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Abstract

In this work we address the general bin-picking prob-
lem where 3D data is available. We apply Harmonic Shape
Contexts (HSC) features since these are invariant to trans-
lation, scale, and 3D rotation. Each object is divided into
a number of sub-models each represented by a number of
HSC features. These are compared with HSC features ex-
tracted in the current data using a graph-based scheme. Re-
sults show that the approach is somewhat sensitive to noise,
but works in presence of occlusion.

1. Introduction

Bin-picking refers to the problem of having a robot au-
tomatically pick an object from a bin. Many industrial ap-
plications are successfully being handled every day using
computer vision and robots. However, for these systems the
objects either have a simple (2D) shape and/or are organized
in a structured manner. The general bin-picking problem
where the objects have a 3D shape and are randomly orga-
nized, see figure 1, have not yet been solved in a general
manner primary due to severe occlusion problems.

One approach to the general problem is to apply a CAD
model of the objects in the bin. E.g., using the appearance
[1] or circular features [7]. Alternatively 3D data can be
found using [10, 9] and compared with the CAD model.

A common problem is that approaches tend to use global
features, which result in a high sensitivity due to occlusions.
In this work we find the pose using a constellation of local
features in the form of 3D points. We represent the fea-
tures in such a way that they become invariant to transla-
tion, scale, and rotation. To handle the occlusion problem
we use a matching strategy based on graph theory allowing
us to make a pose estimation even when a number of the
features are occluded or corrupted by noise.

The focus of the paper is on the invariant features and
the matching of these features from the 3D data and the
CAD model. We therefore assume that 3D data of the bin is
available. In section 2 we describe how the 3D bin-data can

be segmented into interesting and uninteresting points. In
section 3 we describe the invariant features and in section
4 we describe how to use these features for matching and
pose estimation. In section 5 and 6 the results are presented
and discussed, respectively.

Figure 1: Randomly organized objects in a bin. An object is ap-
proximately the size of a coconut.

2. Segmentation of Surface Features

Using 3D points as features results in a vast amount of
different features. However, some 3D points are more dis-
criminative than others. For example, features on a large
smooth surface might not be the best choice since these by
nature will result in ambiguities in the matching process.
Therefore we do a segmentation in order to find positions
where the ambiguity is low.

The general idea is to find those positions p where the
curvature of the data changes since these will indicate edges
or other transitions.

The changes in the curvature are found by first approx-
imating the data by a mesh [6]. We then divide the mesh
into regions each having a similar shape and then defining
the mesh vertexes, p, where changes occur as points where
a transition between different shape types occur.



From differential geometry we know that the curvature
of a surface at a given point, p, can be defined using the
principal curvatures κ1 and κ2. By combining the principal
curvatures we get the Gaussian (H) and mean (K) curvatures
defines as [8]:

H(p) = (κ1(p) + κ2(p))/2 (1)
K(p) = κ1(p) · κ2(p) (2)

Looking merely at the sign of the Gaussian and mean
curvatures we can classify each point on the mesh into one
of six categories as shown in table 1.

signum(K) signum(H) Shape class
0 0 Planar
0 + Concave cylindrical
0 − Convex cylindrical
+ + Concave elliptical
+ − Convex elliptical
− any Hyperbolic

Table 1: Surface classification scheme based on the sign of the
mean and Gaussian curvatures. [11]

3. Harmonic Shape Contexts

Having pre-segmented the 3D data we now have to find
some way of extracting features for the remaining (or a sub-
set of these) points that can be used in the matching process.
These features should be invariant to both translation, scale,
and rotation in order to reduce the search space to a realistic
size. In this work we use the Harmonic Shape Contexts
(HSC) feature representation since these have exactly the
invariant characteristics we are after [5].

The HSC is a regional feature which characterizes the
surface of the object in a small finite region around each
point of interest. A regional feature is a compromise be-
tween global and local surface features combining the noise
robustness of the former with the occlusion robustness of
the latter.

The HSC is a generalization of the Shape Contexts fea-
tures, which use a 3D histogram to describe the surface.
The cells in the histogram are defined by a sphere centered
at the point of interest with the sphere’s north pole vector
aligned with the normal vector of the data around this point
[3]. The sphere is divided linearly in the azimuthal (east-
west) and in the colatitudinal (north-south) directions of the
sphere, while logarithmical in the radial dimension.

A given cell accumulates a weighted count for each
neighborhood point whose spherical coordinates fall within
the ranges of the cell. The actual contribution (i.e., the

weighing) to the cell count is balanced by local point den-
sity and the volume of the cell [6, 3].

Any given spherical function, i.e., a function f (θ, φ) de-
fined on the surface of a sphere parameterized by the co-
latitudinal and azimuthal variables θ and φ, can be decom-
posed into a weighted sum of spherical harmonics as given
by equation 3 [5].

f (θ, φ) =
∞∑

l=0

l∑

m=−l

Am
l Y m

l (θ, φ) (3)

The terms Am
l are the weighing coefficients of degree m

and order l, while the complex functions Y m
l (·) are the ac-

tual spherical harmonic functions of degree m and order l.
The complex function Y m

l (·) is given by equation 4, where
j =

√−1.

Y m
l (θ, φ) = Km

l P
|m|
l (cos θ) ejmφ (4)

The term Km
l is a normalization constant, while the

function P
|m|
l (·) is the Associated Legendre Polynomial.

The key feature to note from equation 4 is the encoding of
the azimuthal variable φ. The azimuthal variable solely in-
flects the phase of the spherical harmonic function and has
no effect on the magnitude. This means that ||Am

l ||, i.e.,
the norm of the decomposition coefficients of equation 3, is
invariant to parameterization in the variable φ.

The rotationally invariant property of the spherical har-
monic transformation makes it suitable for use in encod-
ing the shape contexts representation enabling a translation,
scale, and rotational regional feature, see [6] for details.

Representing the Shape Contexts in terms of a weighted
sum of spherical harmonics yields an infinite number of
coefficients. However, in praxis the information will be
band-limited and therefore only coefficients up to a cer-
tain bandwidth are to be stored. Concatenating these coef-
ficients yields a feature vector that represent one particular
3D point.

4. Matching

The primary purpose of extracting HSC features from the
scene and model meshes is to perform a matching between
features found in the scene and features found in the CAD
model.

Due to (self)occlusion not all features will be visible in
the CAD model and the data at the same time, i.e., only par-
tial views of the objects are possible. Therefore, we follow
a multi-view matching approach where the model is repre-
sented as a number of sub-models only containing data ob-
servable form a certain viewpoint. We hereby gain an easier
(and in fact also more correct) matching process, however
at the price of a more time consuming iteration through the
model base performing a matching of each sub-model.



4.1. Finding Correspondences

The actual matching of a HSC feature from the data and
one from the CAD model is based on three factors: i) the
normalized correlation coefficient between the two feature
vectors of the HSC, ii) the absolute difference between the
mean curvature and iii) the absolute difference between the
Gaussian curvatures of the two particular points. The cur-
vature comparison serves as a rough initial classification of
the quality of the match. Only if the quality is good the
correlation is performed.

Matching only two points at a time is obviously not
enough and therefore more matches are considered at a
time. More precisely, a match with a very high correla-
tion factor (close to unity) may be a very poor choice if it is
incompatible with all other matches, while a match with a
medium correlation factor may be a good match if it has a
large number of other compatible matches.

The consensus approach is based around the term com-
patibility between matches, which relates to whether several
matches are concurrently possible from a geometrical point
of view. The only way more matches can be compatible
is if the distance between the respective points in the first
data set is equal (approximately) to the distance between
the corresponding points in the CAD model. This rigidity
constraint can be used to determine compatibility between
matches, i.e., a match is not only judged by the correlation
factor but also by its number of compatible matches.

This consensus based approach for finding a large num-
ber of compatible matches can be formulated as a graph
search problem, as shown by figure 2. A node in the graph
represents a match between two points, while an edge be-
tween two nodes in the graph indicates that the two matches
are compatible.

Each node in the graph is attached a weight, which in-
dicates how good a match it represents, i.e., the computed
correlation factor for the actual match is used. In figure 2 the
node weights are indicated by a shade of gray, where darker
nodes represent better matches (higher weights). The ac-
tual compatibility between the nodes is based on the rigidity
constraint.
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Figure 2: A graph representing the problem of matching a set of
points between two meshes. A node represents a match while an
edge represents compatibility between matches.

The problem of finding the best match between the
points in each of the meshes, is then reduced to the problem
of finding the maximally weighted set of mutually compat-
ible nodes. For the simple example shown in figure 2 this
set is shown as the nodes connected by the bold edges.

The particular problem of finding the maximally
weighted set of interconnected nodes in a graph is known as
the maximum clique problem. The problem is NP complete
meaning that no algorithm with polynomial time complex-
ity is known to exist. A solution to the problem can either
be obtained by brute force methods (i.e., try all subsets of
interconnected nodes and find the maximally weighted) or
approximated by different heuristic methods. [2]

The problem of finding the maximum clique can be for-
mulated as an optimization of the function f as shown by
the equation 5 where n is the number of nodes in the graph.

f(x) =
n−1∑

i=0

wixi − λ

n−1∑

i=0

wici (5)

The function f accumulates the total weight of the nodes
in the clique, based on a membership vector x and the in-
dividual node weights wi. The elements in the membership
vector are binary values indicating if the given node is part
of the clique or not. The variables ci are also binary and in-
dicate whether the given node i can be part of the clique de-
fined by the membership vector. This effectively subtracts
the weights of the falsely included nodes and yields an out-
put containing an accumulated weight only for the nodes
which can be part of a clique. The state of ci is determined
based on the inverse graph, i.e., for a set of nodes to consti-
tute a clique in a given graph, no two clique nodes must be
connected in the inverse graph. The weighting factor λ is
introduced to control the balance between the gain and the
penalty, however it is set to unity in the current implemen-
tation.

Due to the nature of the problem the optimization of
equation 5 is done using simulated annealing [6].

4.2. Pose Estimation

After the matching process we are left with two equally
sized ordered sets containing matching 3D vectors. The
pose estimation problem is then reduced to finding the rigid
transformation aligning the two point sets.

As the point matches are obtained from real data contam-
inated by noise it is highly unlikely that a single rigid trans-
formation can explain all the matching points. This effec-
tively means, that the rotation matrix and translation vector
has to be determined in an optimal way favoring as many
point matches as possible. As the problem of determin-
ing the rotation and translation is separable, the approach
taken is based around initially determining the rotation ma-
trix. The problem of finding the optimal rotation aligning
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Figure 3: The normalized recognition of the correctly pose estimated objects as a function of the added noise level. a) Translation. b)
Rotation. c) An example of a correctly recognized object in an occluded scene (result overlaid in red).

two data sets is also known as the orthogonal Procrustes
problem and is solved by performing a singular value de-
composition of the mean translated point sets. [4]

5. Results

To evaluate the suggested approach we use the object
type shown in figure 1. For this particular object type we
use 64 (four viewpoints for each of the three axes: 43)
sub-models. Each HSC is constructed by 16 colatitudinal
divisions, 32 azimuthal divisions, and 10 radial divisions.
Combing this with a chosen bandwidth [6] we end up with
1360 coefficients which constitute a feature vector [6].

We investigate how well the pose estimating can be car-
ried out in the presence of noise. The test is performed
by generating 120 different configurations of the model for
each noise level and then counting the number of correctly
pose estimated instances of the object. A correct pose es-
timation is defined to be when the L2 norm between the
simulated and estimated rigid transformations is below 1.5
for the rotation matrices and the translation vectors, respec-
tively. In figure 3 the results are shown.

The occlusion-handling capabilities of the suggested ap-
proach are assessed by analyzing scenes with randomly or-
ganized objects. For example in the scene in figure 3.c two
objects are correctly pose estimated1.

6. Discussion

Not all objects in the scene can be pose estimated cor-
rectly, but we have found that always at least one object can
be pose estimated correctly, which is the success criterion
in bin-picking since the scene changes each time an object

1In addition six objects are pose estimated correct with respect to 5DoF.
This is a typical situation when dealing with self-symmetric objects.

has been removed. Tests also show that the approach is sen-
sitive to noise. This will be the focus of future work by
including smoothing of the mesh data, using methods based
on curvature consistency with respect to equation 1 and 2.
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