

Aalborg Universitet

A Framework for Multi-Robot Motion Planning from Temporal Logic Specifications

Koo, T. John; Li, Rongqing; Quottrup, Michael Melholt; Clifton, Charles; Izadi-Zamanabadi,
Roozbeh; Bak, Thomas
Published in:
Science in China. Series F: Information Sciences

DOI (link to publication from Publisher):
10.1007/s11432-012-4605-8

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Koo, T. J., Li, R., Quottrup, M. M., Clifton, C., Izadi-Zamanabadi, R., & Bak, T. (2012). A Framework for Multi-
Robot Motion Planning from Temporal Logic Specifications. Science in China. Series F: Information Sciences,
55(7), 1675-1692. https://doi.org/10.1007/s11432-012-4605-8

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 10, 2024

https://doi.org/10.1007/s11432-012-4605-8
https://vbn.aau.dk/en/publications/6ac2d860-b041-11dd-a82d-000ea68e967b
https://doi.org/10.1007/s11432-012-4605-8

. RESEARCH PAPERS .

SCIENCE CHINA
Information Sciences

month year Vol. xx No. xx: 1–19
doi:

c⃝ Science China Press and Springer-Verlag Berlin Heidelberg 2010 info.scichina.com www.springerlink.com

A Framework for Multi-Robot Motion Planning from Temporal
Logic Specifications

T. John Koo1∗, Rongqing Li1, Michael M. Quottrup2, Charles A. Clifton3,
Roozbeh Izadi-Zamanabadi2 & Thomas Bak2

1Center for Embedded Software Systems, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, China

2Department of Automation and Control, Aalborg University,
Aalborg Oest 9220, Denmark

3 Department of Electrical Engineering and Computer Science, College of Engineering,
Vanderbilt University, Nashville, Tennessee 37235, USA

Received xx, xx, xxxx; accepted xx xx, xxxx

Abstract We propose a framework for the coordination of a network of robots with respect to formal requirement specifications
expressed in temporal logics. A regular tessellation is used to partition the space of interest into a union of disjoint regular and
equal cells with finite facets, and each cell can only be occupied by a robot or an obstacle. Each robot is assumed to be equipped
with a finite collection of continuous-time nonlinear closed-loop dynamics to be operated in. The robot is then modeled as a
hybrid automaton for capturing the finitely many modes of operation for either staying within the current cell or reaching an
adjacent cell through the corresponding facet. By taking the motion capabilities into account, a bisimilar discrete abstraction of
the hybrid automaton can be constructed. Having the two systems bisimilar, all properties that are expressible in temporal logics
such as Linear-time Temporal Logic, Computation Tree Logic, and µ-calculus can be preserved. Motion planning can then be
performed at a discrete level by considering the parallel composition of discrete abstractions of the robots with a requirement
specification given in a suitable temporal logic. The bisimilarity ensures that the discrete planning solutions are executable by the
robots. For demonstration purpose, a finite automaton is used as the abstraction and the requirement specification is expressed in
Computation Tree Logic. The model checker Cadence SMV is used to generate coordinated verified motion planning solutions.
Two autonomous aerial robots are used to demonstrate how the proposed framework may be applied to solve coordinated motion
planning problems.

Keywords Motion planning, Multi-robot systems, Temporal logic, Hybrid automata, Discrete abstraction

Citation T. John Koo, Rongqing Li, Michael M. Quottrup, Charles A. Clifton, Roozbeh Izadi-Zamanabadi, Thomas Bak. A Framework for
Multi-Robot Motion Planning from Temporal Logic Specifications.

1 Introduction

The problem of controlling mobile multi-robot systems (MRS) in a coordinated manner has become an important
research issue. By properly utilizing multiple robots, the robots can accomplish an assigned mission faster and more
reliably than a single robot by performing the mission in a coordinated manner. Furthermore, multiple robots can
often deal with tasks that are challenging, if not impossible, to be accomplished by a single robot in application
domains such as container transshipment tasks in harbors, airports, and formation keeping and control in military
∗Corresponding author (email: john.koo@siat.ac.cn)

2 T. John Koo, et al.

applications [1, 2, 3]. In the context of MRS, one major challenge is the need to control, coordinate and synchronize
the operations of several robots to perform some specified missions collectively, while satisfying their inter- and intra-
robots dynamical constraints.

A number of different approaches have been taken in order to coordinate multi-robot systems. A formalism for the
composition of concurrent robot behaviors, using threaded Petri nets, has been developed in [4]. In [5] multi-robot
coordination is achieved by employing a plan-merging paradigm that guarantees coherent behavior of all robots in all
situations. A distributed negotiation mechanism for multi-robot coordination is considered in [6]. A hybrid control
approach to action coordination and collision avoidance was taken in [7, 8]. A formal hybrid approach to the modeling
and analysis of coordinated multi-robot systems was taken in [9]. Bisimular abstraction of hybrid model for robots
with nonlinear continuous-time dynamics was introduced in [10].

The use of temporal logic as a mechanism for requirement specification and controller synthesis in mobile robotic
systems has been advocated as far back as [11]. Quottrup et. al. [12] has formulated the problem of coordination of
networks of robots by using timed automata with motion specification expressed in Computation Tree Logic (CTL).
Fainekos et al. [13] have considered the problem of motion planning for a single, fully actuated robot in a polygonal
environment in order to satisfy formulae expressed in Linear-time Temporal Logic (LTL). In [14], abstractions are
obtained for more complicated dynamics, such as affine systems in simplices, multi-affine in rectangles. Even more
complicated dynamics (such as unicycles) can be handled if an extra (continuous) abstraction level is allowed. [15]
considers the problem of controlling a planar robot in a polygon so that its trajectory satisfies an LTL formula. A
fully automated framework for control of continuous-time linear control systems from specifications was provided by
Kloetzer and Belta [16]. A single robot was used as an illustrative example. Kloetzer and Belta [17, 18, 19] have
proposed a framework for motion planning in a partitioned environment. The robot is modeled as a transition system
and algorithmic methods are used to generate motion plans for the robots that satisfy the task requirement specification.
In [20], temporal logic constraints are used for optimal path planning of a robot for surveillance. In [21], the temporal
logic motion planning problem for mobile robots that are modeled by continuous-time second order linear dynamics
is investigated. However, the aforementioned temporal logic based approaches only applied to robots with either no or
linear closed-loop dynamics.

In this paper we provide a framework for the coordination of a MRS by using temporal logic to formulate the mission
specifications. The framework is extended from our previous works[10, 12] to consider a more general problem setting
on the environment, the robot dynamics and the system composition. We assume a regular tessellation has been used
to partition the space of interest into a union of disjoint regular and equal cells with finite facets, and each cell can
only be occupied by a robot or an obstacle. Without imposing too much restriction on the robot dynamics, we assume
that each robot has finitely many modes of operation that enable the robot either to stay within the current cell or to
reach an adjacent cell through the corresponding facet. This framework provide the flexibility on allowing each robot
being assumed to be equipped with a finite collection of continuous-time nonlinear closed-loop dynamics for defining
the modes of operation. A hybrid automaton model can be used to capture the finite collection of robot dynamics. By
considering the motion capabilities, a bisimilar discrete abstraction of the hybrid automaton can be constructed. Having
the two systems bisimilar, all properties that are expressible in temporal logics such as LTL, CTL, and µ-calculus can
be preserved. Therefore, on one hand, motion planning of robots can be performed at a discrete level by considering the
parallel composition of discrete abstractions of the robots and a requirement specification expressed in some suitable
temporal logic. On the other hand, the bisimilarity ensures that the discrete planning solutions are executable by the
robots with continuous dynamics. The result is a framework which captures realistic robot dynamics in a discrete
abstraction and allows the use of verification methods to generate motion plans for a MRS such that a requirement
specification is met.

For demonstration purpose, a finite automaton is used as the discrete abstraction and the requirement specification
is expressed in CTL. We use Cadence SMV [22, 23, 24] as a model checker for generating and verifying coordinated
motion planning solutions. Furthermore, we are interested in the specification for having the robots reaching their
goals eventually, while always avoiding collision. A feasible path for the robots can be generated as a counterexample
to the negation of a given specification. Notice that the proposed framework does not impose any restrictions on the
type of temporal logic or model checkers that should be used. Hence, depending on the nature of the problem, a
suitable temporal logic along with a proper model-checker could be used. Two autonomous aerial robots will be used

T. John Koo, et al. Sci China Inf Sci month year Vol. xx No. xx 3

for illustrating the design challenges in motion planning and coordination of MRS.
This paper is organized as follows: In Section 2 the environment and MRS are modeled. The embedding of a generic

hybrid automaton into a labeled transition system and the abstraction of the transition system are described in Section 3.
Section 4 describes a system implementation of the networked finite automata along with requirement specification. In
Section 5, experimental results are presented. Conclusion and discussion of the proposed framework are provided in
Section 6.

2 System Modeling

In this section, environment model and robot model are introduced. Then, the assumptions made on the robot motions
are presented.

2.1 Environment Model

Consider a continuous state space Y ⊆ Rm. A family π = {Yj} of non-empty subsets of Y is called a partition of Y
which satisfies the following two properties: Y =

∪
j Yj and Yi ∩ Yj = ∅, ∀i ̸= j. The partition π with a collection of

Yj cells induces an equivalence relation. In this context, the induced equivalence relation ≈ is called cell equivalence
and is defined over the continuous state space Y . For any two positions y′, y′′ ∈ Y , y′ ≈ y′′ iff there exists j such that
y′, y′′ ∈ Yj . The cell equivalence relation ≈ has finitely many equivalence classes, which are precisely the collection
of cells Yj .

We shall use a specific partition called regular tessellation. Regular tessellation is defined as a partition of space
into the union of a set of disjoint regular and equal cells which can be regular polygons (in two dimensions), polyhedra
(three dimensions), or polytopes (m dimensions). An m-dimensional polytope is bounded by a number of (m-1)-
dimensional facets. These facets are themselves polytopes. In two dimensions, there are only three possible regular
tessellations, squares, equilateral triangles, or regular hexagons. In three dimensions, a polyhedron which is capable
of tessellating space is called a space-filling polyhedron. Examples include the cube, rhombic dodecahedron, and
truncated octahedron.

Here, we assume that the set Y can be decomposed by a regular tessellation π = {Yj} of M non-empty cells of
Y and N facets for each Yj . The N adjacent cells of Yj are labelled by {Yk} with k ∈ Ij , where Ij is the set of
indexes of {Yj}’s adjacent cells . The regular tessellation can be chosen such that (i) the size of each cell can have at
least one robot occupied while having an obstacle occupying one or more cells depending on its shape and size; (ii)
the shape of the cell should be chosen to conform to the motion capabilities of the robots such that a robot can reach
an adjacent cell via the corresponding facet in finite time. Furthermore, there is a trade-off between granularity and
problem complexity which should be considered in deciding the tessellation.

2.2 Robot Model

For each robot, we assume that there are N + 1 modes of operation labelled by qi with i = 0, 1, . . . , N and the
continuous dynamics associated with the modes are specified in the form of ẏ = f(qi, y) for describing the motion
capabilities of the robot designed for a) staying within the current cell in mode q0 and b) reaching the ith neighboring
adjacent cell through the corresponding facet in mode qi with i ∈ {1, . . . , N}. Hence, if initially the robot is in cell
Yj , it can stay in the same cell by using mode q0 or move to the ith adjacent cell by using mode qi.

In order to quantitatively define the motion capabilities of the robots, we consider the following temporal operators
3, 2, 32 and the universal path quantifier A as defined in [25, 26]. Consider an initial set Fs and a set F with
Fs, F ⊆ Y . We define the properties A3F , A2F , A32F with respect to the trajectory y(t) of ẏ = f(qi, y) with
initial conditions specified by Fs ⊆ F as follows: (i)A3F is true iff ∀y(0) ∈ Fs ∃t ∈ [0,∞), y(t) ∈ F ; (ii)A2F is
true iff ∀y(0) ∈ Fs ∀t ∈ [0,∞), y(t) ∈ F ; and (iii)A32F is true iff ∀y(0) ∈ Fs ∃t0 ∈ [0,∞), ∀t > t0, y(t) ∈ F.

By using the properties, we can then specify the assumption made on the motion capabilities of the robots.

Assumption 1. Consider a robot with a collection of modes of operation {q0, q1, . . . , qN}, a cell Yj also as the initial
set, the robot satisfies the followings:

4 T. John Koo, et al.

1. A2Yj is true for q0;

2. A32Yk
∧
A2(Yj ∪ Yk) is true for qi ∈ {q1, . . . , qN} and k ∈ Ij ;

where given the cell index j and the mode index i, the next cell index k can be determined.
The first condition is to ensure that in mode q0 the continuous state y is kept positively invariant in Yj . The second
condition is to enable that when for any adjacent cell Yk of Yj with k ∈ Ij , by using mode qi the continuous state
starting from any point in Yj can eventually reach somewhere in Yk and then keep staying in Yk, furthermore the state
is always within Yj and Yk. In Section 5, we will show the implementation of a controller design for the aerial robots
which can satisfy the aforementioned assumption with experimental results.

Figure 1: Each robot can have its distinct collection of modes of operation for staying within the current cell or for
moving to an adjacent cell.

Given the modes of operation, a hybrid automaton can be used to model the motion of the robot among the cell
Yj and its adjacent cells {Yk} with k ∈ Ij by the following input σ. The hybrid automaton is defined as H =

(Q,Y,Σ, Init , f,D,G), where

• Q = {q0, q1, · · · , qN} is the set of discrete states,

• Y ⊆ Rm is the continuous state space,

• Σ = {σ1, · · · , σN} is the alphabet for input σ ∈ Σ,

• Init = {q0} × Yj is the initial set,

• f is the vector field defined by ẏ = f(q, y) for q ∈ Q,

• D is the domain defined by

D(q) =

{
{σ0} × Yj if q = q0,

{σi} × (Yj ∪ Yk) if q = qi.

• G is the guard relation defined by

G(q, q′) =

{
σi if q = q0 and q′ = qi,

σ0 if q = qi and q′ = q0.

The hybrid automaton H starts in the hybrid state Init = {q0} × Yj . Hence, the robot can start in the discrete state
q0 at an arbitrary position within the continuous space Yj . Each discrete state q, which has a continuous dynamics
embedded, is treated as a mode of operation of the robot for reaching a specific cell among the N adjacent cells. In
the q0 mode, the robot stays within the cell Yj with dynamics specified by ẏ = f(q0, y). In other modes qi with
i = 1, . . . , N , the robot transits to the adjacent cell Yk according to the continuous dynamics specified by ẏ = f(qi, y).

T. John Koo, et al. Sci China Inf Sci month year Vol. xx No. xx 5

In q0 the hybrid automaton H can accept any input from the set of events Σ \ {σ0} as defined by the guard relation
G. If the input is σi, the guard G(q0, qi) is enabled but the domain D(q0) is violated and hence the hybrid automaton
H takes immediate transition to qi. In qi ∈ Q \ {q0} the hybrid automaton H accepts only the input σ0 and takes the
transition back to q0.

2.3 Robot Motions

Here, we are interested in the reachability of the robots in the environment. In [10] the time-abstract transitions for
describing the continuous transitions of a hybrid automaton have been introduced.

Time-abstract transition is defined as the type of continuous transition associated with hybrid automaton H . Time-
abstract transition is essential in the process of embedding the hybrid automaton H into the class of labeled transition
systems and subsequently for obtaining a finite quotient transition system. Define ϕ(t, q, y0) as the solution of the
differential equation ẏ = f(q, y) with y(0) = y0 for t > 0.

Definition 1 (σ-labeled transition). Consider y′, y′′ ∈ Y and σ ∈ Σ, the σ-labeled transition is defined as

y′
σ−→ y′′ iff ∃δ ∈ R>0 y

′′ = ϕ(δ, q, y′).

This transition is defined for some period of time δ and it describes the continuous transition in discrete state q ∈ Q

with input σ ∈ Σ. The introduction of time-abstract transitions allows us to define cyclic transitions.

Definition 2 (σ-labeled cyclic transition). Consider y′, y′′′

∈ Y and σi ∈ Σ \ {σ0}, the σi-labeled cyclic transition is defined as

y′
σi=⇒ y′′′ iff ∃y′′ ∈ Y y′

σi−→ y′′
σ0−→ y′′′.

Notice that we further assume that after each σi-labeled cyclic transition occurs, the continuous part of the domain
in q0, Dx(q0), is redefined as the reached adjacent cell. The hybrid automaton H can operate continuously by taking
the cyclic transitions.

Given the partition π, due to the definition of adjacent cells, there are at most N possible adjacent cells for each cell.
However, for the cells at the boundary of the partition π, we assume that there is at least one adjacent cell that can be
reached. For each adjacent cell, there exists a mode of operation that can make the robot move towards the adjacent
cell. Due to the properties of the system modeled by the hybrid automata H satisfying Assumption 1, one can easily
show that a robot could start anywhere within the cell and then reach somewhere inside the adjacent cell in finite time
and the robot can keep staying in the reached adjacent cell while without leaving the cell and its adjacent one at any
time. Hence, we have the following result.

Theorem 1. Consider a hybrid automaton H with (q0, y
′) ∈ Init , a finite partition of the continuous state space

Y ⊆ Rm defined by π = {Yj}Mj=1. Given a cell Yj ∈ π and an adjacent cell Yk, if H satisfies the properties defined in
Assumption 1, there exists σi ∈ Σ \ {σ0} such that for all y′ ∈ Yj there exists y′′′ ∈ Yk with y′ σi=⇒ y′′′.

Proof. For the given adjacent cell Yk of Yj , there is an input σi ∈ Σ \ {σ0} associated with Yk. When q(t′) = q0
and y(t′) = y′ ∈ Yj at time t′, σi is applied to H and hence σi-labeled transition occurs. Due to the property 2 of
Assumption 1, ∃t′′ > t′, y′′ = ϕ(t′′ − t′, qi, y

′) ∈ Yk. Then, when q(t′′) = qi and y(t′′) = y′′ ∈ Yk at time t′′,
σ1 is applied and hence σ1-labeled transition occurs. Since the property 1 of Assumption 1 is satisfied, ∀t′′′ > t′′,
y′′′ = ϕ(t′′′ − t′′, q1, y

′′) ∈ Yk and q(t′′′) = q1. Hence the result.

3 Discrete Abstraction

The hybrid automaton H is embedded into the class of labeled transition systems with observations. Next a bisimular
abstraction into a quotient transition system is obtained. Hence, the reachability properties of the labeled transition
system can be preserved by a discrete abstraction. This bisimilar abstraction can be captured by a finite automaton and
MRS problems can be represented by a network of interacting finite automata.

6 T. John Koo, et al.

3.1 Embedding the Hybrid Automaton

In order to indicate the occupancy of the cells, we introduce a finite set of observations O associated with the finite set
of cells defined by the partition π = {Yj}Mj=1 of the continuous state space Y . The labeled transition system associated
with hybrid automaton H is defined as Th = (Qh,Σh,=⇒h, O,Υh), where

• Qh = Y is the set of states,

• Σh = Σ \ {σ0} is the set of labels,

• =⇒h ⊆ Y × Σh × Y is the transition relation defined by y σ
=⇒h y

′ if y, y′ ∈ Y ,

• O = BM is the set of observations, where B = {0, 1},

• Υh : Qh → O is the observation map defined as

Υh(y) =
[
Υh1(y) Υh2(y) . . . ΥhM

(y)
]T
,

where Υhj : Y → B = {0, 1}, for j = 1, . . . ,M is defined as

Υhj (y) =

{
1 if y ∈ Yj ,

0 otherwise.

The transition system Th is infinite since the set of states Qh is defined as the continuous state space Y . However, the
set of observations O is finite since the partition π is finite.

3.2 Constructing the Abstraction

The set of all equivalence classes Yj in Y is called the quotient space Y/≈ of Y induced by the cell equivalence
relation ≈. The quotient space Y/≈ is defined as Y/≈ = π, that is the set consisting of all equivalence classes Yj of
cell equivalence relation ≈. Given the cell equivalence relation ≈ there is a canonical projection map Ψh : Y → Y/≈
defined as Ψh(y) = Yi if y ∈ Yi, which sends each y ∈ Y to its equivalence class Yi. The quotient transition system
obtained from the labeled transition system Th is defined as Th/≈ = (Qh/≈,Σh,=⇒h /≈, O,Υh/≈), where

• Qh/≈ = Y/≈ is the set of states,

• =⇒h /≈ ⊆ Qh/≈ × Σh × Qh/≈ is the transition relation defined by Yi
σ

=⇒h /≈Yj iff there exists y ∈ Yi
and y′ ∈ Yj such that y σ

=⇒h y
′ in Th,

• Υh/≈ : Qh/≈ → O is the observation map defined by Υh≈(Ψh(y)) = Υh(y).

The labeled quotient transition system Th/≈ is finite since Qh/≈, Σh and O are finite. Note, that Σh and O are
inherited from Th.

In order to show that the cell equivalence relation ≈ is a bisimulation of transition system Th associated with hybrid
automaton H , we can use the following Characterization Proposition:

Proposition 1. [27] Consider transition Th, and observation-preserving partition ≈ with quotient map Ψh : Y → Y/≈.
Then ≈ is a bisimulation of Th if and only if for all the states y ∈ Qh and for all σ ∈ Σh, we have

Ψh(Postσ(Ψ
−1
h (Ψh(y)))) = Ψh(Postσ(y))

where Postσ(P) = {y′ ∈ Qh|∃y ∈ P with y σ
=⇒h y

′}.

By constructing the observation map, Υh, according to the partition as shown above, it can be concluded that the cell
equivalence relation ≈ is observation preserving [27], i.e. if y′ ≈ y′′ then Υh(y

′) = Υh(y
′′). Using the result in [27]

it can be show that ≈ is a bisimulation of Th. By construction, Th/≈ automatically simulates Th. The bisimulation
property then ensures that Th also simulates Th/≈, hence T and T/≈ are bisimilar. As they are bisimilar, T and T/≈
have equivalent reachability properties. Hence, checking any property expressible by a temporal logic formula for
T/≈, which is discrete and finite, can be performed equivalently on the bisimilar system Th.

T. John Koo, et al. Sci China Inf Sci month year Vol. xx No. xx 7

3.3 System Composition

Given the bisimilar discrete abstraction, a finite automaton can be constructed for preserving the reachability properties
of the robot model composition of robots now formally be defined within the framework defined for finite automata.
Finite automaton Ar is used as a template for defining robot processes Ar1∥ . . . ∥ArN , where ∥ denotes parallel com-
position. We will consider both settings in which this composition is synchronous or asynchronous. To allow the robot
processes to move concurrently in the environment a robot controller Aci for i = 1, . . . , N is associated with each
robot. A set of static obstacles Ao1∥ . . . ∥AoM are created from an automaton template.

For the resulting network of interacting finite automata (Ar1∥ . . . ∥ArN)∥(Ac1 ∥ . . . ∥AcN)∥(Ao1∥ . . . ∥AoM), model
checkers for finite automata can be used to generate and verify coordinated motion planning solutions for the network
of robots, given a requirement specification for the network in some suitable temporal logics. The sequence of input
synchronization actions, generated by the model checker, can subsequently be used to control the network of robots
H1, . . . , HN such that the requirement specification is satisfied.

4 System Implementation

In this section, a 2-dimensional case study is used to demonstrate how the framework can be implemented to solve the
coordinated motion planning problem of robots in a partitioned environment. As shown in Figure 2, the partition π
is constructed by placing a two-dimensional grid over the continuous state space Y ⊆ R2. The obtained partition is
composed of identical square cells with length ϵ > 0. The local motion of a robot is specified by the hybrid automaton
H which restricts the robot movement from the current cell to only one of the adjacent cells.

Figure 2: Partition π of the continuous space Y into a finite number of cells.

As described above, the environment, the robots and controllers are modelled by finite automata.

Definition 3 (Finite Automaton). A Finite Automaton is a tuple (L, l0, A,E) , where:

• L is a set of states,

• l0 ∈ L is the initial state,

• A is a finite alphabet,

• E ⊆ L×A× L is the set of edges between states with a command.

For demonstration purpose, we are interested in having the requirement specification expressed in Computation Tree
Logic (CTL) [22] and using Cadence SMV [22, 23, 24] as the model checker for generating and verifying coordinated
motion planning solutions. The model checker Cadence SMV is designed to check CTL formulae against a finite
automaton model.

CTL formulae can be defined inductively via a Backus Naur form as following:
ϕ ::= ⊥ | ⊤ | p | (¬ϕ) | (ϕ∧ϕ) | (ϕ∨ϕ) | (ϕ; ϕ) | AXϕ | EXϕ | AFϕ | EFϕ | AGϕ | EGϕ | A[ϕUϕ] | E[ϕUϕ]

8 T. John Koo, et al.

where p ranges over a set of atomic formulae.
In CTL formulae, a temporal connective is a pair of symbols. The first of the pair is A or E. A means ‘along All

paths’ and E means ‘along at least (there Exists) one path’. The second one of the pair is X, F, G, or U, meaning ‘neXt
state’, ‘some Future state’, ‘all future states’ and Until, respectively.

To check a model, we should first construct an abstract model in the SMV input language, and specify properties
using CTL. Both the system model and property specifications can be represented by binary decision diagrams (BD-
D). The SMV system uses the BDD-based symbolic model checking algorithm to determine whether specifications
expressed in CTL are satisfied or not. If satisfied, SMV will give the result of truth, or else, report unsatisfied and give
a counterexample.

The time complexity in model checking CTL formulae ϕ is O(|S| · |ϕ|) [23] , where |S| is the size of state space of
the system model and |ϕ| is the length of formula ϕ. The time complexity of checking CTL formulae is linear in the
state space of system model and the length of formula.

4.1 Modeling the Environment

A set of discrete states Z is represented in an occupancy table which is modeled as a two-dimensional integer array
Z: array 0..Z 1 of array of Z 2 of 0..1 in SMV, where Z 1, Z 2 ∈ Z define the size of the array in the x1
and x2 direction, respectively. Thus, elements of the array represent discrete positions, where each discrete position
can be assigned the value 0 (free) or 1 (occupied). A particular element (1, 2) of the array Z is marked occupied by
the assignment Z[1][2] := 1. By default all elements of the array Z are initialized to zero. Static obstacles may be
present in the environment where the robots are moving. A static obstacle is modeled as an automatonAo = (L, l0, E),
where

• L = {l0, l1} is the set of states,

• l0 ∈ L is the initial state,

• E ⊆ L × L is the set of edges, where an edge contains a source and a target state. The edges consist of
e00 = (l0, l0) and e01 = (l0, l1).

obsNo=obsID & j<1
Z[z_1Stat][z_2Stat]:=1
j:=j+1

obsNo=obsID & j=1
ObsNo:=ObsNo+1
j:=0

l_0

l_1

Figure 3: Finite automaton for one static obstacle.

Automaton Ao modeling one static obstacle is graphically shown in Figure 3. In order to encode the occupancy
of a cell by the automaton Ao, the guard of Ao is augmented with additional conditions. Automaton Ao starts in the
initial state l0, when the guard obsNo = obsId and j < 1 is enabled, the assignment Z[z 1Stat][z 2Stat] :=

1 is performed and the index variable j is incremented. The edge from l0 to l1 will then become fired since the guard
obsNo = obsID and j = 1 is satisfied, resulting in an update of index variable j to zero, an increment of obsNo.
This automaton is used as a module for declaring static obstacles processes. Processes modeling the static obstacle
module can be declared with the parameters specified in Table 1.

T. John Koo, et al. Sci China Inf Sci month year Vol. xx No. xx 9

Table 1: Template parameters for one static obstacle.

Parameter Type Description

obsID int Unique identifier for static obstacle
z 1Stat int Static position of obstacle in x1 direction
z 2Stat int Static position of obstacle in x2 direction

4.2 Finite Automaton Model of Robot

Recall, that the goal is to generate a set of collision-free paths for the network of robots which satisfy a formal require-
ment specification in CTL and which enable the network of robots to eventually reach their goal positions. In CTL, the
“eventually reach goal position” property is specified as a reachability property whereas the “collision-avoidance”
property is specified as a safety property. This problem is solved in two steps: (i) The collision-avoidance property
is guaranteed by using a correct-by-construction principle where the collision-avoidance property is embedded in the
finite automaton modeling each robot. (ii) The eventually reaching goal position property is ensured for each robot in
the network by using the model checker.

An SMV module is now constructed from the finite transition system Tt. The finite automaton associated with Tt is
defined as Ar = (L, l0, A,E,), where

• L = {l0, l1, l2, l3, l4, l5} is the set of states,

• l0 ∈ L is the initial state,

• A = {sigma 2, sigma 3, sigma 4, sigma 5,TRUE} is the set of input commands,

• E ⊆ L×A×L is the set of edges, where an edge contains a source state, a guard to be satisfied, a command to be
received, and a target state. The edges consist of e00 = (l0,TRUE, l0), e01 = (l0,TRUE, l1), ei1 = (li,TRUE, l1)
for i = 2, . . . , 5, and e1j = (l1, sigma j, lj), for j = 2, . . . , 5, where eij denotes the edge from location li to lj .

robotNo=robotID & i<1
Z[z_1Init][z_2Init]:=1
i:=i+1

robotNo=robotID & i=1
robotNo:=robotNo+1
i:=0

Z[z_1][z_2]:=0
Z[z_1+1][z_2]:=1
z_1:=z_1+1

move=sigma_2 & z_1<Z_1& Z[z_1+1][z_2]=0

move=sigma_5 & z_2<0 & Z[z_1][z_2-1]=0

Z[z_1][z_2]:=0
Z[z_1-1][z_2]:=1
z_1:=z_1-1

move=sigma_3 & z_1>0 & Z[z_1-1][z_2]=0

Z[z_1][z_2]:=0
Z[z_1][z_2+1]:=1
z_2:=z_2+1

move=sigma_4 & z_2<Z_2 & Z[z_1][z_2+1]=0

Z[z_1][z_2]:=0
Z[z_1][z_2-1]:=1
z_2:=z_2-1

l_0

l_2l_3

l_4 l_5

l_1

Figure 4: Finite automaton for one robot.

The finite automaton Ar starts in state l0. In this state the robot is placed on its initial discrete position as specified
by z 1Init and z 2Init. An enumeration typed state variable move is used to store the command sigma i for i
= 2, . . . , 5. Thus, when a transition of Ar is taken, the guard move=sigma i for i = 2, . . . , 5 could be evaluated
first. In state l1 the robot can move from the initial cell to an adjacent cell in the partition given that one of the edges
are fired and the associated controller sends the corresponding command. In state l1 the finite automaton is ready to

10 T. John Koo, et al.

receive a command sigma i for i = 2, . . . , 5 from the associated controller. However, in order to avoid the robot
from moving to an occupied cell, the guard is augmented with additional conditions. If the edge e12 is fired and the
command sigma 2 is received the finite automaton fires the edge e12 to state l2. Note that the edge e12 is only fired
if the adjacent cell is free Z[z 1+1][z 2] = 0 and within the defined partition, i.e. z 1 < Z 1. The adjacent cell
is marked occupied Z[z 1+1][z 2] := 1 when the edge e12 is fired. In state l2 the movement towards the adjacent
cell is performed for a fixed step. Then, the edge e21 is fired and a transition is taken back to state l1. When the edge
e21 is fired, the previous cell is marked free Z[Z 1][Z 2] := 0 and the discrete position of the robot is updated z 1

:= z 1 + 1. Parameters for declaring the robot module are specified in Table 2. The augmented finite automaton Ar

modeling one robot is graphically illustrated in Figure 4.

Table 2: Template parameters for one robot and one robot controller.

Parameter Type Description

robotID int Unique identifier for robot
z 1Init int Initial position of robot in x1-direction
z 2Init int Initial position of robot in x2-direction
sigma 2 bool Command to move robot in x1-direction
sigma 3 bool Command to move robot in −x1-direction
sigma 4 bool Command to move robot in x2-direction
sigma 5 bool Command to move robot in −x2-direction

4.3 Finite Automaton Model of Controller

A controller is associated with each finite automaton modeling a robot. A controller for each robot is needed as the
system consists of a network of concurrent robots moving in the environment. The robot controller is modeled as an
automaton Ac = (L, l0, A,E), where

• L = {l0} is the set of states,

• l0 ∈ L is the initial state,

• A = {sigma 2, sigma 3, sigma 4, sigma 5,TRUE} is the set of output commands,

• E ⊆ L × A × L is the finite set of edges, where an edge contains a source state, and a target state. The edges
consist of ei = (l0, sigma i, l0) for i = 2, . . . , 5.

move:=sigma_4

move:=sigma_2

move:=sigma_5

move:=sigma_3

l_0

Figure 5: Finite automaton for one robot controller.

The robot controller automaton is shown in Figure 5. The automaton Ac starts in state l0. In this state the au-
tomaton can send an output command sigma i ∈ A to the finite automaton Ar modeling a robot. The set of output
command A represent all possible movements of a robot. The process of sending commands is implemented by using
move:=sigma i for i= 2, . . . , 5. Thus, if the automaton Ac takes the edge e2 = (l0, sigma 2, l0) then finite automa-
ton Ar will take the corresponding edge e12 = (l1, sigma 2, l2). The automaton Ac is used as a module for declaring
control process instances. Furthermore, notice that it takes transitions in a nondeterministic manner in order to enable
the generation of all possible movements.

T. John Koo, et al. Sci China Inf Sci month year Vol. xx No. xx 11

4.4 Requirement Specification

Consider a network of two robots R1 and R2 with initial and goal position as shown in Figure 6. They have to move
from initial to goal positions while avoiding collision with each other and the static obstacles. The system to be model
checked consists of the following processes: Robots R1 and R2, robot controllers C1 and C2, and static obstacles
O1, . . . , O32.

G2

G1 R1

R2

0 1 2 3 4 5 6

0

1

2

3

4

5

6

x1

x2

Figure 6: Setup for network of two robots R1 and R2 where G1 and G2 represent goal positions.

4.4.1 Reachability Properties

The reachability properties are used for the generation of a feasible motion plan, that will move the robots from their
initial to goal positions, while avoiding collision among robots and obstacles.

Property 1 (Reachability)

Does a location trajectory exist where the robots R1 and R2 eventually reach their goal positions G1 and G2?
EF (contr1.rob.z 1 = 2 & contr1.rob.z 2 = 3

& contr2.rob.z 1 = 1 & contr2.rob.z 2 = 5)

Property 2 (Reachability with step requirement)

Does a location trajectory exist where the robots R1 and R2 eventually reach their goal positions G1 and G2 in less
than 15 steps?
EF (contr1.rob.z 1 = 2 & contr1.rob.z 2 = 3

& contr2.rob.z 1 = 1 & contr2.rob.z 2 = 5

& contr1.rob.step < 15 & contr2.rob.step < 15)

Property 1 expresses the behavior that the robots eventually will reach their goal positions, whereas Property 2 express-
es the behavior that the robots eventually will reach their goal positions within a given step constraints; here specified
by 15 steps.

4.4.2 Safety Properties

The safety properties are used to check if collision avoidance is achieved among the robots when moving and static
obstacles and also that the robots will move within the environment.

Property 3 (Collision avoidance)

Does all location trajectories the robots R1 and R2 take ensure they never collide after they both start to move, i.e.
for step > 0?
AG ! ((contr1.rob.z 1 = contr2.rob.z 1)

12 T. John Koo, et al.

& (contr1.rob.z 2 = contr2.rob.z 2)

& contr1.rob.step > 0 & contr2.rob.step > 0)

Property 4 (Bounded movement)

Does location trajectories the robots R1 and R2 ensure that they move within the boundaries of the environment?
AG (contr1.rob.z 1 >= 0 & contr1.rob.z 1 <= Z 1

& contr1.rob.z 2 >= 0 & contr1.rob.z 2 <= Z 2

& contr2.rob.z 1 >= 0 & contr2.rob.z 1 <= Z 1

& contr2.rob.z 2 >= 0 & contr2.rob.z 2 <= Z 2)

Property 3 expresses the requirement that collision avoidance is achieved among the robots once they start to move.
Further, the requirement that the robots always move within the boundaries of the partition is expressed in Property 4.

Table 3: Comparison of synchronous composition and asynchronous composition.
Synchronous Composition Asynchronous Composition
Step Robot1 Robot2 Step Robot1 Robot2

0 (5, 3) (5, 4) 0 (5, 3) (5, 4)
1 (5, 3) (4, 4) 1 * (4, 4)
2 (5, 4) (3, 4) 2 * (3, 4)
3 (4, 4) (3, 5) 3 * (3, 5)
4 (3, 4) (2, 5) 4 * (2, 5)
5 (3, 5) (1, 5) 5 (5, 4) *
6 (2, 5) (1, 4) 6 (4, 4) *
7 (1, 5) (1, 3) 7 (3, 4) *
8 (1, 4) (2, 3) 8 (3, 5) *
9 (1, 3) (2, 2) 9 * (1, 5)
10 (1, 2) (2, 3) 10 (2, 5) *
11 (2, 2) (1, 3) 11 * (1, 4)
12 (2, 2) (1, 4) 12 * (1, 3)
13 (2, 3) (1, 5) 13 * (1, 2)
14 14 (1, 5) *
15 15 (1, 4) *
16 16 (1, 3) *
17 17 (2, 3) *
18 18 * (1, 3)
19 19 * (1, 4)
20 20 * (1, 5)

* means a robot stays in the same location.

In order to obtain paths of the network of two robots with both synchronous composition and asynchronous com-
position, we first assume it is not the case that both R1 and R2 reach their respective goal positions G1 and G2 by
property specification with a CTL formula:

AG ! (contr1.rob.z 1 = 2 & contr1.rob.z 2 = 3

& contr2.rob.z 1 = 1 & contr2.rob.z 2 = 5).
When checking this property, the results are false with counterexamples to illustrate paths of R1 and R2 from

initial position to the designated goals without collision shown in Table 3. By default, modules in SMV are composed
synchronously, it means that modules executes in parallel. However, by using the key word process, modules can
be composed asynchronously, that is, modules run at different speeds with interleaving manner. For the asynchronous
composition in Table 3, the items marked as star * indicate the robots keep in the same location. According to the results

T. John Koo, et al. Sci China Inf Sci month year Vol. xx No. xx 13

in Table 3, the demonstration of paths of both synchronous composition and asynchronous composition are shown in
Figure 7 and Figure 8, respectively. By using the synchronous composition, one can observe that less time steps are
needed for both robots to accomplish the required specification. While in the other case, by using the asynchronous
composition, even though the required specification is accomplished with more time steps, less transitions are taken by
the robots. This could be explained by the fact that the robots move in an interleaving manner and hence less conflicts
are introduced among robots.

G1 R1

0 1 2 3 4 5 6

0

1

2

3

4

5

6

x1

x2

(a) Path of robot R1 from initial to goal position G1.

G2

R2

0 1 2 3 4 5 6

0

1

2

3

4

5

6

x1

x2

(b) Path of robot R2 from initial to goal position G2.

Figure 7: Paths for the network with two robots R1 and R2 with synchronous composition.

G1 R1

0 1 2 3 4 5 6

0

1

2

3

4

5

6

x1

x2

(a) Path of robot R1 from initial to goal position G1.

G2

R2

0 1 2 3 4 5 6

0

1

2

3

4

5

6

x1

x2

(b) Path of robot R2 from initial to goal position G2.

Figure 8: Paths for the network with two robots R1 and R2 with asynchronous composition.

A summary of model checking the reachability and safety properties of both synchronous composition and asyn-
chronous composition are given in Table 4. We have tested the cases from 2 robots in 6× 6 mapsize up to 3 robots in
15× 15 mapsize. The environment for testing is Linux with 2.2G Hz CPU and 32GB Memory, and the model checker
is Cadence SMV. As shown in Table 4 all the properties are satisfied.

14 T. John Koo, et al.

Table 4: Results from model checking reachability properties 1 and 2 and safety properties 3 and 4 with synchronous
and asynchronous composition.

BDD Nodes Time[s]
Asynch Synch Asych Synch

Reachbility

2r6m 117642 179233 1.41 1.08
3r6m 902945 652421 15.94 10.09
2r10m 1437255 1109173 61.03 25.88
2r15m 4633615 4508088 252.78 223.9
3r10m 7875544 7327447 202.65 130.88
3r15m 59566953 47008200 2855.34 1461.24

Reachability(Step)

2r6m 1063504 281992 85.8 3.72
3r6m 28031275 645226 476.65 16.11
2r10m 1487836 1264218 69.92 40.98
2r15m 6198876 4508229 328.54 216.1
3r10m 45967858 36187637 2294.17 1707.56
3r15m 165029664 111473393 6965.57 6822.95

Collision Avoidance

2r6m 10635004 278866 81.98 3.38
3r6m 25642975 610225 271.43 9.24
2r10m 1449886 1170607 79.5 39.45
2r15m 6390886 4508229 244.01 206.91
3r10m 8967858 6687570 494.61 303.08
3r15m 165039363 32704530 4444.24 3124.23

Bounded Movement

2r6m 177642 179233 1.08 0.95
3r6m 584109 636246 5.27 8.1
2r10m 1469870 1109173 66.96 21.69
2r15m 4633615 4508088 197.84 205.32
3r10m 5008749 4129897 99.03 92.9
3r15m 18402783 21856316 1059.8 934.74

Here 2r6m means 2 robots moving in 6× 6 mapsize, other cases could be comprehended in same manner.

5 Experimental Results

In this section we focus on demonstrating the system implementation of the proposed framework by using a quadrotor-
based aerial robots testbed. The system is setup as follows. Two quadrotor aerial robots are designed and implemented
in the testbed. Each robot is equipped with sensors that are detected by a motion tracker. The motion tracker contin-
uously sends the 3-D position of all the sensors to the analysis and visualization programs running on a visualization
workstation. These programs calculate the position and rotation of the vehicle with respect to a pre-configured ref-
erence frame and pass this information to the controllers running on the real-time computing nodes. These real-time
computing nodes get this data, derive the appropriate control data based on the desired position and orientation, and
send the control signal to the robots via radio transmitters.

In order to implement the framework, the key idea is to determine a partition such that the constraints are respected
and furthermore the properties specified in Assumption 1 can be satisfied. For determining the partition, the closed-
loop dynamics should be taken into consideration. Here, the dynamical model and the controller developed in [28] for
the quadrotor-based aerial robot are presented. The dynamics of the robot is modeled as an outer-inner model and the
controller is constructed by cascading an outer controller with an inner controller.

In the model, the outer system is continuous-time and can be expressed by using the motion equations for a rigid
body, and the discrete-time inner system dynamics can be obtained by performing system identification over discrete

T. John Koo, et al. Sci China Inf Sci month year Vol. xx No. xx 15

data sets. The dynamics of the robot can be described as:

Σ :

y(t) = h(xO(t))

ẋO(t) = fO(xO(t), xI(t))

xI(t+∆) = fI(xI(t), u(t))

where y ∈ R3 is the output vector, xO ∈ R9 is the outer system state, xI ∈ RnI is the inner state vector, the inner input
vector u ∈ R4 and ∆ > 0 is the sampling time with h : R9 → R3, fO : R9 × RnI → R9 and fI : RnI × R4 → RnI .
The dimension of the inner state, nI , is determined in the system identification process. The output vector and the outer
state vector can be specified as y = p and xO = [pT vT ΘT]T , respectively, in which p ∈ R3 is the position vector,
v ∈ R3 is the velocity vector, Θ = [ϕ θ ψ]T ∈ S3 are the ZYX Euler angles.

(a) t ∈ [70s, 72.5s] (b) t ∈ [72s, 75s]

(c) t ∈ [75s, 77.5s] (d) t ∈ [77.5s, 80s]

Figure 9: Motion of two robots R1 and R2 during [70s, 80s].

The controller is constructed by cascading a backstepping-based nonlinear outer controller and a robust linear inner
controller together. They are designed to guarantee bounded output tracking and bounded state performance for bound-
ed desired output trajectory in the presence of anticipated disturbance. In the following, we assume that all system state
variables are properly initialized in order to satisfy the bounded tracking condition. Since backstepping is used in the
outer controller design, the position dynamics can be written as:

ṗ = v

= γv(pd) + (v − γv(pd)).

where γv(pd) is the desired virtual input of the position dynamics so that the position p can converge to a desired
position pd only if the velocity v converges to γv(pd). However, the velocity tracking performance can be only achieved
with ∥v − γv(pd)∥2 6 δv for some δv > 0 due to the presence of anticipated disturbance.

16 T. John Koo, et al.

By considering the velocity tracking performance, we can characterize the position tracking performance. Consider
that γv(pd) is designed for regulating the position at the desired position pd by having γv(pd) = −Ka(p − pd) with
a diagonal matrix Ka. Define zp = p − pd. Consider the Lyapunov function Vp = zTp Ppzp with a positive definite
matrix Pp and the Lyapunov equation (−Ka)Pp + Pp(−Ka)

T = −I where I is an identity matrix and Pp = 1
2K

−1
a .

Hence, V̇p = −zTp zp+2zTp Ppδv 6 −∥zp∥22+2σ(Pp)δv∥zp∥2 where σ(Pp) is the largest eigenvalue of Pp. Thus, −V̇p
is positive definite whenever ∥zp∥2 > 2σ(Pp)δv . Define W (pd) = {p ∈ R3| ∥p − pd∥2 6 2σ(Pp)δv}. Therefore, if
p(0) ∈W (pd), then ∀t > 0 p(t) ∈W (pd); otherwise, ∃t > 0 p(t) ∈W (pd) due to the fact that −V̇ is positive definite
outsideW (pd). In other words, any state starting fromW (pd) will stay withinW (pd) and all the points outsideW (pd)

can reach W (pd) eventually. Therefore, the set W (pd) can be said to be both attractive and positive invariant.
For each cell Yj , the center of the cell is defined as the desired position labelled by pdj . If Yj is large enough to

contain W (pdj), then Yj is a positive invariant set. Furthermore, for the adjacent cell of Yj , say Yk, if pdk is chosen to
be the center of Yk, since all the cells in a partition are the same, the set Yj ∪ Yk is also a positive invariant set and also
all the point in Yj move eventually to the set W (pdk) inside Yk. Hence, both properties specified in Assumption 1 can
be satisfied by properly choosing the set point corresponding to the discrete input symbol.

(a) t ∈ [67.5s, 70s] (b) t ∈ [70s, 72.5s] (c) t ∈ [72s, 75s]

(d) t ∈ [75s, 77.5s] (e) t ∈ [77.5s, 80s] (f) t ∈ [80s, 82.5s]

Figure 10: Progression of flight trajectory and acceptable cell occupation.

Given the set W1(·), the continuous state space Y is partitioned as π = {Yj}Mj=1 such that every cell respects the
ball and the physical dimensions of the aerial robots. Given the cell partition, the time range τ = [0, τ2] gives bound
on the time needed to go from one cell to the center of a neighboring cell. In the implementation, the dimensions of
each helicopter are 75cm×75cm but due to the limited space each cell is restricted to be a 100cm×100cm square and
there are only 4 cells considered. The radius of W1(·), δr, is determined to be 12.5cm experimentally. This means
that given a fixed reference point, the center of the helicopter will stay within a ball of radius 12.5cm centered at that
reference point. The time range τ = [1.5s, 4.5s] is determined experimentally and a time range of τ ′ = [1s, 5s] is
used for constructing the finite automaton model of a given robot as a more conservative approximation.

Consider a mission involving two quadrotor aerial robots, robot (R1) and robot (R2). The objective is to coordinate
the robot motion so that they eventually reach their target (discrete) locations while satisfying imposed dynamical and
static constraints. The following reachability and safety properties of the multi-robot system are verified on the network

T. John Koo, et al. Sci China Inf Sci month year Vol. xx No. xx 17

of finite automata using SMV, given the initial locations P1 = (1, 1) and P1 = (2, 2) for R1 and R2, respectively:

Property 1 (Reachability)

Does a location trajectory exist where the robots R1 and R2 eventually reach their goal positions G1 and G2?
EF (contr1.rob.z 1=2 & contr1.rob.z 2=2

& contr2.rob.z 1=1 & contr2.rob.z 2=1)

Property 3 (Collision avoidance)

Does all location trajectories the robots R1 and R2 take, ensure they never collide after they start to move, i.e. for
step > 0?
AG ! ((contr1.rob.z 1=contr2.rob.z 1

& contr1.rob.z 2=contr2.rob.z 2)

& contr1.rob.step>0 & contr2.rob.step>0)

In this implementation, the robots are designed to be synchronized to their own robot controllers and hence the se-
quence generated by the model checker. The flight results in pictures are shown in Figure 9 and the position trajectories
of the robots are shown in Figure 10. Two robots R1 and R2 are initially located diagonally. The reachability property
is checked such that the robot R1 will move from one corner (discrete) location to another corner (discrete) location
and robot R2 starts and finishes adjacent to robot R1. We can see that the robots reach the target locations, remain in
the boundary and avoid colliding.

In order to understand the significance of the verification and the validity of the bisimulation, we compare the
verification result and the experimental result. In SMV, the wider time range τ ′ = [1s, 5s] is used. Since the range τ ′

covers the range τ , the bisimulation still holds and furthermore SMV provides a more conservative result. By observing
the trace file of the verification results by using the range τ ′ = [1s, 5s] in SMV, we observe that the first transition (for
both vehicles) should take place in the range [70s, 75s], the second transition during [72s, 80s], and the third transition
between [73s, 85s]. In the experiment, transition times (to get to an adjacent cell) for R1 are 72.25s, 76.15s, and 80s,
and forR2 are 74.2s, 77.9s, and 82.6s. This can be seen in Figure 10. The time intervals provided by the model checker
for the finite automata cover the transition times taken for the robots in implementation. These results demonstrate the
effectiveness of the abstraction technique.

6 Conclusion

A framework for the coordination of a network of robots with respect to formal requirement specifications in temporal
logic has been proposed. In this framework, a regular tessellation is used for partitioning the space of interest into a
union of disjoint regular and equal cells with finite facets. Each cell can only be occupied by a robot or an obstacle.
Each robot is assumed to be equipped with a finite collection of continuous-time nonlinear closed-loop dynamics to
be operated in. Robots are modeled as hybrid automata capturing finite modes of operations for either staying within
the current cell or reaching an adjacent cell through the corresponding facet. By taking the motion capabilities into
account, a bisimilar discrete abstraction of the hybrid automaton can be constructed. Having the two systems bisimilar,
all properties that are expressible in temporal logics such as LTL, CTL, and µ-calculus can be preserved. Therefore,
on one hand, motion planning of robots can be performed at a discrete level by considering the parallel composition of
discrete abstractions of the robots and a requirement specification expressed in some suitable temporal logic. On the
other hand, the bisimilarity ensures that the discrete planning solutions are executable by the robots with continuous
dynamics. A 2-dimensional case study is used to demonstrate how the framework can be implemented and solve
the coordinated motion planning problem of robots in a partitioned environment. Finite automata are used as the
abstraction of the robot model and the requirement specification is expressed in CTL with Cadence SMV as the model
checker for generating and verifying coordinated motion planning solutions. The quadrotor-based aerial robots testbed
has been used to demonstrate the implementation of the proposed framework with two aerial robots. Experimental
results have shown the effectiveness of the proposed framework for the coordination of a network of robots by using
temporal logic to formulate the mission specifications for a network of robots.

18 T. John Koo, et al.

The results presented here assumes an infra-structure of the robots with feedback controllers that constrain the
motion capabilities of the individual robots. Although in the system implementation the controllers are implemented
for regulating the robots at some predefined desired positions for demonstration purpose, the framework does allow
less coupling in the selection of the type of partition and the motion capabilities of the robots. Hence, the robots
can be designed with hierarchical dynamical behaviors with various levels of trajectory granularity so long as the
assumption made on the motion capabilities within and among cells can be satisfied. For example, in a search-and-
rescue mission the assumption can be interpreted in such a way that the robots can be asked to “stay” within the
current cells with some continuous trajectories for performing some rescuing tasks or to “move” from the current cells
to the adjacent cells with some other continuous trajectories for covering some specific search areas. On the other
hand, as shown in the examples, the robots are designed to be synchronized to their own robot controllers and hence
the sequence generated by the model checker. By introducing additional finite automata into the network for modeling
communication protocol between robots, various forms of centralization and synchronization can be incorporated. With
these flexibilities, this framework can be extended to incorporate heterogeneous robots even with asymmetric motion
capabilities to accomplish a given mission collectively. However, as in many model checking based approaches, the
computational complexity of model checking the system increases as the number of robots in the network and the
size of the occupancy table increases. The complexity of checking a CTL formula in Cadence SMV is linear in the
state space of the system and the length of the formula. In order to make the proposed framework applicable for large
networks of robots an extensive search of the state space should be avoided or substantially reduced.

Acknowledgements

This work is supported by the Shenzhen Science Fund for Distinguished Young Scholars, Shenzhen Science and Technology
Foundation, Grant No. JC201005270259A; the Shenzhen Institutes of Advanced Technology, the Chinese Academy of Sciences,
Grant No. O9G003; and the Faculty Research Funds from Aalborg University, Denmark, and Vanderbilt University, USA.

References
1 T. Balch and R. C. Arkin. Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics & Automation, 14(6):926–

939, December 1998.
2 R. Fierro, A. K. Das, V. Kumar, and J. P. Ostrowski. Hybrid control of formations of robots. In Proceedings of the 2001 IEEE International

Conference on Robotics and Automation, pages 157–162. IEEE, 2001.
3 R. A. Zachery, S. S. Sastry, and V. Kumar. Proceedings of the IEEE, Special Issue on Swarming in Natural and Engineered Systems, 99(9),

2011.
4 E. Klavins and D. E. Koditschek. A formalism for the composition of concurrent robot behaviors. In Proceedings of the 2000 IEEE

International Conference on Robotics and Automation, pages 3395–3402. IEEE, 2000.
5 R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. Multi-robot cooperation in the MARTHA project. IEEE Robotics & Automation

Magazine, 5(1):36–47, March 1998.
6 B. P. Gerkey and M. J. Mataric. Sold: Auction methods for multirobot coordination. IEEE Transactions on Robotics & Automation,

18(5):758–768, October 2002.
7 M. Egerstedt and X. Hu. A hybrid control approach to action coordination for mobile robots. Automatica, 38(1):125–130, January 2002.
8 M. Egerstedt and C. F. Martin. Conflict resolution for autonomous vehicles: A case study in hierarchical control design. International Journal

of Hybrid Systems, 2(3):221–234, September 2002.
9 R. Alur, J. Esposito, M. Kim, V. Kumar, and I. Lee. Formal modeling and analysis of hybrid systems: A case study in multi-robot coordination.

In Proceedings of Formal Methods, World Congress on Formal Methods in the Development of Computing Systems 1999, Lecture Notes in
Computer Science 1708, pages 212–232. Springer, 1999.

10 T. J. Koo and S. Sastry. Bisimulation based hierarchical system architecture for single-agent multi-modal systems. In Proceedings of 2002
International Workshop on Hybrid Systems: Computation and Control, Lecture Notes in Computer Science 2289, pages 281–293. Springer,
2002.

11 M. Antoniotti and B. Mishra. Discrete event models + temporal logic = supervisory controller: Automatic synthesis of locomotion controllers.
In Proceedings of the 1995 IEEE Conference on Robotics & Automation, pages 1441–1446. IEEE, 1995.

12 M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi. Multi-robot planning: A timed automata approach. In Proceedings of the 2004 IEEE
International Conference on Robotics & Automation, pages 4417–4422. IEEE, 2004.

13 G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas. Temporal logic motion planning for mobile robots. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, pages 2020–2025. IEEE, 2005.

14 C. Belta, V. Isler, and G. J. Pappas. Discrete abstractions for robot planning and control in polygonal environments. IEEE Transactions on
Robotics, 21(5):864–875, 2005.

T. John Koo, et al. Sci China Inf Sci month year Vol. xx No. xx 19

15 G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas. Hybrid controllers for path planning : A temporal logic approach. In Proceedings of the
2005 IEEE Conference on Decision and Control and the European Control Conference, pages 4885–4890. IEEE, 2005.

16 M. Kloetzer and C. Belta. A fully automated framework for control of linear systems from ltl specifications. In Proceedings of the 2006
International Workshop on Hybrid Systems: Computation and Control, Lecture Notes in Computer Science 3927, pages 333–347. Springer,
2006.

17 M. Kloetzer and C. Belta. LTL planning for groups of robots. In Proceedings of the 2006 IEEE International Conference on Networking,
Sensing, and Control, pages 578–583. IEEE, 2006.

18 M. Kloetzer and C. Belta. Automatic deployment of distributed teams of robots from temporal logic motion specifications. IEEE Transactions
on Robotics, 26(1):48–61, 2010.

19 Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta. A formal approach to deployment of robotic teams in an urban-like environment. 10th
International Symposium on Distributed Autonomous Robotics Systems (DARS), Lausanne, Switzerland, 2010.

20 C. Belta S. L. Smith, J. Tumova and D. Rus. Optimal path planning for surveillance with temporal-logic constraints. The International Journal
of Robotics Research, 30(14):1695–1708, 2011.

21 G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas. Temporal logic motion planning for dynamic robots. Automatica, 45(2):343–352,
2009.

22 E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 1999.
23 K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston, Massachusetts, 1993.
24 K. L. McMillan. Getting started with SMV: User’s manual. Cadence Berkeley Laboratories, USA, 1998.
25 A. Chutinan and B. H. Krogh. Verification of infinite-state dynamic systems using approximate quotient transition systems. IEEE Transactions

on Automatic Control, 46(9):1401–1410, 2001.
26 A. Podelski and S. Wagner. Model checking of hybrid systems: From reachability towards stability. In Proceedings of the 2006 International

Workshop on Hybrid Systems: Computation and Control, Lecture Notes in Computer Science 3927, pages 507–521. Springer, 2006.
27 G. J. Pappas. Bisimilar linear systems. Automatica, 39(12):2035–2047, December 2003.
28 T. J. Koo, C. A. Clifton, and G. Hemingway. Casacded control design for a quadrotor aerial robot. In Proceedings of the 2006 Asian Control

Conference. IEEE, 2006.

