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Conditioning Systems
Saeed Golestan1∗, Member, IEEE, Mohammad Monfared2, Member, IEEE,

Francisco D. Freijedo3, Member, IEEE, and Josep M. Guerrero4,5, Senior Member, IEEE

Abstract

One of the most important aspects for the proper operation of the single-phase grid-tied power-conditioning

systems is the synchronization with the utility grid. Among various synchronization techniques, phase locked loop

(PLL) based algorithms have found a lot of interest for the advantages they present. Typically, the single-phase PLLs

use a sinusoidal multiplier as the phase detector (PD). These PLLs are generally referred to as the power-based

PLL (pPLL). In this paper, the drawbacks associated with the pPLL technique (i.e., the sensitivity to the grid voltage

variations, and the double frequency oscillations which appear in the estimated phase/frequency) are discussed in detail,

and some of the previously reported solutions are examined. Then, to overcome these drawbacks, a simple and effective

technique, called the double-frequency and amplitude compensation (DFAC) method is proposed. The effectiveness

of the proposed method is evaluated through a detailed mathematical analysis. A systematic design method to fine-

tune the PLL parameters is then suggested, which guarantees a fast transient response, a high disturbance rejection

capability, and a robust performance. Finally, the simulation and experimental results are presented, which highlight

the effectiveness of the proposed PLL.
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Frequency estimation, phase estimation, phase-locked loop (PLL), power-based PLL (pPLL), synchronization,

single phase grid-connected converters.
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Design and Tuning of a Modified Power-Based

PLL for Single-Phase Grid-Connected Power

Conditioning Systems

I. INTRODUCTION

The phase-angle and frequency of the utility grid are vital information for most single-phase grid-tied power-

conditioning systems, such as active power filters (APF) [1], dynamic voltage restorers (DVR) [2]-[3], flexible AC

transmission systems (FACTS) [4]-[6], uninterruptible power supplies (UPS) [7], and distributed power generation

and storage systems [8].

To estimate the frequency and phase-angle of the single-phase signals various methods have been proposed in

literature [4]-[25]. Among these techniques, the phase locked loop (PLL) based algorithms are the most widely

accepted ones, due to their simplicity, robustness, and effectiveness [4]-[20]. Focusing on grid-connected power

converter applications, a PLL is a closed loop feedback control system, which synchronizes its output signal in

frequency, as well as in phase, with the grid voltage fundamental component. In spite of their differences, all

PLL techniques are composed of three basic parts, namely: 1) phase detector (PD), 2) loop filter (LF), and 3)

voltage-controlled oscillator (VCO), as illustrated in Fig. 1.

Fig. 1. Basic scheme of a single-phase PLL.

The main difference among different PLLs usually lies in how the PD block is implemented. Typically, the

single-phase PLLs use a sinusoidal multiplier as the PD. These PLLs are generally referred to as the power-based

PLL (pPLL). In the following section, the drawbacks associated with the pPLL technique (i.e., the sensitivity to the

grid voltage variations, and the double frequency oscillations which appear in the estimated phase/frequency) are

discussed in detail, and some of the previously reported solutions are examined. Then, to overcome these drawbacks,

a simple and effective technique, called the double-frequency and amplitude compensation (DFAC) method is

proposed. Through a detailed mathematical analysis it is shown that the proposed DFAC method successfully
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compensates for the undesired double frequency oscillations, as well as the input voltage amplitude variations

without decreasing the bandwidth of the PLL, which leads to a poor dynamic performance. It is worth remarking

that, for three-phase PLLs, tackling the generation of the low order oscillations in the estimated phase/frequency

has been well addressed [26], [27].

An accurate tuning of the PLL parameters requires considering several factors such as the stability margin, the

disturbance rejection ability, and the transient response to the phase-jump and frequency variation. Some suggestions

to design the PLL parameters have been presented in literature [7], [10]-[13], [28]-[29]. In this paper, a systematic

design procedure to fine-tune the PLL parameters is proposed. The suggested approach guarantees a fast transient

response, a high disturbance rejection capability, and a robust performance.

This paper is organized as follows. Section II provides a brief review of the pPLL topology. The main drawbacks

of the pPLL, and previously reported solutions are also discussed in this section. The proposed phase detector is

presented in Section III. The small-signal modeling of the proposed PLL, here, referred to as DFAC-pPLL, and the

stability analysis are addressed in Section IV. The proposed systematic design method is discussed in Section V.

The simulation and experimental results are presented in Section VI. Finally, Section VII concludes this paper.

II. BACKGROUND

The basic scheme of the single-phase pPLL is depicted in Fig. 2 [7]. Throughout this section and the following

section, for the sake of simplicity, the input voltage vi is assumed to be a pure sine wave, i.e. vi = V cosθ, where V

and θ (= ωt+φ) are the input voltage amplitude and angle, respectively. ωff is the nominal value of the frequency

ω, and φ is the phase-angle. The superscript “∧” denotes the estimated quantities.

Fig. 2. Single-phase pPLL.

The pPLL, as seen, uses a sinusoidal multiplier followed by a low pass filter (LPF) for the PD. Note that the PD

block tries to emulate an active power calculation unit. If the PD block output signal (i.e., p̄) is zero, then the input

voltage vi and the fictitious current is will be in quadrature relative to each other [7]. In this case, the estimated

value of the voltage angle θ̂ is equal to the real value θ.
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Based on Fig. 2, the fictitious power p can be expressed as

p = viis = V cosθsinθ̂. (1)

Applying the product-to-sum trigonometric identity, yields

p =
V

2
sin(θ̂ − θ)︸ ︷︷ ︸
dc term

+
V

2
sin(θ̂ + θ).︸ ︷︷ ︸

double frequency term

(2)

Supposing a small difference between θ and θ̂, (2) can be divided into two parts: a small dc term which has

the information on the phase difference, and a high-amplitude double-frequency disturbance term which must be

filtered out to keep up the phase jittering within an acceptable range [30].

To cancel out the undesired double-frequency component from the fictitious power p, one can use either a first-

(or second-) order LPF with a low cut-off frequency or a high-order LPF with a higher cut-off frequency. In addition

to stability problems, using a high-order LPF imposes a high computational load on the control system [31]. On the

other hand, using a low-order LPF with a low cut-off frequency, significantly degrades the transient performance of

the PLL. Another approach is to use a notch filter tuned at twice the input voltage fundamental frequency. Because

of the grid frequency variations, the notch filter should be adaptive, which increases the system cost and complexity.

Some improvements to the pPLL have been suggested in [16]-[17]. In these techniques, referred to as orthogonal

signal generation (OSG) based techniques, the fundamental component of the input voltage is shifted by 90◦ to

generate a fictitious phase signal, thus making it possible to represent the single-phase system as a pseudo two-phase

(αβ) system. Applying the well-known park (αβ −→ dq) transformation to the two phase (αβ) system, yields the

phase error information without generating the undesired double frequency component. It should be noticed that the

main difference among different OSG based techniques lies in how the fictitious orthogonal signal is generated. In

spite of their differences, all OSG based techniques suffer from some common drawbacks, such as high sensitivity

to the grid frequency variations, and relatively high complexity [18].

The most recent improvement to the pPLL is that proposed by Thacker et al. [12]. In their method, a unity value

for the input voltage amplitude is assumed which is realized by a peak voltage detection (PVD) scheme at the input

of the PLL. Under this assumption, and in phase/frequency-locked conditions (i.e., θ ∼= θ̂), the unwanted double

frequency component is filtered out by subtracting a product term (i.e., sinθ̂cosθ̂) from the fictitious power p, as

shown in Fig. 3. Although this PLL exhibits some improvements over the pPLL technique, it suffers from a major

drawback; regardless of the cost and the complexity imposed by the PVD, the exact and fast estimation of the input

voltage amplitude may not always be possible. In this case, the PLL performance is significantly degraded.
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Fig. 3. Proposed PLL by Thacker et al. [12].

The dependency of the PLL stability and dynamic performance on the input voltage amplitude is other drawback

of the pPLL. It is shown that the voltage amplitude V contributes as a gain in the forward path of the PLL small-

signal model [32]. Thus, under the voltage sag condition, which is commonly associated with the phase-angle jump

[33], [34], the PLL transient response is significantly degraded. In this situation, the PLL may also become unstable,

if the phase margin is too low [35]. These drawbacks can be eliminated in part by compensating the PLL input

signal with an amplitude estimation scheme, as reported in [4]- [5], [12], and [14], but at the expense of higher

complexity and cost.

To filter out the undesired steady-state double-frequency oscillations without degrading the stability and the

transient performance of the PLL and, at the same time, to compensate for the input voltage amplitude variations,

an effective method, called the double-frequency and amplitude compensation (DFAC) method, is presented in the

next section.

III. PROPOSED DFAC METHOD

Fig. 4 displays the basic scheme of the proposed phase detection unit, where vd and vq are obtained as expressed

in (3).

Fig. 4. Basic scheme of the proposed phase detection unit.

 vd(t)

vq(t)

 =

 cos θ̂ sin θ̂

− sin θ̂ cos θ̂


 2vi(t)

0

 (3)

Substituting vi = V cosθ into (3), gives

vd(t) = V cos(θ − θ̂) + V cos(θ + θ̂) (4)
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vq(t) = V sin(θ − θ̂)− V sin(θ + θ̂). (5)

Considering θe = θ − θ̂, and after some simple mathematical manipulations, (4) and (5) can be rewritten as

vd(t) = V cos(θe) + V cos(2θ̂ + θe) (6)

vq(t) = V sin(θe)− V sin(2θ̂ + θe). (7)

Expanding the second terms on the right hand side of (6) and (7), yields

vd(t) = V cos(θe) + V cos(θe) cos(2θ̂)− V sin(θe) sin(2θ̂) (8)

vq(t) = V sin(θe)− V sin(θe) cos(2θ̂)− V cos(θe) sin(2θ̂). (9)

For a small angle difference θe, the first terms on the right hand side of (8) and (9) (i.e., V cos(θe), and V sin(θe),

respectively) are almost DC components. It is also clear from (8) and (9) that the amplitudes of the double-frequency

components depend on these DC components. Thus, the perfect cancellation of the undesired double-frequency

components can be easily achieved by injecting double-frequency signals with the same amplitude but an opposite

angle into vd and vq , as shown in Fig. 5.

Fig. 5. Schematic diagram of the proposed DFAC method.

The proposed DFAC strategy consists of two main parts; a double frequency cancellation block, and an amplitude

compensation block. The LPF block is considered as a first-order LPF as follows

LPF (s) =
ωp

s+ ωp
(10)
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where ωp is the cut-off frequency of the LPF.

A. Mathematical Analysis

To analyze the performance of the proposed DFAC method, the mathematical expressions for v̄d and v̄q are

derived.

From Fig. 5, in the Laplace domain, we have

v̄d(s) =
ωp

s+ ωp
× `
[
vd(t)− v̄d(t) cos(2θ̂) +v̄q(t) sin(2θ̂)

]
(11)

v̄q(s) =
ωp

s+ ωp
× `
[
vq(t) + v̄d(t) sin(2θ̂) +v̄q(t) cos(2θ̂)

]
(12)

where, ` denotes the Laplace operator.

Multiplying both sides of (11) and (12) by (s+ ωp), and rearranging them, gives

sv̄d(s) = ωp × `
[
vd(t)− (cos(2θ̂) + 1)v̄d(t) + sin(2θ̂)v̄q(t)

]
(13)

sv̄q(s) = ωp × `
[
vq(t) + sin(2θ̂)v̄d(t) +(cos(2θ̂)− 1)v̄q(t)

]
. (14)

Transforming (13) and (14) into the time-domain, and rearranging the results into the matrix form, yields

 ˙̄vd(t)

˙̄vq(t)

 = ωp

 − cos(2θ̂)− 1 sin(2θ̂)

sin(2θ̂) cos(2θ̂)− 1


 v̄d(t)

v̄q(t)

+

 ωp 0

0 ωp


 vd(t)

vq(t)

 . (15)

Substituting (8) and (9) into (15), and making some rearrangements, gives

 ˙̄vd(t)

˙̄vq(t)

 = ωp

 − cos(2θ̂)− 1 sin(2θ̂)

sin(2θ̂) cos(2θ̂)− 1



 v̄d(t)

v̄q(t)

 −
 V cos(θe)

V sin(θe)


 . (16)

Based on (16), the state-space description of the DFAC block can be derived, as follows ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)
(17)
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where,

x(t) =

 v̄d(t)

v̄q(t)

 ; u(t) =

 V cos(θe)

V sin(θe)


A(t) = −B(t) = ωp

 − cos(2θ̂)− 1 sin(2θ̂)

sin(2θ̂) cos(2θ̂)− 1


C(t) = I.

The state-space equation (17), describes a linear time-variant (LTV) system with two inputs and two outputs,

which its solution takes a lot of time and space, and needs enormous patience. To simplify the solution, it is assumed

that ω ∼= ω̂. Hereby, the angle difference θe becomes approximately equal to the phase difference φ− φ̂. Under this

condition, and considering the inputs (i.e., V cos(θe), and V sin(θe)) as step functions, the expressions for v̄d(t)

and v̄q(t) can be derived as

v̄d(t)=Ad+{Bd cos(ωt) cos(ωf t) +Cd sin(ωt) sin(ωf t)+Dd sin(ωt) cos(ωf t)+Ed cos(ωt) sin(ωf t)} e−ωpt (18)

v̄q(t)=Aq+{Bq cos(ωt) cos(ωf t) +Cq sin(ωt) sin(ωf t)+Dq sin(ωt) cos(ωf t)+Eq cos(ωt) sin(ωf t)} e−ωpt (19)

where,

ωf =
√
ω2 − ω2

p,

Ad = −Bd = Dq = V cos(θe),

Cd = Eq = −V
[
ω cos(θe) + ωp sin(φ+ φ̂)

]
/ωf ,

Dd = −Aq = Bq = −V sin(θe), and

Ed = −Cq = V
[
ωp cos(φ+ φ̂) + ω sin(θe)

]
/ωf .

From (18) and (19) it can be seen that, the fluctuating terms decay to zero with a time constant of 1/ ωp, and

v̄d(t) and v̄q(t) converge to V cos(θe) and V sin(θe), respectively. These results are clearly illustrated in Fig. 6 for

three different values of the cut-off frequency ωp, i.e., ωp = 10Hz (solid line), ωp = 30Hz (dashed line), and

ωp = 60Hz (dotted line), and for φ = φ̂ = π/6 rad, ω = ω̂ = 120π rad/s, and V = 100 V. As expected, using the

proposed DFAC method, the perfect cancellation of the double-frequency components is achieved.

On the other hand, the negative effect of the input voltage amplitude variations on the PLL stability and transient

performance is damped by calculating the input voltage amplitude, as follows, and then dividing v̄q by the estimated

amplitude V̂ (see Fig. 5).

V̂ =
√
v̄2
d + v̄2

q . (20)

To avoid instability problems, the estimated amplitude V̂ is limited by a saturation block. The upper and lower
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(a) (b)

Fig. 6. v̄d(t) and v̄q(t) for different values of ωp.

limits should be set according to the allowable range of the input voltage amplitude variations. In this paper, the

lower and upper limits are set to 0.2 pu and 1.5 pu, respectively.

IV. SMALL-SIGNAL MODEL AND STABILITY ANALYSIS

Fig. 7 illustrates the basic scheme of the proposed DFAC-pPLL. The input voltage vi is considered to be harmonic

polluted (as a result of the proliferation of nonlinear loads in power systems), and is represented by

vi(t) = V cos (ωt+ φ)︸ ︷︷ ︸
Fundamental componet

+ f (3ω, 5ω, 7ω, ...)︸ ︷︷ ︸
Harmonic components

. (21)

Applying the transformation matrix (3) to (21), gives

vq(t) = V sin(θ − θ̂)− V sin(θ + θ̂) + g (2ω, 4ω, 6ω, ...) . (22)

Note that, the second term on the right hand side of (22), and the amplitude V are both compensated by the

function of the DFAC block in the steady-state. Hence, for a small angle difference θe, the PD output signal, i.e.

ve, can be approximated in the Laplace domain as

Fig. 7. Basic scheme of the proposed DFAC-pPLL.
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ve(s) ∼=
ωp

s+ ωp
(θe(s) +D(s)) (23)

where, D(s) is the Laplace transform of the harmonic function g (2ω, 4ω, 6ω, ...) divided by V .

Based on the above discussion, the small-signal model of the DFAC-pPLL can be obtained, as shown in Fig. 8,

where kp and ki are the proportional and integral gains, respectively. Note that, D(s) appears as a disturbance input

to the PLL small-signal model.

Fig. 8. Small-signal model of the DFAC-pPLL.

From Fig. 8, the closed loop transfer function of the system can be obtained as

θ̂(s) = G(s) [θ(s) +D(s)] (24)

where,

G(s) =
kps+ ki

τps3 + s2 + kps+ ki
(25)

and τp = 1/ωp.

The system stability is guaranteed, if the closed-loop poles, which are the roots of the characteristic equation

(26), have negative real parts.

τps
3 + s2 + kps+ ki = 0 (26)

Applying the Routh-Hurwitz stability test to (26), gives the following range of parameters to keep the system

stable.

0 < ki < kpωp (27)

V. DESIGN GUIDELINES

The aim of this section is to design the PLL parameters (i.e., kp, ki, and ωp) such that the system stability is

guaranteed, and at the same time, a proper transient performance, and a high disturbance rejection capability is

achieved. Some suggestions to improve the ride-through capability of the PLL is also presented in this section.
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A. Stability

The main focus in this section is to establish a design criterion, based on the symmetrical optimum method [36],

so that the maximum possible stability margin for the PLL is achieved.

Considering ki/kp = ωz , the open loop transfer function of the DFAC-pPLL can be derived as

Gol(s) =
kpωp(s+ ωz)

s2(s+ ωp)
. (28)

From (28), the phase margin (PM) can be obtained as

PM = tan−1(ωc/ωz)︸ ︷︷ ︸
φz

− tan−1(ωc/ωp)︸ ︷︷ ︸
φp

(29)

where, ωc is the crossover frequency, and is given by

ωc = kp
cos(φp)

sin(φz)
. (30)

Differentiating (29) with respect to the crossover frequency ωc, i.e. ∂(PM)/∂(ωc), and equating the result to

zero, yields

ωc =
√
ωpωz. (31)

Substituting (31) into (30), gives

ωc = kp (32)

which means that the PM is maximized when the proportional gain kp is equal to the crossover frequency ωc.

From (31), and assuming ωp = k2ωz , where k is a constant value, we get

 ωz = ωc/k

ωp = kωc.
(33)

Substituting (33) into (29), PM can be rewritten as

PM = tan−1 k
2 − 1

2k
. (34)

Fig. 9 displays the phase margin versus factor k. As shown, the higher the factor k is, the higher is the phase

margin.
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Fig. 9. Phase margin versus factor k.

Recommended value for a proper phase margin is [37]

30◦ < PM < 60◦. (35)

To meet this, we need

1.732 < k < 3.732. (36)

B. Transient Performance

Here, we are going to optimize the PLL transient performance through minimizing its settling time for both

phase and frequency jumps.

Substituting (32) and (33) into (28), the open loop transfer function Gol can be rewritten as

Gol(s) =
kω2

cs+ ω3
c

s2(s+ kωc)
. (37)

The transfer function (37) has two poles at the origin (i.e., type-2 system). Thus, the zero steady-state error is

guaranteed for both phase jump (step input) and frequency jump (ramp input) [28].

From Fig. 8, the error transfer function, i.e. θe(s)/θ(s), can be derived as

Ge(s) =
θe(s)

θ(s)
=

1

1 +Gol(s)
. (38)

Substituting (37) into (38), yields

Ge(s) =
s2(s+ kωc)

(s+ ωc)(s2 + (k − 1)ωcs+ ω2
c )
. (39)



12

Considering ζ = (k − 1)/2, and ωc = ωn, (39) can be rewritten as

Ge(s) =
s2(s+ (2ζ + 1)ωn)

(s+ ωn)(s2 + 2ζωns+ ω2
n)
. (40)

The inverse Laplace transform of θe(s) = Ge(s)θ(s), for step and ramp inputs, yield the time-domain tracking

errors for phase (θ∆φ
e (t)) and frequency (θ∆ω

e (t)) jumps, respectively, as given in (41) and (42).

θ∆φ
e (t) =



∆φ
ζ−1

[
ζe−ωnt − e−ζωnt cos

(
ωnt
√

1− ζ2
)]

ζ < 1

∆φ e−ωnt(1 + ωnt− ω2
nt

2) ζ = 1

∆φ
ζ−1

[
ζe−ωnt − 1

2e
−(ζ−
√
ζ2−1)ωnt − 1

2e
−(ζ+
√
ζ2−1)ωnt

]
ζ > 1

(41)

θ∆ω
e (t) =



∆ω
(1−ζ)ωn

[
ζe−ωnt + e−ζωnt

{
−ζ cos

(
ωnt
√

1− ζ2
)

+
√

1− ζ2 sin
(
ωnt
√

1− ζ2
)}]

ζ < 1

∆ω
ωn
e−ωnt(ωnt+ ω2

nt
2) ζ = 1

∆ω
(1−ζ)ωn

[
ζe−ωnt − ζ+

√
ζ2−1

2 e−(ζ−
√
ζ2−1)ωnt − ζ−

√
ζ2−1

2 e−(ζ+
√
ζ2−1)ωnt

]
ζ > 1

(42)

From (41) and (42), it is clear that by increasing the natural frequency ωn, the PLL transient behavior (for both

phase and frequency jumps) can be improved. Hence, ωn should be chosen as high as possible to achieve a fast

transient response. Evidently, a high value of ωn, degrades the PLL disturbance rejection capability, thus one has

to find a satisfactory trade-off.

Using Bode diagrams, it can be shown quite simply that, for a given value of ωn, and for 1.732 < k < 3.732

(i.e., 0.366 < ζ < 1.366), the damping factor ζ has relatively little effect on the disturbance rejection capability

of the PLL. Hence, ωn should be selected according to the disturbance rejection requirements of the PLL, and ζ

should be chosen to meet the required transient response and the stability margin of the PLL.

Fig. 10 illustrates the DFAC-pPLL simulated settling-time (which has been normalized by a factor ωn) versus

the damping factor ζ, for both phase jump (black line) and frequency jump (gray line). As shown, for ζ < 1, θ∆φ
e

(phase-jump) and θ∆ω
e (frequency-jump) both have almost the same settling times. However, for ζ > 1, the longer

settling time can be observed for θ∆ω
e . The minimum settling time for both θ∆φ

e and θ∆ω
e appears around ζ = 0.7,

as highlighted in Fig 10. Thus, ζ = 0.7 is selected as the optimum value of the damping factor.

It is evident from (34) that the phase margin is only dependent on the factor k (and hence ζ). Thus, it is
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Fig. 10. Normalized settling time versus the damping factor ζ for the phase-jump (black line) and the frequency jump (gray line).

necessary to analyze the PLL stability for the selected value of the damping factor ζ. Substituting ζ = 0.7 (which

is corresponding to k = 2.4) into (34), yields

PM |k=2.4 = 44.76◦ (43)

which guarantees the PLL stability.

C. Disturbance Rejection

As mentioned earlier, the input voltage harmonics (i.e., the odd harmonics as 3rd, 5th, 7th, etc) appear as

disturbance inputs (i.e., the even harmonics as 2nd, 4th, 6th, etc) to the PLL linearized model. Thus, it is necessary

to provide a sufficient attenuation at the concerned frequencies.

From Fig. 8, the disturbance transfer function relating the estimated angle θ̂ to the disturbance input D(s) can

be derived as

GD(s) =
θ̂(s)

D(s)
=

Gol(s)

1 +Gol(s)
=

(2ζ + 1)ω2
ns+ ω3

n

(s+ ωn)(s2 + 2ζωns+ ω2
n)
. (44)

Fig. 11 illustrates the Bode plot of the transfer function (44) for three different values of the natural frequency

ωn, namely, ωn = 5Hz (solid line), ωn = 15Hz (dashed line), and ωn = 30Hz (dotted line), and for ζ = 0.7.

As shown, the transfer function (44) exhibits a low-pass filtering behavior. The lower the natural frequency is, the

higher is the attenuation at the disturbance frequencies, and hence, the better is the filtering property.

Providing a sufficient attenuation at twice the input voltage fundamental frequency (i.e., 2ω), guarantees the high

disturbance rejection capability. Fig .12 displays the PLL attenuation at 2ω versus the natural frequency ωn. The

proper attenuation (which depends on the application where the PLL is used) is selected to be −20dB in this paper,
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Fig. 11. Bode plot of the disturbance transfer function as a function of the natural frequency ωn: ωn = 5Hz (solid line), ωn = 15Hz
(dashed line), and ωn = 30Hz (dotted line).

yielding the natural frequency ωn (and hence the crossover frequency ωc) equals to 24.71Hz.

Fig. 12. Attenuation at twice the input voltage fundamental frequency versus the natural frequency ωn.

Considering ωc = 24.71Hz (155.26 rad/s), and k = 2.4, the PLL parameters kp, ki, and ωp can be obtained as



kp = ωc = 155.26

ki = ω2
c/k = 10044

ωp = kωc = 59.3Hz.

(45)

D. Ride Through

Another important feature of a PLL for grid-connected power conditioning systems is the ride-through capability,

meaning that, the PLL has to remain synchronized with the grid voltage during the abnormal conditions such as
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the severe voltage sags.

Voltage sags are the most common power quality disturbances in the utility grid [39]. They are transitory in

nature, and mainly caused by switching of large loads, energizing of transformers, connection of large induction

motors, and short circuit faults. When a voltage sag occurs, thanks to the action of the amplitude compensation

block, a fast estimation (about one cycle of the fundamental frequency, as shown in Fig. 13) of the input voltage

amplitude is achieved, making the proposed DFAC-pPLL insensitive to the grid voltage amplitude variations during

the steady-state condition.

Fig. 13. Grid voltage waveform and its estimated amplitude by the DFAC-pPLL under a voltage sag of 0.8 pu.

In the case of line outages, or when the grid faults cause the input voltage amplitude reduces to almost zero,

the PLL may not be able to work properly. The reason is that, even under such conditions, the loop filter tries to

track the reference signal. To assure the ride-through capability, the structure shown in Fig. 14 is recommended

[7], [40]. Here, the grid voltage is continuously monitored by a line quality algorithm, which can be a voltage

amplitude monitoring algorithm in its simplest form. Once an unacceptable grid condition is detected, the loop

filter is disconnected from the phase detector, so that the output signal of the PLL remains on its nominal condition.

Obviously, the threshold values for detecting the unacceptable grid condition depend on the application where the

PLL is used, and can be chosen in accordance with the standards EN 50160 [38], IEEE 1547.1-2005 [41], UL 1741

[42], and IEC 61727 [43], or the national grid codes.

Fig. 14. Modified structure of the DFAC-pPLL to assure the ride-through capability.
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VI. PERFORMANCE EVALUATION

In the following, the performance of the proposed DFAC-pPLL has been evaluated through extensive simulations

in Matlab/Simulink environment, and experiments based on a TMS320F28335 floating-point 150-MHz digital signal

controller (DSC) from Texas Instruments. The sampling frequency has been fixed to 10 kHz, and the nominal

frequency has been set to 60 Hz. To generate the desired input voltage in experimental verifications, a programmable

ac voltage source has been utilized.

A. Phase Jump

Figs. 15 and 16 depict the simulation and experimental results, respectively, when a phase jump of 40◦ occurs

in the input voltage. It can be seen that the phase error decays to zero in about 40 ms (i.e. less than 2.5 cycles),

and the overshoot is limited to 15◦. Notice that the simulation and experimental results are in perfect agreement.

(a) (b)

Fig. 15. Simulation results for the phase jump of 40◦: a) estimated frequency, b) phase error.

Fig. 16. Experimental results for the phase jump of 40◦: Ch1) estimated frequency (4 Hz/div), Ch2) phase error (15 deg/div).
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B. Frequency Jump

Figs. 17 and 18 illustrate the simulation and experimental results, respectively, when the input voltage undergoes

a frequency-jump of 5 Hz. As shown, the estimated frequency is locked to the real one in about 40 ms (i.e. less

than 2.5 cycles). The phase-error peak is about 10◦ in this condition.

C. Voltage Sag

Figs. 19 and 20 show the simulation and experimental results, respectively, when the input voltage undergoes a

voltage sag of 30%. As shown, the phase-error settling time is less than one-and-a-half cycles. During the transient,

the peak-to-peak value of the phase error is limited to 4◦.

(a) (b)

Fig. 17. Simulation results for the frequency jump of 5 Hz: a) estimated frequency, b) phase error.

Fig. 18. Experimental results for the frequency jump of 5 Hz: Ch1) estimated frequency (2 Hz/div), Ch2) phase error (4 deg/div).
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(a) (b)

Fig. 19. Simulation results for voltage sag of 30%: a) input voltage, b) phase error.

Fig. 20. Experimental results for voltage sag of 30%: Ch1) input voltage (26 V/div), Ch2) phase error (1.5 deg/div).

D. Harmonic Distortion

Figs. 21 and 22 illustrate the simulation and experimental results, respectively, when 15% third-harmonic compo-

nent is injected into the input voltage. As shown, the harmonic distortion causes a peak-to-peak phase-error of about

1.7◦ in the steady-state. It is worth mentioning that, this error can be further reduced by selecting a lower crossover

frequency ωc (and hence higher attenuation at the disturbance frequencies), but at the expense of degrading the

transient behavior of the PLL.

E. Noise Immunity

The degree of the noise immunity of the DFAC-pPLL is investigated in this section. For this reason, the voltage

vi is contaminated by a zero-mean white Gaussian noise of variance 0.05. Considering a unity value for the input

signal amplitude, the signal-to-noise ratio (SNR) at the input terminal is [44]

SNRin = 10 log(
V 2

2σ2
) = 10 dB (46)
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(a) (b)

Fig. 21. Simulation results for 15% third harmonic injection: a) input voltage, b) phase error.

Fig. 22. Experimental results for 15% third harmonic injection: Ch1) input voltage (26 V/div), Ch2) phase error (1.5 deg/div).

where σ2 is the noise variance.

Fig. 23(a) illustrates the noise-corrupted input signal (dark line) and output signal (light line) of the PLL. It can

be seen that the proposed PLL yields high degree of noise immunity. The output noise is about one-tenth of the

input noise (see Fig. 23(b)).

(a) (b)

Fig. 23. Degree of noise immunity of the proposed DFAC-pPLL: SNRin = 10dB a) input (dark line) and output (light line) signals, b) input
(dark line) and output (light line) noises.
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F. Comparison

Table I provides a comparison between the results obtained from the DFAC-pPLL, and the ones obtained from

pPLL, park-PLL, and Enhanced PLL (EPLL). The parameters of these three PLLs (i.e. pPLL, prak-PLL, and EPLL)

are set equal to the values suggested in [7], yielding almost the same bandwidth for the EPLL (40 Hz), and the

park-PLL (45 Hz) as compared to the DFAC-pPLL (42 Hz). The pPLL bandwidth is much lower (about 24 Hz),

which is unavoidable, due the the high attenuation required at twice the input voltage fundamental frequency. The

results shown in Table I highlight the promising performance of the proposed DFAC-pPLL.

TABLE I
COMPARISON SUMMARY.

pPLL Park-PLL EPLL DFAC-pPLL

+40◦ phase-angle jump
Settling time 7 cycles 3 cycles 2.5 cycles 2.4 cycles

Overshoot 23◦ 14◦ 15◦ 15◦

+5Hz frequency jump
Settling time 7 cycles 3 cycles 2.5 cycles 2.4 cycles

Peak phase error 30◦ 9◦ 9◦ 10◦

Voltage sag of 30%
Settling time 5 cycles 2 cycles 2.5 cycles 1.2 cycles

15% 3rd harmonic injection
Peak-to-Peak phase error ≈ 0◦ 3◦ 5◦ 1.7◦

Phase margin 34◦ 35.3◦ 61.3◦ 44.76◦

Noise immunity perfect good fair good

Computational load 2.58µs 3.8µs 3.04µs 3.96µs

VII. CONCLUSION

To overcome the drawbacks associated with the pPLL, a simple and effective method, called DFAC method,

was proposed in this paper. Through a detailed mathematical analysis it was shown that the suggested method

successfully compensates for the undesired double frequency oscillations, as well as the input voltage amplitude

variations without decreasing the bandwidth of the PLL, which leads to a poor dynamic performance. A systematic

design procedure to fine-tune the PLL parameters was then proposed, which guarantees a fast transient response,



21

a high disturbance rejection capability, and a robust performance. To confirm the promising performance of the

DFAC-pPLL, extensive simulation and experimental verifications were provided.
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