are 
respectively the rated active power, reactive power and rated 
voltage. 

Figs. 1 and 2 clearly show the effects of different dP/dV, 
dQ/dV. Naturally, the greater dP/dV, dQ/dV, the more 



 
 
sensitive of the active power and reactive power consumption 
to voltage and frequency. If voltage drops, the greater the 
dP/dV, dQ/dV are, the more P and Q reduction are.  

Figs. 3 and 4 show the impact of Kpf , Kqf , while the other 
two parameters, dP/dV and dQ/dV, are set as 1.0 and 2.0 
respectively as most commonly accepted static load model 
[2]. It is obvious that when the frequency varies, a load with 
the greater dP/df, |dQ/df| has the more significant influences 
on P and Q. 

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
2

2.5

3

3.5

4

4.5

5

5.5
Active power vs. voltage

Voltage (pu)

A
ct

iv
e 

po
w

er
 (

M
W

)

 
Fig.1.  Load active power vs. voltage at various dP/dV. 
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Fig.2.  Load reactive power vs. voltage at various dQ/dV. 
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Fig.3.  Load active power vs. frequency at varoius dP/df. 
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Fig.4.  Load reactive power vs. frequency at various dQ/df. 

The features of the load are considered in the load shedding 
scheme in the later part of the paper. 

B. FSWT characteristics  
The specification of a FSWT is given in Table I, its Cp (the 

power coefficient) curve and power (pu) vs. wind speed (m/s) 
curve are presented in Fig. 5 and 6 respectively.  

TABLE I 
A FSWT SPECIFICATION 

Rated Power 600kW 
Rated Voltage 0.69kV 

Radium 21m 
Vm  30rpm 

Gear Ratio 1:50.5 
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Fig. 5.  A FSWT Cp curve. 
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Fig. 6.  A FSWT power curve. 



 
 
C. DFIG characteristics  

The specification of a DFIG is given in Table II, its Cp 
curve vs. λ (the ratio of the rotor blade tip) and power (pu) vs. 
wind speed (m/s) curve are illustrated in Figs. 7 and 8 
respectively.  

TABLE II 
A DFIG SPECIFICATION 

Rated Power 1.8MW 
Rated Voltage 0.69kV 

Radium 40m 
Vm  1500rpm 

Gear Ratio 1:100.5 
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Fig. 7.  A DFIG Cp curve. 
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Fig. 8.  A DFIG power curve. 

 

III. AN ASSOCIATED ETHERNET COMMUNICATION SYSTEM 
FOR A DGS 

According to IEC61850, Ethernet Communication system 
is determined to access to and associate with a power system 
for monitoring, control and protection. Therefore in this 
study, an Ethernet communication network is utilized for a 
DGS and is simulated by OPNET, as shown in Fig. 9. 

Each WT controller, bay controller or relay IED is assigned 
a distinct IP address and is represented by a communication 
node. The transmission line of the Ethernet network in this 
study is decided as 100BaseT duplex link, which represents 
an Ethernet connection operating at 100Mbps. With this 
configuration, an Ethernet communication system can provide 
ETE (End-To-End) Delay in an order of millisecond, as 
shown in Fig. 10. The detailed deployment of a power system 

associated Ethernet network has been introduced in [3]. Fig. 
11 gives the Ethernet channel utilization in percentage. Fig. 
12 illustrates the Ethernet channel point-to-point throughput 
in packets/second. 

 

 
Fig. 9  A communication network. 
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Fig. 10  A DGS associated Ethernet End-To-End delay. 
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Fig. 11  A DGS associated Ethernet channel utilization. 
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Fig. 12  A DGS associated Ethernet channel throughput. 

 

IV. AN ETHERNET BASED PROTECTIVE LOAD CONTROL 
STRATEGY  

Based on the assist of the Ethernet communication system, 
the protective load control strategy is proposed in this section.  

It mainly includes three key aspects: to determine the total 
amount of load to be shed, to select the load to be shed, and to 
decide the execution time of load shedding operation. The 
three aspects are addressed respectively as follows.  

A. The total amount of Load to be shed 
When load shedding operation is unavoidable under some 

conditions, for instance a DGS is islanded after a fault in grid 
side and the DGS generation is deficient, the total amount of 
load to be shed (Pshed) is decided by the deficiency of the DGS 
generation, which can be determined with the assistance of an 
associated communication network. Once a DGS islanding 
status is detected, the computation of Pshed is activated 
simultaneously, which is the difference between the CHPs 
reservation (Presv), and the power flow (Pflow) from the grid to 
the DGS right before the islanding, as formulated by (2). 

Pshed = Pflow - Presv  (2) 

B. The selection of load to be shed 
After the determination of total amount of load to be shed, 

the sequence of load shedding operation has to be decided by 
checking a prescribed look-up-table. The sequence look-up-
table is based on two principles: the first is the customers’ 
payments, the more a customer pays, the more important the 
customer’s load is, then the later the load may be shed, the 
second is the load characteristics, which is based on the 
analysis in Section II part A, the load which is more sensitive 
to system voltage or frequency, the later the load may be 
shed. 

C. The execution time of load shedding operation 
The execution time of any protective load control 

operations may directly impact the DGS and the WTs voltage 
and frequency which have to meet the requirement of the 
power system codes. The wind turbine technical regulation, 
which is briefly explained by Table III [4], is dominantly 
considered in this study. 

TABLE III 
WIND PLANT OPERATION REQUIREMENTS 

Protection functions Settings Function time 

Overvoltage (step 3) 1.2pu 5-100ms 

Overvoltage (step 2) 1.1pu 200ms 

Overvoltage (step 1) 1.06pu 60s 

Undervoltage 0.9pu 10-60s 

Overfrequency 52Hz(1.04pu) 200ms 

Underfrequency 47Hz(0.94pu) 200ms 

 

V. A CASE STUDY 

A simplified case based on Støvring local DGS in Denmark 
is studied. This study compares the cases of FSWT connected 
DGS and DFIG connected DGS characteristics. Fig. 13 and 
14 respectively show the DGS with 3 Fixed-speed wind 
turbines (FSWT) and with an equivalent Doubly-fed 
induction generator wind turbine (DFIG). The FSWT and 
DFIG specifications are given in Section II part B and C. 

 

Fig. 13  A DGS with 3 FSWTs. 

 

 
Fig. 14  A DGS with 1 DFIG. 

A. The scenario of a case study  
In the studied scenario, a three-phase-to-ground fault 

occurs at 8s, the DGS is islanded at 8.15s by opening the CBs 
in Figs. 13 and 14. Assuming the WTs are all under rated 
wind speed, thus they all generate rated power.  

The DGS residential loads, commercial and industry loads 
are represented as 3 distributed load groups, as specified in 
Table IV. The studied protective load control operations are 



 
 
executed on Load 1, which is further divided into 8 loads, 
whose details are listed in Table V. 

 

TABLE IV 
DISTRIBUTED LOAD GROUPS ACTIVE POWER AND REACTIVE POWER 

Load 
group 

Rated active power (MW) Rated reactive power (MVar) 

Load 1 12.1752 3.6528 

Load 2 0.3687 0.0681 

Load 3 0.3687 0.0681 

 

TABLE V 
LOAD 1’S CHARACTERISTICS 

Load No 
In Load 1 

Rated 
active 
power 
(MW) 

Rated 
reactive 
power 

(MVar) 

dP/dV dQ/dV dP/df dQ/df 

1-1 1.5219 0.4566 0.5 1.5 0.0 0.0 

1-2 1.5219 0.4566 1.8 1.5 3.0 0.0 

1-3 1.5219 0.4566 0.5 1.5 0.0 0.0 

1-4 1.5219 0.4566 0.5 6.0 0.0 -2.0 

1-5 1.5219 0.4566 1.0 2.0 1.5 -1.0 

1-6 1.5219 0.4566 1.0 2.0 1.5 -1.0 

1-7 1.5219 0.4566 1.0 2.0 1.5 -1.0 

1-8 1.5219 0.4566 1.0 2.0 1.5 -1.0 

 
In this scenario, based on (2) calculation, only one load in 

Table V is necessary to be shed. Assuming payments of the 8 
loads are on the same priority level here, therefore the load 
shedding operation priority is only based on their technical 
features. The process duration of load shedding operation 
includes the load shedding relays control signals transmission 
time latency (Ethernet ETE delay) and the load shedding 
circuit breakers operation time. 

B. Simulation results  
1) The cases of Figs 15 and 16 focus on the 

investigations on the impacts of load shedding on the 
loads with different dP/dV and dP/df properties.  

Load 1-1 is with the smallest dP/dV, dP/df values, while 
Load 1-2 is with the greatest dP/dV, dP/df values [2]. With 
the assist of communication system the load shedding 
operation may be executed before 8.65s to keep the DGS 
stable, yet without the communication system the operation 
may be traditionally initiated until voltage or frequency drop 
down to a lower limit, thus can be seconds after the islanding, 
here given 9.25s as a compared late load shedding time.  

Fig. 15 presents the voltage comparison between the FSWT 
connected DGS and the DFIG connected DGS. For the DFIG 
DGS case, the voltage always satisfies the requirement, no 
matter Load 1-1 or 1-2 is shed at 8.65s, or even the load 
shedding operation is at 9.25s. However, for the FSWT DGS 
case, the FSWT loses stability when the load shedding is 
operated at 9.25s. 
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FSWT Load 1-1 shedding at 8.65s
FSWT Load 1-2 shedding at 8.65s

FSWT Load 1-1 late shedding at 9.25s

DFIG Load 1-1 shedding at 8.65s

DFIG Load 1-2 shedding at 8.65s
DFIG Load 1-1 late shedding at 9.25s

 
Fig. 15  Voltage variations of load shedding on the loads with different 

dP/dV, dP/df characteristics. 
 

Fig. 16 presents the frequency comparison between the 
FSWT connected DGS and the DFIG connected DGS. The 
DFIG frequency can be ultimately stabilized in the normal 
operation range, no matter Load 1-1 or 1-2 being shed or late 
operation, but during the transient process right after the 
islanding, only load shedding on Load 1-1 can satisfy the 
frequency requirement according to Table III, as its duration 
of underfrequency process is around 180ms. However, the 
FSWT frequency varies in a bigger range than the DFIG. 
Only a prompt load shedding can lead the FSWT meet the 
frequency requirement [4]. 
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FSWT Load 1-1 shedding at 8.65s
FSWT Load 1-2 shedding at 8.65s

FSWT Load 1-1 late shedding at 9.25s

DFIG Load 1-1 shedding at 8.65s
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Fig. 16  Frequency variations of load shedding on the loads with different 

dP/dV, dP/df characteristics. 

 
2) The cases of Figs 17 and 18 focus on the 

investigations on the impacts of load shedding on the 
loads with different dQ/dV and |dQ/df| properties.  

Load 1-3 is with the smallest dQ/dV, |dQ/df| values, while 
Load 1-4 is with the greatest dQ/dV, |dQ/df| values [2]. With 
the assist of communication system the load shedding 
operation may be executed before 8.56s to keep the DGS 



 
 
stable, yet without the communication system the operation 
may be traditionally initiated until voltage or frequency drop 
down to a lower limit, thus can be seconds after the islanding, 
here given 8.75s as a compared late load shedding time. 

Fig. 17 presents the voltage comparison between the FSWT 
connected DGS and the DFIG connected DGS. For both the 
DFIG DGS case and the FSWT DGS case, the voltage always 
satisfies the requirement [4], no matter Load 1-3 or 1-4 being 
shed, or even late load shedding operation. 
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FSWT Load 1-3 shedding at 8.56s
FSWT Load 1-4 shedding at 8.56s

FSWT Load 1-3 late shedding at 8.75s

DFIG Load 1-3 shedding at 8.56s

DFIG Load 1-4 shedding at 8.56s
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Fig. 17  Voltage variations of load shedding on the loads with different 

dQ/dV, |dQ/df| characteristics. 
 

Fig. 18 presents the frequency comparison between the 
FSWT connected DGS and the DFIG connected DGS. The 
DFIG frequency can all be ultimately stable in the normal 
operation range, no matter Load 1-3 or 1-4 being shed or late 
operation, but during the transient process right after the 
islanding, only load shedding on Load 1-3 and 1-4 can satisfy 
the regulation on frequency requirement, as their duration of 
underfrequency is both around 180ms. However, the FSWT 
frequency is not able to meet the requirement at all. 
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FSWT Load 1-3 shedding at 8.56s
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Fig. 18  Frequency variations of load shedding on the loads with different 

dQ/dV, |dQ/df| characteristics. 

C. Discussions  
Regarding the load shedding operations, the loads with the 

smallest dP/dV, dP/df, dQ/dV, |dQ/df| values are on the 
highest priority to be shed. Furthermore the load shedding 
operation execution time is critical to a WTs connected DGS, 
due to the WTs’ sensitivity to disturbances. The earlier the 
load shedding execution time is, the more secure the WT 
operation is. 

In terms of the comparison of FSWT and DFIG connected 
DGS, the FSWT DGS is more sensitive on load shedding 
with different load characteristics than the DFIG DGS. 
Furthermore the load shedding operation of FSWT DGS is 
more time critical than DFIG DGS.  

Consequently, only prompt load shedding operations by an 
assist of a communication network is ideal for a wind power 
involved DGS. Any extra execution delay may cause a WT 
lose stability to lead an undesired cutting off. 

VI. CONCLUSIONS 

This study investigates the characteristics of a distributed 
generation system connecting wind turbines, which includes 
loads and WTs characteristics. A communication technology 
based protective load control strategy for a WT DGS is 
proposed in this study in order to satisfy the wind power 
plants regulations. A case study is utilized to compare the 
impacts of load shedding operations on the loads with 
different load characteristics, different load shedding 
operation execution time. This study also includes the 
comparison of two kinds of WTs connected DGS: FSWT and 
DFIG. Simulation results reveal that the FSWT DGS is more 
sensitive on load shedding with different load characteristics 
than the DFIG DGS. Furthermore the load shedding operation 
of FSWT DGS is more time critical than DFIG DGS. 
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